一次函数与正比例函数 教学设计新部编版
《一次函数和正比例函数》教学设计

《一次函数与正比例函数》教学设计一、教学目标知识与技能:理解正比例函数和一次函数的概念,弄清它们的联系与区别.通过结合实际列出函数解析式.过程与方法:通过理解一次函数的过程,培养学生观察、比较、归纳、总结的水平,培养学生从实际问题中抽象函数概念的水平,即数学建模思想.情感态度价值观:通过结合实际列出函数解析式,并利用函数知识解决实际问题,使学生感受到数学来源于生活,服务于生活,发展学生的数学应用水平,通过增强小组合作交流,培养学生的团结协作的水平.二、教学重、难点重点:准确理解正比例函数和一次函数的概念和它们之间的关系.能使用一次函数知识解决相关问题.难点:能结合实际准确求出一次函数的解析式.抽象思维水平的培养.三、教学流程安排活动一:创设情境,导入新课通过行程问题,复习函数概念.本节课我们将学习一种具体的初等函数,这种函数在现实生活中随处可见,让我们一起来找一找.教师给出导学单,学生分组活动,让学生在合作交流中发现知识,然后分享学习成果.1.某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:你能写出x与y之间的关系式吗?2.某辆汽车中原有汽油60升,汽车每行驶50千米耗油6升.若汽车行驶路程x千米,油箱耗油量y升.(1)完成以下表格.(2)汽车每行驶1 km耗油多少L?(3)你能写出耗油量y(L )与汽车行驶路程x(km)之间的关系式吗?(4)你能写出油箱剩余油量z ( L )与汽车行驶路程x( km)之间的关系式吗?设计意图:从学生熟悉的问题入手,由这些简单的实例持续体会从现实世界中抽象数学模型,建立数学关系的方法.通过填表让学生理解变量间的对应规律,体会从特殊到一般的数学思想方法.活动二:合作交流明确概念1.学生独立思考,通过让学生观察、比较、归纳、总结,让学生自主发现这些函数的特征,为得出一次函数的概念做准备.教师根据学生的回答引出一次函数和正比例函数的概念.请两位学生代表用字母拼出一次函数的表达式.一次函数:若两个变量 x、y之间的关系能够表示成y=kx+b(k,b为常数,k ≠0)的形式,则称 y是x的一次函数.(x为自变量,y为因变量)当b=0时,称y= kx是x的正比例函数2.通过游戏找出一次函数,再次强化一次函数概念及特点.教师着重强调:(1)它们自变量的指数都为一次,一次项都是自变量与一个常数乘积的形式.(2)正比例函数是特殊的一次函数.活动三:使用概念 回归实际例1 已知 y=(m-2) +n-2(1)m,n 为何值时,y 是x 的一次函数?(2)m,n 为何值时,y 是x 的正比例函数?例2 写出以下各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)某水池有水15 m3,现打开进水管进水,进水速度为5 m3/h, xh 后这个水池内有水ym3.例3 例自2019年1月1日起,我国居民个人劳务报酬所得税预扣欲缴税款的计算方法是:每次收入不超过800元的,预扣欲缴税款为0,每次收入超过800元但不超过4000元,预扣欲缴税款=(每次收入-800)x20%。
正比例函数教案与教学设计(两份)

《正比例函数》教学设计(一)一、教学目标:1、知道一次函数与正比例函数的意义.2、能写出实际问题中正比例关系与一次函数关系的解析式.3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力二、教学重点:对于一次函数与正比例函数概念的理解.三、教学难点:根据具体条件求一次函数与正比例函数的解析式.四、教学方法:结构教学法、以学生“再创造”为主的教学方法五、教学步骤(一)明确目标前几节课我们学习了一些与函数有关的知识点,它们都是一些一般性的问题.从这节课开始,我们将来研究几个特殊函数的解析式和图象.首先,我们来研究一次函数.(板书)(二)整体感知提问:1.什么是函数?2.函数有哪几种表示方法?3.你能否举出几个函数的例子?若学生举的例子正是一次函数,就把它写在黑板上,用于讲解;若学生举的例子不适合,可采用书上给出的例子讲解.提问:(1)这些式子表示的是什么关系?(函数关系)(2)这些函数中的自变量是什么?函数是什么?这个问题主要是使学生明确函数就是等号左边的s和y;而自变量是x 和t之后,明确等号右边其实是一个代数式的形式,以便回答下一个问题.(3)在这些函数式中,含有函数的自变量的式子,分别是关于自变量的什么式子?这个问题是给出一次函数的概念的关键问题,若学生没有想到用“一次式”这种方式表示,教师可直接向学生提出“是关于自变量的几次式”这个问题,再由学生回答.(4)结合我们学过的一元一次方程的有关知识,你能否说出x的一次式的一般形式是什么样的?由学生讨论回答,及时纠正可能出现的错误,最后加以总结:x的一次式是kx+b(k≠0)的形式.由上面的问题结果综合得到:(板书)一般地,如果y=kx+b(k、b是常数,k≠0),那么,y叫做x的一次函数.提问:(1)k、b是常数的含义是什么?答:对于一个特定的函数式,k和b的值是固定的.(2)对于函数y=2x+3和y=-2x-5,你能否指出其中的k和b?这个问题一方面是为了向学生进一步说明k和b是常数的含义,另一方面也是为了培养学生思维的灵活性和深刻性,充分体会一次函数标准形式的表示方法,能正确分清其中的k和b,为以后学习一次函数的图象和性质打下良好的基础.强调学生在回答时,注意k和b的符号.(3)k≠0这个条件能否省略不写?由学生讨论回答,指出若k=0,则y=kx+b变形为y=b,b是关于x的0次式,因此不是一次函数,不必向学生交待常函数的意义.(4)上述一次函数的定义中,限制了k≠0,那么b能否为0呢?若b=0,上述式子变形为什么样?这个问题主要是为了引出正比例函数的概念,同时,通过这种引法,也可以使学生体会到正比例函数与一次函数是有关系的.由问题(4)总结,板书:特别地,当 b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.提问:(1)正比例函数与一次函数有怎样的关系?答:正比例函数是一次函数的特例.(2)小学时,学过正比例的知识吗?是怎样叙述的?请你回忆一下.小学叙述时,是强调两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.写成式子是y=kx(k为常数,k不等于0)提问:小学学过的正比例与我们现在说的正比例函数有什么关系?先由学生观察,然后总结:把小学学过的正比关系的式子加以变形就成为y=kx(k一定),也就是我们现在所学习的正比例函数.由于小学定义时k为商,所以k当然不为0,这个细节可由教师提问后学生回答.但小学学习时,x与y只能取正数,但现在就不同了,x和y可以取任意实数.由这个总结使学生对学过的知识能加以系统的理解.练习一:P.105中1 口答.注意:一定要让学生说清原因.刚才我们学习了一次函数和正比例函数的概念,下面我们来看一下,能否根据实际问题自己列出一次函数和正比例函数的关系式呢?(出示幻灯)例1 一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求经过几秒小球的速度可变化为10米/秒.分析:v与t是正比例关系,若学生有困难,可出示下表帮助学生理解:例2 拖拉机开始工作时,油箱中有油40升,如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式,并求出自变量的取值范围.这道题学生会感到有困难,以提问的方式分析:(1)油箱中的油为什么会减少?(耗油)(2)余油量与什么有关?(原油量与耗油量)(3)耗油量与什么有关,怎样表示?(4)你能否确定这个函数关系式?(5)这道题是实际问题,拖拉机能否一直工作?什么时候拖拉机不能工作了呢?练习二:P.105中2 填在书上,口答,注意单位(万元).(三)重点、难点的学习与目标完成过程本节课的第一个重点是一次函数与正比例函数的概念,为了便于学生的理解,教师不是上来就给出概念让学生背,而是通过一些函数的解析式让学生归纳总结一次函数概念,然后通过一次函数概念中的一些条件的分析得出正比例函数,使学生很清楚地看到一次函数与正比例函数的关系.关于本节课的第二个重点和难点,教师更是要给学生充分的思考时间,并把问题层层剖析,使学生能理解实际问题的含义,由此自然而然地达到把实际问题抽象成数学模型的目的.(四)总结、扩展教师提问,学生思考回答:1.这节课我们学习了几个特殊的函数?2.你能分别说出它们的一般形式吗?3.正比例函数与一次函数有怎样的关系?4.确定实际问题的自变量取值范围应注意什么?《正比例函数》教学设计(二)一、教学目标知识与技能:1.理解正比例函数的概念。
最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)

最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)1.探究:引导学生观察生活中的实例,探究变量之间的关系,初步感受函数的概念。
2.归纳:通过多个实例,引导学生总结一次函数和正比例函数的概念和特点。
3.巩固和反馈:通过练和讨论,巩固学生的知识点,及时反馈学生的问题和疑惑。
2.研究方法:学生需要积极参与探究和讨论,注重归纳总结,勤于练和思考,及时反馈自己的问题和困惑。
五、教学内容分析本节课的主要内容是一次函数和正比例函数的概念和特点,以及如何根据已知条件写出简单的一次函数表达式。
教学重点是理解一次函数和正比例函数的概念,教学难点是能根据所给条件写出简单的一次函数表达式,需要发展学生的抽象思维能力。
六、教学过程设计1.引入新知识:通过一些实例引导学生思考变量之间的关系,初步感受函数的概念。
2.讲解一次函数和正比例函数的概念和特点,引导学生总结归纳。
3.演示如何根据已知条件写出简单的一次函数表达式,让学生进行练。
4.讨论和解决学生的问题和疑惑,及时给予反馈。
5.巩固练:让学生通过实例练,巩固所学知识。
6.总结归纳:让学生总结一次函数和正比例函数的概念和特点,及如何根据已知条件写出简单的一次函数表达式。
七、教学资源准备教师需要准备课件、实例、练题等教学资源,以及黑板、白板、笔等教学工具。
八、教学评估方法教师可以通过学生的课堂表现、练成绩、小组讨论等方式进行评估,及时发现学生的问题和困惑,做好及时反馈和指导。
同时,教师可以通过课后作业和考试等方式进行综合评估。
教学过程设计本节课设计了七个环节:复引入、新课讲述、巩固练、知识提高、反馈练、课堂小结和布置作业。
复引入在这个环节,教师提出了三个问题,分别是什么是函数、函数有哪些表示方式和在现实生活中有哪些问题可以归结为函数问题。
这个环节的意图是为了激发学生的求知欲望,吸引同学们的注意力,采用了“复旧知识,诱导新内容”的引入方法。
问题(1)(2)复上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
《一次函数与正比例函数》说课稿

《一次函数与正比例函数》教材分析《一次函数》是义务教育课程标准北师大版实验教科书八年级上册第四章《一次函数》的第二节。
本节内容安排了1个课时,让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力。
与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的。
教学目标1、理解一次函数和正比例函数的概念;2、能根据所给条件写出简单的一次函数表达式;3、经历一般规律的探索过程,发展学生的抽象思维能力;4、经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力;5、体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣;6、在探索过程中体验成功的喜悦,树立学习的信息。
教学重难点【教学重点】理解一次函数和正比例函数的概念。
【教学难点】能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力。
课前准备学生每人准备好草稿纸、铅笔、直尺;教师准备课件,图片,三角板。
教学过程第一环节:复习引入内容:复习上节课学习的函数,教师提出问题a)什么是函数b)函数有哪些表示方式c)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?意图:为了激发学生的求知欲望,吸引同学们的注意力。
这里采用了“复习旧知识诱导新内容”的引入方法。
问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。
效果:问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善。
通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦。
北师大版数学八年级上册2《一次函数与正比例函数》教学设计2

北师大版数学八年级上册2《一次函数与正比例函数》教学设计2一. 教材分析《一次函数与正比例函数》是北师大版数学八年级上册第2章的内容。
本节内容是在学生已经掌握了函数概念的基础上,进一步学习一次函数与正比例函数的定义、性质及应用。
一次函数与正比例函数是初中的重要内容,也是后续学习函数及其他数学知识的基础。
二. 学情分析学生在学习本节内容时,已经具备了初步的函数概念,能够理解变量之间的关系。
但是,对于一次函数与正比例函数的定义和性质,以及如何运用这些知识解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解函数的概念,通过实例让学生感受一次函数与正比例函数的应用。
三. 教学目标1.理解一次函数与正比例函数的定义及其性质。
2.能够运用一次函数与正比例函数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一次函数与正比例函数的定义及其性质。
2.一次函数与正比例函数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索、发现问题,培养学生的独立思考能力。
2.利用多媒体课件,直观展示一次函数与正比例函数的图象,帮助学生理解其性质。
3.通过实例分析,让学生感受一次函数与正比例函数在实际问题中的应用。
4.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体课件。
2.相关实例资料。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实例,如购物时商品的价格变化,让学生观察并思考这些实例中变量之间的关系。
引导学生回顾已学的函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)介绍一次函数与正比例函数的定义,并通过多媒体课件展示其图象,让学生直观地感受一次函数与正比例函数的特点。
3.操练(10分钟)让学生分组讨论,分析实例中的一次函数与正比例函数,并尝试用数学语言描述其性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对一次函数与正比例函数的理解。
八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。
(2)能根据所给的实际生活背景,列出简单的一次函数关系式。
情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。
难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。
根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。
通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。
三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。
3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。
《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
北师大版八年级上册第四章2一次函数与正比例函数教学设计

(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组针对一个实际问题展开讨论。例如,小组讨论题目可以是:“某商店举行打折活动,原价为100元,打8折后的价格为多少?试用一次函数表示这个关系。”通过小组合作,让学生在实践中掌握一次函数的应用。
3.合作交流(15分钟):
学生分组讨论,交流各自发现的一次函数与正比例函数的性质,教师点评,总结归纳。
4.知识讲解(15分钟):
针对重点和难点,教师进行详细讲解,结合图像和实例,帮助学生深入理解一次函数与正比例函数的关系。
5.实践应用(20分钟):
设计ห้องสมุดไป่ตู้际问题时,让学生独立解决,巩固所学知识,提高学生的应用能力。
6.拓展延伸(10分钟):
针对学有余力的学生,设计拓展性问题,培养学生的创新意识和解决问题的能力。
7.总结反思(5分钟):
教师与学生共同总结本节课的学习内容,学生反思自己的学习过程,教师给予评价和反馈。
四、教学内容与过程
(一)导入新课,500字
在导入新课时,我将采用生活实例的方式,激发学生的兴趣和思考。首先,我会向学生提出一个简单的问题:“同学们,你们在生活中遇到过这样的问题吗?比如,坐出租车时,费用是如何计算的?在商店购物时,打折后的价格是如何得出的?”通过这个问题,让学生感受到数学与生活的紧密联系,引导他们思考这些实际问题背后的数学原理。
三、教学重难点和教学设想
(一)教学重难点
1.知识重点:一次函数与正比例函数的概念、表达式、图像特点及其在实际问题中的应用。
北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计

北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计一. 教材分析《一次函数与正比例函数》是北师大版八年级数学上册第4章的内容,主要介绍了正比例函数和一次函数的定义、性质和应用。
本节课的内容是学生进一步学习函数的基础,对于学生理解函数的概念、掌握函数的性质、提高解决问题的能力具有重要意义。
二. 学情分析学生在七年级时已经学习了比例和方程,对比例的概念和方程的解法有一定的了解。
但他们对函数的概念和性质还不够清晰,特别是对于函数图像的理解和应用。
因此,在教学过程中,需要引导学生将已有的知识与函数内容相结合,通过实例和练习让学生感受函数的意义和应用。
三. 教学目标1.知识与技能:使学生理解正比例函数和一次函数的定义,掌握它们的性质和图象特征,能运用一次函数和正比例函数解决实际问题。
2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神,使学生感受数学与生活的密切联系。
四. 教学重难点1.重点:正比例函数和一次函数的定义、性质和图象特征。
2.难点:一次函数和正比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生观察、分析和解决问题;通过案例教学,让学生感受数学与生活的联系;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关案例和问题,以便在教学中进行案例分析和问题讨论。
2.准备一次函数和正比例函数的图象和性质的PPT,以便进行讲解和展示。
3.准备一些练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题引出函数的概念,例如:某商品的原价是100元,打8折后的价格是多少?让学生思考和讨论,引导学生认识到函数是数学建模的基础。
2.呈现(10分钟)介绍正比例函数和一次函数的定义、性质和图象特征,通过PPT展示相关图象,让学生直观地感受函数的性质。
一次函数教学设计 【完整版】

一、教学目标:(一):知识技能:1、理解一次函数的概念,知道一次函数与正比例函数的关系。
2、能根据实际问题情景写出一次函数的表达式,能利用一次函数解决一些简单的实际问题。
(二):数学思考:1、通过对问题信息写出一次函数的表达式的过程,体会建立一次函数的模型。
2、通过一次函数概念的探索归纳过程,发展学生的抽象思维和概括能力,体验特殊和一般的辩证关系。
(三):解决问题:能够运用一次函数概念,判断两个变量是否构成一次函数关系。
2、会利用一次函数解决简单的实际问题。
(四)情感态度:经历利用一次函数解决实际问题的过程,逐步形成利用函数的观点认识现实生活的意识的能力。
二、教学重点、难点:重点:1、一次函数的概念。
2、根据实际问题写出一次函数的表达式。
难点:根据实际问题写出一次函数的表达式。
三、教学策略:以“问题情境——自主探究——拓展应用”的模式展开教学。
首先,创设问题情境,激发学生的好奇心和求知欲;其次进行知识的横纵联系,抽象概括,将感性知识上升到理性认识;最后,在习题演练中巩固、理解概念,让学生认识到数学知识在解决实际问题中发挥的作用,从而增强学好数学学科的信心。
四、教学手段:多媒体课件,学生讨论等。
五、教学过程:一、温故而知新函数的定义二、探索新知:1下列问题中,变量之间的对应关系是函数关系吗如果是,请写出函数解析式•(1)面积为10cm的三角形的底a(cm)与这边上的高h(cm);•(2)汽车以60千米/时的速度匀速行驶,行驶路中y(千米)与行驶时间x(时)之间的关系式。
•(3)圆的面积y(厘米)与它的半径x(厘米)之间的关系;•(4)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)。
•(5)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,且c的值约是t的7倍与35的差;•(6)把一个长10cm,宽5cm的矩形的长减少x cm,宽不变,矩形面积y (单位:cm2)随x 的值而变化.导出一次函数概念。
42一次函数与正比例函数教学设计

4.2 一次函数与正比例函数(沣东一校---杨飞刚)教材分析:在上一节课学生已经学习了函数的概念,以及函数的表示方法。
会判断简单的变量之间的关系是不是函数。
本节课学习的一次函数与正比例函数,是初中要学习的最基本的函数,也是学生学习二次函数和反比例函数的基础,因此这节课的内容在整个初中的教学中具有重要的作用。
教法分析:本节课是学生第一次接触一次函数,虽然学生对函数的概念已经有了基本的了解,但是了解的不够深刻,本节课,在概念讲解部分,设计一些一次函数的例子,让学生从具体的实例中来寻找变量关系,并且用关系式表达出来,让学生通过对一个个具体的关系式的比较,寻找它们之间的共同特点来生成一次函数的概念。
在学生生成概念之后,给出一些函数关系式,让学生去判断,是否是一次函数。
在概念应用部分,设计两个例题来强化概念并指导学生如何应用概念,课堂练习部分,设计一些典型的题目,对学生所学知识进行强化巩固。
最后对本节课知识进行小结。
教学目标:1.学习并理解一次函数与正比例函数的概念,会写一次函数与正比例函数关系式。
2.通过经历一次函数与正比例函数的探索过程,发现一次函数与正比例函数的特点,并会运用一次函数与正比例函数解决实际问题。
3.让学生认识到事物之间是普遍联系的,增强学生的数学应用意识.教学重难点:【重点】一次函数、正比例函数的一般形式.【难点】4.2 一次函数与正比例函数第1页根据实际问题情景写出一次函数或者正比例函数关系式教学过程:一、创设情境,引入新课情境1、某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量m每增加1kg,弹簧长度l增加0.5cm,(1)计算所挂物体的质量分别为1千克、2千克、3千克、 4千克、 5千克时的长度,并填入下表:(2)你能写出弹簧长度l(cm)与物体质量m(kg)之间的关系式吗?情境2、小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月节存12元.随着存钱月份x的增加,存款数y在增加。
一次函数与正比例函数教案

一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即函数表达式为y=kx+b(k、b为常数,k≠0)的形式。
通过实际例子,让学生理解一次函数的图像是一条直线。
1.2 一次函数的斜率与截距解释斜率k和截距b的概念,并引导学生通过函数表达式理解它们的含义。
利用实际例子,展示斜率和截距如何影响函数图像的位置和斜率。
1.3 一次函数的图像利用图形工具,展示不同斜率和截距的一次函数图像。
引导学生观察图像的特性,如斜率和截距对图像的影响。
第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即函数表达式为y=kx(k为常数)的形式。
解释正比例函数是一种特殊的一次函数,其截距b为0。
2.2 正比例函数的斜率与图像解释正比例函数的斜率代表比例常数k,并展示不同k值的图像。
引导学生观察正比例函数图像的特点,如通过原点、斜率为正或负等。
2.3 正比例函数的应用通过实际例子,展示正比例函数在实际生活中的应用,如购物时商品的价格与数量的关系。
引导学生理解正比例函数的局限性,即仅限于变量间成正比的情况。
第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的转化解释一次函数可以通过移项转化为正比例函数的形式。
引导学生掌握如何将一次函数y=kx+b转化为正比例函数y=kx。
3.2 一次函数与正比例函数的图像关系利用图形工具,展示一次函数和正比例函数图像之间的关系。
引导学生观察当截距b为0时,一次函数图像与正比例函数图像的相似性。
3.3 一次函数与正比例函数的交点解释一次函数与正比例函数的交点是两个函数图像的交点。
引导学生利用图形工具,找出一次函数与正比例函数的交点,并分析其含义。
第四章:一次函数与正比例函数的应用4.1 线性方程的解法引导学生掌握线性方程的解法,包括代入法、消元法等。
通过实际例子,展示如何利用一次函数和正比例函数解决实际问题。
一次函数与正比例函数教案

一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即形如y = kx + b (k、b 为常数,k 不等于0)的函数。
通过实际例子,让学生理解一次函数的组成和意义。
1.2 一次函数的图像引导学生了解一次函数图像是一条直线,并掌握直线的斜率和截距的概念。
1.3 一次函数的性质引导学生掌握一次函数的增减性和过原点性质。
举例说明一次函数在实际生活中的应用,如成本与数量的关系等。
第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即形如y = kx (k 为常数)的函数。
通过实际例子,让学生理解正比例函数的组成和意义。
2.2 正比例函数的图像引导学生了解正比例函数图像是一条通过原点的直线。
2.3 正比例函数的性质引导学生掌握正比例函数的单调性和过原点性质。
举例说明正比例函数在实际生活中的应用,如速度与时间的关系等。
第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的联系引导学生了解一次函数和正比例函数之间的关系,即一次函数可以看作是正比例函数的一种特殊形式。
3.2 一次函数与正比例函数的转化引导学生掌握如何将一次函数转化为正比例函数,以及如何将正比例函数转化为一次函数。
3.3 一次函数与正比例函数的应用通过实际例子,让学生了解一次函数和正比例函数在实际生活中的应用,如商品价格与数量的关系等。
第四章:一次函数与正比例函数的图像解析4.1 一次函数图像的解析引导学生掌握如何从一次函数的图像中获得斜率和截距的信息。
4.2 正比例函数图像的解析引导学生掌握如何从正比例函数的图像中获得斜率的信息。
4.3 一次函数与正比例函数图像的比较引导学生了解一次函数图像和正比例函数图像的异同,并掌握如何判断一个函数是一次函数还是正比例函数。
第五章:一次函数与正比例函数的综合应用5.1 实际问题转化为一次函数与正比例函数的问题引导学生学会将实际问题转化为一次函数与正比例函数的问题,并利用相关性质解决。
一次函数与正比例函数教学设计

一次函数与正比例函数教学设计4.2一次函数与正比例函数研究目标:1)理解一次函数和正比例函数的概念;能根据所给条件写出简单的一次函数表达式.2)经历一般规律的探索过程,发展学生的抽象思维能力;经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.3)感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.研究重点:理解一次函数和正比例函数的概念;一次函数与正比例函数的关系研究难点:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.学情分析:上节课研究了函数的概念,学生对函数有一定的认知基础,本节课将研究一个较为简单、应用较为广泛的函数“一次函数”使学生了解函数的有关性质和研究方法,本节课从关系式的角度研究函数。
研究过程一、预导学1、什么是函数?函数有哪些表示方法?2、下列题目中的变量对应纪律你能用干系式表示吗?1)一支钢笔5元钱,写出买x支这样的钢笔所需的用度y元这两个量间的关系2)假定某学生骑自行车的速率为10km/h,则他骑自行车用的工夫t(h)和所走过的路程s(km)之间的干系是什么?3、某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg 时的弹簧长度,并填入下表:x/kgy/cm(2)你能写出x与y之间的关系式吗?12、协作探究1、某辆汽车油箱有汽油60L,汽车每行驶50km耗油6L.1)完成下表:汽车行驶路程x/km耗油量y/Lxxxxxxxx(2)你能写出x与y之间的干系式吗?3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?2、观察上面实例中所得表达式,在形式上有什么相同之处?1)共同点:①左边都是,右边都是含的整式;②自变量与因变量的次数都是;2)总结归纳:一次函数的概念:若两个变量x,y间的对应干系可以表示成y=kx+b(k,b为常数,k≠0)的方式,则称y是x的一次函数。
八年级数学下册-一次函数第1课时教学设计

一次函数(第1课时)教学设计
(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?
(2)求第2.5秒时小球的速度.
成果展示欣赏自我:本节课你学会了什么?
完善自我:对本课的内容,你还有哪些疑
惑?
教师引导学生归纳总结、反
思、梳理知识,帮助学生形成知
识体系.
补偿提高
4.学校组织学生到距离学校6km的神舟科
技馆去参观,学生李伟因事耽误没能乘上学
校的专车,于是准备在学校门口改乘出租车
去神舟科技馆,出租车的收费标准如下:
(1)写出出租车行驶的里程数x(x≥3km)
与费用y(元)之间的函数关系式;
(2)李伟同学身上仅有14元钱,乘出租车
到科技馆的车费够不够?请说明理由。
教师出示问题,学生先自主,再
合作,交流展示,师生共同评价
4.解:(1)y=8+1.8(x-3)
即:y=1.8x+2.6(x≥3km)
(2)当x=6时:
y=1.8×6+2.6=13.4<14
所以李伟身上的14元乘出租车
够用.
作业设计必做题:(1)课本习题19.2复习巩固第3题
(2)《同步学习》自我尝试题
选做题:
《同步学习》开放性作业
教师布置作业,提出具体要求
学生认定作业,课下独立完成。
北师大版数学八年级上册2《一次函数与正比例函数》教学设计3

北师大版数学八年级上册2《一次函数与正比例函数》教学设计3一. 教材分析《一次函数与正比例函数》是北师大版数学八年级上册第2章的内容,本节内容是在学生已经掌握了函数的概念和性质的基础上进行学习的。
一次函数与正比例函数是初中数学中的重要内容,它不仅巩固了学生对函数的理解,也为后续学习二次函数和其他复杂函数打下基础。
本节内容通过引入实际问题,让学生体会函数的实际意义,培养学生的应用意识。
二. 学情分析八年级的学生已经具备了一定的函数知识,对函数的概念和性质有了初步的了解。
但是,学生对一次函数与正比例函数的理解可能还停留在表面,需要通过实例和练习来加深对知识的理解和应用。
此外,学生的学习习惯和思维方式可能还存在一些问题,如对数学问题的解决可能过于依赖公式和定理,缺乏对问题本质的理解。
因此,在教学过程中,需要关注学生的思维过程,引导学生进行深入思考。
三. 教学目标1.让学生理解一次函数与正比例函数的定义,掌握一次函数与正比例函数的性质。
2.培养学生运用函数解决实际问题的能力。
3.培养学生的抽象思维能力,提高学生对函数的理解。
四. 教学重难点1.一次函数与正比例函数的定义和性质。
2.一次函数与正比例函数在实际问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引入实际问题,引导学生探究一次函数与正比例函数的定义和性质。
在教学过程中,注重学生的参与和实践,引导学生进行自主学习与合作学习。
同时,运用多媒体辅助教学,提高教学效果。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)通过引入实际问题,如“某商品的售价与销售量之间的关系是什么?”引发学生对函数的思考。
引导学生列出商品售价和销售量之间的关系式,从而引出一次函数与正比例函数的概念。
2.呈现(10分钟)讲解一次函数与正比例函数的定义和性质,让学生理解一次函数与正比例函数的概念,掌握一次函数与正比例函数的性质。
3.操练(10分钟)让学生通过练习题,运用一次函数与正比例函数的知识解决问题。
2 一次函数与正比例函数【优质一等奖创新教案】

2 一次函数与正比例函数【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅一次函数与正比例函数【教材与学情分析】这节课主要学习正比例函数的概念,同时为后续一次函数的学习打下基础。
学生在小学已经学习了正比例的定义,并通过第二十章的学习,对函数的概念有了初步的认识,了解研究函数中两个变量关系的一般方法,具备学习本课的理论基础和相应的学习经验。
【教学目标】1.知识与技能目标:理解正比例函数的概念,能根据所给的条件写出正比例函数的表达式.2.过程与方法目标:经历正比例函数概念的抽象过程,体会模型思想,发展符号意识;3.情感与态度目标:(1)通过经历概念的建立、印证和拓展全过程,培养学生良好的数学思维品质;(2)在探索交流的过程中获得成功的体验,增强自信心;【重点难点】教学重点:经历正比例函数概念的抽象过程,建立正比例函数的概念。
教学难点:正比例函数概念的形成。
【教法设计】在教学中结合学生的认知基础,设计合理的学习活动,为学生抽取函数模型形成概念搭建支架.【教学过程】教学环节教师活动学生活动设计意图一、复习导入小刚骑自行车去上学,行驶时间和路程的关系如下表:时间t/min5…17.5路程s/km0.20.40.60.81…3.5(1)当t=2min时,s=_____,_____;当t=5min时,s=_____,_____;(2)小刚行驶的时间和路程成正比吗?为什么?(3)s与t之间的函数关系式为________.学生独立解答并展示。
在学习活动中学生回忆正比例和函数的相关知识,并为正比例函数的学习做好准备.二、概念形成活动一:1.小亮每小时读20页书,若读书时间用字母t(h)表示,读过书的页数用字母m(页)表示,则用t表示m的函数表达式为;2.小米去给学校运动会买奖品,每支铅笔0.5元。
若购买铅笔的数量用n(支)表示,花钱的总数用w(元)表示,则用n表示w 的函数表达式为;3.拧不紧的水龙头每分钟滴100滴水,每滴水约0.05ml,设tmin 后,水龙头滴水Vml,则用t表示V的函数表达式为__________;在实际背景下建立函数模型.提供有代表性的典型事例,为概念的形成提供素材.活动二:观察在前面活动中所获得的函数关系式:①,②,③,④这些函数都叫做正比例函数.下面这些不是正比例函数:⑤,⑥,⑦(1)①~④函数关系式有哪些共同之处?(2)如果用表示自变量,用表示因变量,表示自变量的系数,正比例函数关系式可以写成什么形式?学生独立思考后交流讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第四章一次函数与正比例函数一、学生起点分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
本节课进一步研究其中最简单的一种函数——一次函数.由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成+=-=-等,培养学生良好的书写习惯.x y x y1,1二、教学任务分析《一次函数》是义务教育课程标准北师大版实验教科书八年级 (上) 第四章《一次函数》的第二节.本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力.与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的.本节课教学目标分析是:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.(3)经历一般规律的探索过程,发展学生的抽象思维能力;(4)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.(5)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.(6)在探索过程中体验成功的喜悦,树立学习的自信心.本节课教学重点是:理解一次函数和正比例函数的概念.本节课教学难点是:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.三、教学过程设计本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:巩固练习;第四环节:知识提高;第五环节:反馈练习;第六环节:课堂小结;第七环节:布置作业.活动一:复习引入内容:复习上节课学习的函数,教师提出问题:(1)什么是函数?(2)函数有哪些表示方式?(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.效果:问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善.通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦,充分体现了本节课的情感、态度目标.若课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s之间的关系是什么?②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?活动二:新课探究例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:(2)你能写出x与y之间的关系式吗?答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) 30.5=+.y x例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.(1)完成下表:(2)你能写出x与y之间的关系式吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案 (1) 100、91、82、73、64、46;(2) x与y之间的关系式为1000.18=-;y x(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km 耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.通过观察、探索、总结,归纳出一次函数与正比例函数的概念:一般地,若两个变量x,y间的关系式可以表示成y kx b=+(,k b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当0b=时,则y是x的正比例函数.意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.效果:从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力.主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义.活动三:巩固练习1.在函数(1)3y x =,(2)5y x =-,(3)4y x =-,(4)223y x x =-,(5)y =12y x =-中是一次函数的是 ,是正比例函数的是 .2.若函数(63)44y m x n =++-是一次函数,则,m n 应满足的条件是 ;若是正比例函数,则,m n 应满足的条件是 .3.当k = 时,函数28(3)5ky k x -=+-是关于x 的一次函数.意图:对本节知识进行巩固练习.效果:学生基本能交好的独立完成练习题,收到了较好的教学效果.在第3题中,学生易忘记3k +≠0的条件,而错误的将答案写成±3. 活动四:拓展提升例 3 写出下列各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y (厘米),则y 与x 的关系.答案: (1)由路程=速度×时间,得60y x =,y 是x 的一次函数,也是x 的正比例函数;(2)由圆的面积公式,得2y x p =,y 不是x 的一次函数,也不是x 的正比例函数;(3)这棵树每月长高2厘米,x 个月长高了2x 厘米,因而5020y x =+,y 是x 的一次函数,但不是x 的正比例函数.例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.(1)写出每月电话费y (元)与通话次数x (x >50)的函数关系式;(2)求出月通话150次的电话费;(3)如果某月通话费为53.6元,求该月通话的次数.分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后电话费.答案: (1)根据题意得: 25(50)y x =+-×0.2,即0.215y x =+;(2)当150x =时,0.2y =×15015+45=;(3)因为53.6>25,可知通话次数大于50次,即当53.6y =时,求x 的值.53.60.215x =+,解得193x =.意图:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力.充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展.效果:根据已知条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉”.另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一部分.在例4中的(1)中,易错解为250.2y x =+.应让学生仔细审题,找准等量关系;(2)、(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程. 活动五:反馈检测1.下列语句中,具有正比例函数关系的是( )(A) 长方形花坛的面积不变,长y与宽x之间的关系;(B) 正方形的周长不变,边长x与面积S之间的关系;(C) 三角形的一条边不变,这条边上的高h与面积S之间的关系;(D) 圆的面积为S,半径为r,S与r之间的关系.2.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税……如果某人月收入1960元.他应缴纳个人工资、薪金所得税为(19601600-)×5%=18(元).(1)当月收入大于1600元而又小于2100元时,写出应缴纳所得税y(元)与月收入x(元)之间的关系式.(2)某人月收入为1760元,他应该缴纳所得税多少元?(3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元?意图:对本节知识进行巩固练习.效果:学生基本能较好地独立完成练习题,收到了较好的教学效果.在第2题,学生容易遗忘几何的相关内容,在此教师可作适当的提醒,让学生更顺利地完成习题.第六环节: 课堂小结这节课我们学习了一类很有用的函数——一次函数,只要解析式可以表示成y kx b=+(,k b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当0b=时的特殊情形.(方式:师生互相交流总结.)目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步巩固本节课的知识.实际效果:学生畅所欲言自己对本节课的感受与收获,都能准确的说出一次函数与正比例函数的概念.但学生容易忽略一次函数与实际生活的联系,教师应做适当补充.活动七:布置作业1.根据下表写出,x y之间的一个关系式.2. 某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某手机用户这个月通话时间为152分,他应缴费多少元?(3)如果该手机用户本月预交了200元的话费,那么该用户本月可通话多长时间?3.某电信公司手机的B类收费标准如下:没有月租费,但每通话1分钟收费0.6元.按照此类收费标准,分别完成第2题中的各小题.4.根据上面第2,3题中的条件,完成下列各题:(1)若每月平均通话时间为300分,你选择哪类收费方式?(2)每月通话多长时间时,按A,B两类收费标准缴费,所交话费相等?四、设计反思1.本课时在初中数学学习中的重要性函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,本节从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图象》奠定基础,并形成用函数观点认识现实世界的能力与意识.2.怎样对学生进行引导本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对研究常量的计算问题已掌握了一定的方法,但对函数、变量的变化规律的学习刚刚开始,抽象概括概念的能力尚显不足,为此,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)借助探索,通过思维深入,领悟教学过程.3.注意改进的方面在讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。