5.2014时间连续马尔科夫链

合集下载

5马尔可夫链(精品PPT)

5马尔可夫链(精品PPT)
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。

4 随机过程 连续时间的马尔可夫链

4 随机过程 连续时间的马尔可夫链

p 01
p10
(h (h
) )
= =
lh mh
+ +
0 (h ) 0 (h )
ìïïíïïïî
p01 p10
(h (h
) )
= =
lh mh
+ +
0 (h ) 0 (h )
q = lim p01 (h ) = l
h 01
h0
Q = 骣çççç桫-ml
q = lim p10 (h ) = m
h 10
n+1
n
n+1 n
{ ( ) ( ) ( ) } ( ) ( ) \ P X t n +1 = in +1 / X t1 = i1, L , X t n = in = P {X t n +1 = in +1 / X t n = in }
即具有马尔可夫性
证:齐次性,当j i时,由泊松过程定义
PX s t j / X s i
(t
)
=
-
(l
+
m)
p 00
(t
)
+
m
( ) p 01
(t
)
=
1-
p 00
(t
)
( ) ( ) ( ) e(l + m)t 轾 犏 臌p0¢0 t + l + m p00 t = me(l + m)t
d
dt
e t p00
t
e t
e t
p00 t
{ } ( ) ( ) ( ) ( ) P X t n + 1 = in +1 | X t 1 = i1, X t 2 = i2, L , X t n = in { } ( ) ( ) = P X t n + 1 = in + 1 | X t n = in 则称 {X (t ),t ³ }0 为连续时间马尔可夫链,

连续时间马尔科夫链

连续时间马尔科夫链
r∈EK \{i}

r∈E \EK
pi,r (h) . h
(4.35)
∑ p ( t + h ) − p ( t ) i,j i,j lim ± − qi,r pr,j (t) h→0+ h ≤ qi − lim ≤ qi − ∑
r∈EK \{i} r∈EK

h→0+
pi,r (h) h

r ∈E
, pi,j (t) , ,
.
0<h<t Kolmogorov
, .
t−h
t,
4.69 设 qj < ∞ 且 limh→0+ pr,j (h)/h = qr,j 关于 r ∈ E \ {j } 一致成立, 则 p′ i,j (t) = ∑
r∈E
pi,r (t)qr,j ,
∀i, j ∈ E, t ≥ 0.
qqijlimh0pijh?pij0h?????????????iij?1?i??iij?iij10i?j2kolmogorovpijtj?1pij?1t?i?ipijt?j1pij1t
草稿 不要打印
4.7
, .
4.7.1
4.62 设随机过程 {Xt : t ≥ 0} 的状态空间 E 是至多可数集, 若对任何整数 n ≥ 1, 参数 0 ≤ t0 < t1 < · · · < tn < tn+1 以及状态 i0 , i1 , · · ·, in+1 ∈ E , 有 P {Xtn+1 = in+1 |Xt0 = i0 , · · · , Xtn = in } = P {Xtn+1 = in+1 |Xtn = in }, 则称 {Xt : t ≥ 0} 为连续时间马尔可夫链. (4.28) , P {Xt+s = j |Xs = i}, s i, t s, t ≥ 0, i, j ∈ E. j , (4.28)

随机过程-第五章-连续时间的马尔可夫链

随机过程-第五章-连续时间的马尔可夫链

第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t(5.3)称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的.定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' ,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以)()()(1010101t p p t p p t p +=====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率, i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程. 若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dhd t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q ii h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,2),()(,≥-=j i h o h p j i,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得 .0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。

马尔可夫链的基本概念

马尔可夫链的基本概念

马尔可夫链的基本概念马尔可夫链是一种特殊的随机过程,广泛应用于统计学、机器学习、经济学、计算机科学等多个领域。

为了深入理解马尔可夫链的概念,我们先从基本定义开始,再逐步探讨其性质、分类、应用及实例分析。

一、马尔可夫链的定义马尔可夫链是一种具有“无记忆”特性的随机过程,即在给定当前状态的前提下,未来状态与过去状态无关。

换句话说,系统的未来发展只依赖于当前的状态,而不依赖于以前的状态。

这一特性通常被称为“马尔可夫性”,是马尔可夫链最大的特点。

在形式上,我们可以定义一个离散时间的马尔可夫链为一个由状态集合 ( S ) 组成的序列,其中 ( S ) 可能是有限的也可能是无限的。

设 ( X_n ) 为在时间 ( n ) 时刻该过程所处的状态,若满足条件:[ P(X_{n+1} = j | X_n = i, X_{n-1} = k, , X_0 = m) =P(X_{n+1} = j | X_n = i) ]其中,( P ) 是条件概率,这就表明该过程符合马尔可夫性质。

二、马尔可夫链的基本组成要素状态空间:状态空间是指系统所有可能的状态集合,通常用集合 ( S ) 表示。

例如,一个简单天气模型可以将状态空间定义为 ( S = {晴天, 雨天} )。

转移概率:马尔可夫链中的转移概率是指从一个状态转移到另一个状态的概率。

对于有限状态空间,转移概率通常用转移矩阵表示,其元素 ( P_{ij} ) 表示从状态 ( i ) 转移到状态 ( j ) 的概率。

初始分布:初始分布描述了系统在时间 ( t=0 ) 时,各个状态出现的概率。

通常用一个向量表示,如 ( _0(i) ) 代表在初始时刻处于状态 ( i ) 的概率。

三、马尔可夫链的性质马尔可夫链具有许多重要的性质,其中最为关键的是遍历性和极限性。

遍历性:如果一个马尔可夫链在长期运行后,将以一种稳定的方式达到各个状态,并且这个稳态与初始选择无关,那么我们称它为遍历。

换句话说,一个遍历性的马尔可夫链在达到平稳分布后,各个状态出现的概率将保持不变。

连续时间的马尔可夫链

连续时间的马尔可夫链
P X t n 1 i n 1 X t1 i1 , X t 2 i 2 , ..., X t n i n P X t n 1 in 1 X t n in




成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。

由切普曼-柯尔莫哥洛夫方程有

kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim

k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。

《马尔可夫链讲》课件

《马尔可夫链讲》课件
平稳分布的概率分布函数与时间无关,只与系统的状态空间和转移概率矩阵有关。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。

连续时间的Markov链

连续时间的Markov链

第五章 连续时间的马尔可夫链第四章我们讨论了时间和状态都是离散的Markov 链,本章我们研究的是时间连续、状态离散的Markov 过程,即连续时间的Markov 链. 连续时间的Markov 链可以理解为一个做如下运动的随机过程:它以一个离散时间Markov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立.连续时间马尔可夫链的基本概念定义 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数1210n t t t +≤<<<L 及任意的非负整数121,,,n i i i I +∈L ,条件概率满足{}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++====L{}11()|()n n n n P X t i X t i ++=== ()则称{(),0}X t t ≥为连续时间的Markov 链.由定义知,连续时间的Markov 链是具有Markov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关.记式条件概率的一般形式为{()|()}(,)ij P X s t j X s i p s t +=== ()它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关.定义 若式的转移概率函数与s 无关,则称连续时间Markov 链具有平稳的转移概率函数,称该Markov 链为连续时间的齐次(或时齐)Markov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥.若状态空间{0,1,2,}I =L ,则有()000102101112012()()()...()()()()()............()()()............ij n n n p t p t p t p t p t p t P t p t p t p t p t ⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L L ()假设在某时刻,比如说时刻0,Markov 链进入状态i ,在接下来的s 个单位时间内过程未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由Markov 性知,过程在时刻s 处于状态i 的条件下,在区间[,]s s t +中仍处于状态i 的概率正是它处在状态i 至少t 个单位时间的(无条件)概率,若记i τ为过程在转移到另一状态之前停留在状态i 的时间,则对一切,0s t ≥有{|}{}i i i P s t s P t τττ>+>=>可见,随机变量i τ具有无记忆性,因此,i τ服从指数分布.因此,一个连续时间的Markov 链,每当它进入状态i ,具有如下性质: (1) 在转移到另一个状态之前处在状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进入状态j ,且1ijj ip≠=∑.当i v =∞时,称状态i 是瞬时状态,因为过程一旦进入状态就离开;若0i v =,称状态为吸收状态. 因为过程一旦进入永远不再离开.尽管瞬时状态在理论上是可能的,但我们以后还是假设一切i ,0i v ≤<∞.因此,考虑连续时间Markov 链,可以按照离散时间的Markov 链从一个状态转移到另个状态,但在转移到另一状态之前,它在各个状态停留的时间服从指数分布,而且在状态i 停留的时间与下一个状态必须是相互独立的随机变量.定理 齐次Markov 链的转移概率函数具有下列性质:(1)()0ij p t ≥; (2)()1ij j Ip t ∈=∑;(3)()()()ij ikkj k Ip t s pt p s ∈+=∑.(2)式表明转移概率矩阵中任一元素行和为1;(3)式称为连续时间齐次Markov 链的Chapman Kolmogorov -方程,简称C K -方程.证明 (1)和(2)由概率定义及()ij p t 的定义易知,下面只证明(3)式 由全概率公式和Markov 性可得(){()|(0)}ij p t s P X t s j X i +=+=={(),()|(0)}k IP X t s j X t k X i ∈=+===∑{()|(0)}{()|()}k IP X t k X i P X t s j X t k ∈===+==∑{()|(0)}{()|(0)}k IP X t k X i P X s j X k ∈=====∑()()ikkj k Ipt p s ∈=∑对于转移概率函数,我们约定1,,lim ()0ij ij t i j p t i jδ→=⎧==⎨≠⎩ () 称上式为连续性条件或正则性条件.连续性条件保证转移概率函数()ij p t 在边界点0t =处右连续.它的直观意义在于:当系统经过很短时间,其状态几乎不变,也就是认为系统刚进入一个状态又立刻离开这个状态是不可能的.定义 连续时间Markov 链{(),0}X t t ≥在初始时刻(即零时刻)取各状态的概率(0){(0)},i i p p P X i i I ===∈ ()称为它的初始分布.{(),0}X t t ≥在t 时刻取各状态的概率(){()},j p t P X t j == ,0j I t ∈≥称为它在时刻t 的绝对(概率)分布.初始分布和绝对分布都是概率分布,对于任意0t ≥,()j p t 总满足: (1)0()1j p t ≤≤; (2)()1j jp t =∑.利用全概率公式容易得到()(0)(),j i ij i Ip t p p t j I ∈=∈∑ ()()式表明:连续时间Markov 链的绝对概率分布完全由其初始分布和转移概率函数所确定.下面举一个简单的例子说明转移概率函数的计算方法.例 证明Poisson 过程{(),0}N t t ≥是连续时间的齐次Markov 链. 证明 先证明Poisson 过程具有Markov 性.由Poisson 过程的独立增量性和()0N t =,对任意1210n n t t t t +<<<<<L ,有1111{()|(),,()}n n n n P N t i N t i N t i ++===L=1111{()()|()(0),n n n n P N t N t i i N t N i ++-=--=212111()(),,()()}n n n n N t N t i i N t N t i i ---=--=-L11{()()}n n n n P N t N t i i ++=-=- 另一方面,因为11{()|()}n n n n P N t i N t i ++===11{()()|()(0)}n n n n n n P N t N t i i N t N i ++-=--==11{()()}n n n n P N t N t i i ++-=-因此 1111{()|(),,()}n n n n P N t i N t i N t i ++===L =11{()|()}n n n n P N t i N t i ++== 即Poisson 过程是连续时间的Markov 链.再证齐次性. 当j i ≥时,由Poisson 过程的定义,得到{()|()}{()()}P N s t j N s i P N s t N s j i +===+-=-()()!j itt ej i λλ--=-当j i <时,由于过程的增量只取非负整数值,因此,(,)0ij p s t =,故(),(,)()()!0,j it ij ij t ej i p s t p t j i j iλλ--⎧≥⎪==-⎨⎪<⎩即转移概率函数只与t 有关,因此,Poisson 过程具有齐次性.容易看出,固定,i j 时,()ij p t 是关于t 的连续可微函数。

连续时间马尔可夫链的研究和应用

连续时间马尔可夫链的研究和应用

连续时间马尔可夫链的研究和应用马尔可夫链是用于描述随机过程的数学工具,其特点是未来状态的转移仅依赖于当前状态,与过去状态无关。

在时间离散的情况下,马尔可夫链的数学理论已经十分成熟且应用广泛。

然而,在实际问题中,许多系统的状态变化是连续的,如金融市场、生产流程、医疗领域等。

为了更好地描述和分析这类系统,连续时间马尔可夫链成为了研究的焦点之一。

一、连续时间马尔可夫链的基本定义和性质连续时间马尔可夫链是一个连续时间随机过程,其状态在时间上的变化满足马尔可夫性质。

与离散时间马尔可夫链不同的是,在连续时间马尔可夫链中,状态的转移并不是以离散的时刻进行,而是在连续的时间区间内发生。

连续时间马尔可夫链可以用状态转移概率密度函数描述,记为P(t)。

该函数表示在时间t到t+dt之间,状态从i转移到状态j的概率为P(t)dt。

连续时间马尔可夫链的转移概率满足总概率为1的条件,即∫P(t)dt=1。

连续时间马尔可夫链的状态转移矩阵可用生成矩阵(Q)表示。

该矩阵的元素q(i,j)表示在单位时间内,状态从i转移到j的概率。

连续时间马尔可夫链的状态转移矩阵满足非负性和行和为零的条件。

二、连续时间马尔可夫链的稳定性与收敛性连续时间马尔可夫链的稳定性是指在长时间模拟中,系统的状态分布是否趋于稳定。

对于稳定的连续时间马尔可夫链,其状态转移概率在时间的演化中不再发生显著改变。

连续时间马尔可夫链的稳定性与其转移速率矩阵相关。

转移速率矩阵是连续时间马尔可夫链中的关键概念,它描述了系统在各个状态之间转移的速率。

只有当连续时间马尔可夫链的转移速率矩阵满足一定条件时,系统的状态分布才会趋于稳定。

在实际应用中,连续时间马尔可夫链的稳定性常被用来分析系统的可靠性、资源分配方案以及市场行为等。

利用连续时间马尔可夫链模型,可以预测系统在不同状态下的持续时间、发展趋势以及转移概率,为决策提供科学依据。

三、连续时间马尔可夫链的应用案例1. 金融市场预测连续时间马尔可夫链可以应用于金融市场的预测和风险评估。

连续时间马尔可夫链

连续时间马尔可夫链
P{X (t s) j, X (t) k | X (0) i} kI
P{X (t s) j | X (t) k, X (0) i} kI P{X(t) k | X(0) i}
P{X (t s) j | X (t) k}P{X (t) k | X (0) i}
P{X(tn+1)=in+1|X(t1)=i1, X(t2)=i2,, X(tn)=in} =P{X(tn+1)=in+1|X(tn)=in},
则称{X(t), t 0 }为连续时间马尔可夫链.
10.1 连续时间马尔可夫链的性质
定义10.2 过程在s时刻处于状态i, 经过时间t后转移到 状态j的概率pij(s,t)= P{X(s+t)=j|X(s)=i} 称为转移概率. 若 转移概率与起始时刻s无关, 只与时间间隔t有关, 则称连 续时间马尔可夫链具有平稳的或齐次的转移概率, 记为
定义10.3 设{X (t),t 0} 为连续时间的马尔可夫过程, 则 (1) 初始概率 pj pj (0) P{X (0) j}, j I; (2) 绝对概率 pj (t) P{X (t) j}, j I , t 0; (3) 初始分布 { pj , j I }; (4) 绝对分布 { pj (t) , j I } (t 0).
pi pii1 (t1 ) pi1i2 (t2 t1 ) pin1in (tn tn1 ). iI
10.1 连续时间马尔可夫链的性质
例10.1 证明泊松过程{X(t), t0}为连续时间齐次马尔可夫链. 证 先证泊松过程的马尔可夫性.
P{ i
s t, i
s}
P{ i
s t} ,
P{ i s}
P{ i s}
10.1 连续时间马尔可夫链的性质

10第五章连续时间马尔可夫链ppt课件

10第五章连续时间马尔可夫链ppt课件

利用Q矩阵可以推出任意时间间隔t的转移概 率所满足的方程组,从而可以求解转移概率。
ppt课件
14
定理5.4( 柯尔莫哥洛夫向后方程)
假设 qik qii ,则对一切i,j及t≥0,有 k i pij (t) qik pkj (t) qii pij (t) k i 证明 由C-K方程可以知道:
pij (t h) pik (h) pkj (t) kI
pij (t h) pij (t) pik (h) pkj (t) [1 pii (h)] pij (t)
k i
ppt课件
15
两边除以h, h 0 取极限可以得到:
lim lim lim h0
pij (t h) pij (t) h
Pik (t)Pkj (s) kI
ppt课件
8
定义5.3 对于任一t≥0,记
p j (t) P{X (t) j}, p j p j (0) P{X (0) j},
jI
为绝对概率和初始概率。
分别称{pj(t),j∈I}和{pj,j∈I}为齐次马尔可夫 过程的绝对概率分布和初始概率分布。
ppt课件
12
Q矩阵和柯尔莫哥洛夫方程
定理5.3 设pij(t)是齐次马尔可夫过程的转移概率且满足正 则性条件,则下列极限存在:
1.
lim 1
t 0
pii (t) t
vi

qii


2.
lim
t 0
pij (t) t
qij
,i

j
称为转移速率或跳跃强度
ppt课件
13
lim
t 0Βιβλιοθήκη pij(t )

马尔可夫链时间序列

马尔可夫链时间序列

马尔可夫链时间序列引言马尔可夫链是一种用来描述随机过程的数学模型,它具有无记忆的性质,即未来状态只依赖于当前状态,而与过去历史状态无关。

在时间序列分析中,马尔可夫链被广泛运用于模拟和预测未来的事件。

本文将深入探讨马尔可夫链时间序列的原理、应用以及相关算法。

马尔可夫链基础什么是马尔可夫链马尔可夫链是一种随机过程,它包含一组状态以及状态之间的转移概率。

在马尔可夫链模型中,从一个状态到另一个状态的转移概率只依赖于当前状态,与过去历史状态无关。

这种无记忆的特性使得马尔可夫链非常适用于模拟具有随机性的事件。

马尔可夫链的性质马尔可夫链具有以下两个基本性质: 1. 马尔可夫性质:未来状态只与当前状态相关,与过去历史状态无关。

2. 状态空间:马尔可夫链由一组状态组成,每个状态之间可以相互转移。

马尔可夫链的表示马尔可夫链可以用状态转移矩阵来表示。

状态转移矩阵是一个方阵,每一行表示当前状态,每一列表示下一个状态,对应元素表示从当前状态转移到下一个状态的概率。

状态转移矩阵的每一行之和为1,以确保转移概率的归一化。

通过不断迭代状态转移矩阵,我们可以得到马尔可夫链的演化过程。

马尔可夫链时间序列的模拟与预测马尔可夫链的模拟马尔可夫链可以用来模拟具有随机性的事件。

通过给定初始状态和状态转移概率,我们可以通过迭代状态转移矩阵来生成马尔可夫链的样本序列。

这些样本序列可以用来模拟各种具有随机性的事件,如天气变化、股票价格波动等。

马尔可夫链的预测马尔可夫链还可以用来预测未来的事件。

通过观察历史状态序列,我们可以估计状态转移概率,并通过迭代状态转移矩阵来预测未来状态的概率分布。

这种预测方法适用于一些满足马尔可夫性质的事件,如天气预测、股票涨跌预测等。

马尔可夫链时间序列的应用天气预测天气是一个具有随机性的事件,马尔可夫链可以用来模拟和预测天气的变化。

通过观察历史天气状态序列,我们可以建立天气状态转移矩阵,并通过迭代状态转移矩阵来预测未来天气的概率分布。

连续时间markov链的原理

连续时间markov链的原理

连续时间markov链的原理连续时间马尔可夫链是一个随机过程,其状态空间是离散的(有限个或可数个状态),并且状态的转移是依赖于连续时间而非离散的。

这种类型的马尔可夫链在许多应用中具有重要的作用,例如物理、生物、金融等领域都可以使用连续时间马尔可夫链对系统的动态特性进行建模和分析。

连续时间马尔可夫链的基本原理是状态之间的转移是基于指数分布的。

具体来说,对于一个连续时间马尔可夫链,每个状态都有一个转移率,表示从当前状态转移到其他状态的速率。

这些转移率可以表示为矩阵的形式,称为转移率矩阵。

转移率矩阵中的每个元素都代表了从一个状态转移到另一个状态的速率。

连续时间马尔可夫链的数学模型可以通过一组微分方程来描述。

假设该马尔可夫链有n个状态,那么对于任意时刻t,我们可以定义n个状态的概率分布向量P(t),其中P(t)的元素表示在时刻t处于各个状态的概率。

那么离散时间马尔可夫链的转移概率矩阵可以表示为Q,其中Q(i,j)表示从状态i转移到状态j 的速率。

那么状态向量P(t)满足以下微分方程:dP(t)/dt = P(t)Q上述方程表明,在给定的时刻t,状态向量P(t)在单位时间内的变化量等于当前状态向量P(t)与转移概率矩阵Q的乘积。

这个微分方程系统可以通过求解得到状态向量P(t)在任意时刻t的概率分布。

连续时间马尔可夫链的数学模型还与特定的概率分布函数相关联。

具体来说,假设某个状态的转移率为λ,那么从该状态转移到其他状态的时间间隔符合指数分布,其概率密度函数为f(t) = λexp(-λt),其中λ是转移率。

这个指数分布的性质使得连续时间马尔可夫链在模拟和预测系统状态的改变方面具有许多有用的特性。

在实际应用中,连续时间马尔可夫链可用于模拟和分析一些复杂的系统。

例如,在金融领域中,我们希望根据历史数据预测未来的市场走势。

通过构建一个连续时间马尔可夫链模型,我们可以根据当前市场状态和转移率矩阵预测未来的股票价格或市场波动性。

连续时间马尔可夫链例题

连续时间马尔可夫链例题

连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。

它受到时间的连续性限制,可以用于描述一些随机过程。

马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。

在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。

这个过程可以用一个状态转移概率矩阵来描述。

在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。

与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。

连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。

该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。

连续时间马尔可夫链的演变是通过指数分布来描述的。

在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。

连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。

设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。

矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。

在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。

转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。

连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。

•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。

•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。

稳态概率分布表示在长时间内各个状态的概率分布。

•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。

连续时间马尔可夫链

连续时间马尔可夫链
PX (tn1 ) in1 X (tn ) in
于是,记:
P X ( s t ) j X ( s ) i pij ( s, t )
2、齐次马氏链:


pij (s, t ) pij (t s)
齐次马氏链的转移矩阵:
P(t ) pij (t )
t1 0, t2 0, t3 这些点处取状态值 0,
pij (t ) t
i
对跳变现象,考察转移概率:pij (t ),i j
以及跳变强度
t 0
lim
,i j
(二) 停留现象(P75)
引入“停留之前停留在状态
f (t ) vi e
pii (0) 1, pij (0) 0, 当i j
为了以后能对转移概率 pij (t ) 作微分运算
(即,对连续时间变量 t ,分析
(t )与pij (t ) pij
的关系,找到它们之间的等量表达式。)
它是一个微分方程。 需要作出正则性规定,才能保证其一致连续性。 正则性条件的物理意义: P 74
可以看出,连续时间下,马尔可夫链的状态是“跳
跃式”变化。
3、跃变(或跳变)与停留现象
X(t)
..………….....
i2 …… i1
t
0
t1
t2
t3
t4
t5
(一)跳变现象: 跳变时刻
t1 , t2 , t3 , 与跳变强度都是随机的。
) xt
(为连续性考虑,一般认为X(t)在跃变点是右连续的, 即X(t)在
1 E i vi
vi t
i 的时间。
i 服从指数分布(参数为 v i ), 其特征是无记忆性。

连续时间马尔可夫链

连续时间马尔可夫链

5 连续时间马尔可夫链5.1引言本章中我们考虑与离散时间马尔可夫链类似的连续时间马尔可夫链。

如离散情形一样,它们由马尔可夫性刻画,即已知现在的状态时将来与过去独立。

在5.2节中。

我们定义连续时间马尔可夫链且把它们与第四章的离散时间马尔可夫链相联系。

在5.3节中,我们引入一类重要的连续时间马尔可夫链,即所谓生灭过程。

这些过程可用作在任何时刻其总量的变化仅为一个单位的群体的模型。

在5.4节中,我们导出两组描述系统的概率规律的微分方程——向前与向后方程。

5.5节的内容是确定连续时间马尔可夫链的有关的极限(或长时间后的)概率。

在5.6节中,我们考虑时间可逆的问题。

其中,我们证明一切生灭过程是时间可逆的,而后阐明这事实对于排队系统的重要性。

在这一节中也提供了时间可逆性对随机群体模型的应用。

在5.7节中,我们阐明逆向链的重要性,即使过程不是时间可逆的。

利用它我们研究排队网络模型。

导出爱尔朗消失公式,分析共用加工系统。

5.8节中我们表面如何“一致化”马尔可夫链——对于数值计算有用的一种技巧。

5.2连续时间马尔可夫链考虑取非负整数值的连续时间随机过程t,0X t,与第四章中给出的离散时间马尔可夫链的定义类似,过程t,0X t称为连续时间马尔可夫链,如果对一切,0s t及非负整数,i j,x u,0u s,有|X,X,0P X t s j s i u x u u sP X t s j X s i|换言之,连续时间马尔可夫链是具有马尔可夫性的随机过程,即已知现在s时是状态及一切过去的状态的套件下在将来时刻t s的状态的条件分布只依赖现在的状态而与过去独立。

若又有|P X t s j X s i与s无关则称连续时间马尔可夫链具有平稳的或其次的转移概率。

将假定我们所考虑的马尔可夫链都有平稳转移概率。

假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且假设在接下来的s个单位时间中过程未离开状态i(即未发生转移)。

在随后的t个单位时间中过程仍不离开状态i的概率是多少呢?为了回答这个问题。

5.连续时间的马尔可夫链3

5.连续时间的马尔可夫链3
顾客以及每个顾客所需的服务时间服从怎样的分布,常用的分 布有指数分布,定长分布等;
(三)各种排队模型的记号 排队模型将如下六个特征按顺序由各自的符号给出,
并用斜线隔开:
输入过程/服务分布/服务台个数/系统容量/顾客源数/排队规则
例4 M/M/S/n/∞/FIFO
表示顾客按泊松过程来到,时间间距为指数分布, 服务时间为指数分布,有s个服务员,系统容量为n 个,顾客来源无限,排队规则是先到先服务。
j1 12 j
即当状态空间 I 1,2, , 时,平稳分布为
0=
1+
j 1
01 12
1
j1 j
1=
0 1
0,
2=
01 12

0

j
=
01 12
j1 j

0

应用举例
例1 泊松过程 N t ,t 0 是生率为
的纯生过程。
状态空间 I 0,1,2, , 状态转移速率图如下
顾客
到达 等待服务 排队规则
提供服务 的服务台 服务时间
随机服务系统示意图
顾客离去
这里“顾客”和“服务台”是广义的,如病人到医院看 病, “顾客”是病人,“服务台”是医院;某人去商店 去购物, “顾客”是购买货物者,“服务台”是柜台; 打电话到寻呼台, “顾客”是打电话的人,“服务台” 是寻呼台;……
解:此系统为M/M/1损失制 = 4,= 2
53
(1)平稳分布
0
=5, 11
1
=
6. 11
(2)系统处于无顾客状态的概率为 即可以接通的
概率为 0 = 151,因每分钟呼唤 =0.8 次,故每分钟
每分钟可以接通的概率

三节连续时间马尔可夫链

三节连续时间马尔可夫链
pij '(t) pik (t) qkj k
P '(t) Q P(t)
方程 pij '(t) qik pkj (t) k
j (t) pi pi j (t) i
j '(t) k (t) qkj k
Q 0
15
6 两个定理
定理3.2
一种连续时间旳齐次马氏链,系统处于同一状态旳连续 时间服从负指数分布
j(t)=P(X(t)=j)= pi pi j (t)
由初始分布与t时间i 区间转移概率矩阵求t时刻绝对 分布
j '(t) k (t) qkj
初值:i (0) pi
为求瞬时k 概率分布函数旳方程组
10
5 平稳分布
定义
若lim t
j
(t)
j
( j E) 存在,且 j 1
,则{j}称为齐次
2 K-C方程
1.K-C方程: pij (t s) pik (t) pkj (s)
写成矩阵旳形式:
k
P(t+s)=P(t)·P(s)
2. K氏前向方程 P '(t) P(t) Q pij '(t) pik (t) qkj k
3. K氏后向方程 P '(t) Q P(t) pij '(t) qik pkj (t)
k
P(nm) Pn Pm
P( X n i)
pk
p(n) ki
k
(n) i
(0) i
P(n)
(n1) i
P
P ( I ) P 0
pij (t s) pik (t) pkj (s) k
P(t s) P(t) P(s)
前向 方程
后向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
t (t ) lim t 0 t p01 ( t ) t ( t ) q01 lim lim t 0 t 0 t t
q11 q10 所以速率矩阵 Q
课程名称:
随机过程
教学内容: 第五章 马尔可夫过程
第1节 时间连续的马尔可夫链
第2节 柯尔莫哥洛夫微分方程
第3节 生灭过程
第1节 时间连续的马尔可夫链
讨论对时间连续状态离散的马尔可夫过程,取 时间参数 t 0 ,状态空间I={0,1,2,…}
1、定义 时间连 设随机过程{ X (t ) , t 0 }的状态空间为 I, I={ 续的马 尔可夫 对任意 0 t1 t2 } tn tn1 , i1 , i2 , , in , in1 I , 链 P{X (tn1 ) in1 | X (t1 ) i1, X (t2 ) i2 , , X (tn1) in1, X (tn ) in}
若对任意 0 , i I ,有
h 0
lim P{| X (t h) X (t ) | | X (0) i} 0
则称{ X (t ) }是随机连续的。
引理1
时间连续的齐次马氏链{ X (t ), t 0}是随机连续 的充要条件为:对任意的 i,j I ,有
对任意 i I ,有 pii (t ) 0 ( t 0 )
若有t0 0 ,使 pij (t0 ) 0 ,则 pij (t ) 0
时间连续的齐次马氏链 pij (t ) 对任意 i,j I , i j ,则
pij (t ) p i j ( 0 ) lim q p ( ; 0 )(q 0) ij ij ij t 0 t pii (t ) pii (0) (0) , v q p 有 lim ( qii 0, ). i ii ii t 0 t
k
上两式分别称为可尔莫哥洛夫向前方程和向后方程
其矩阵形式
P(t ) P(t )Q
P(t ) QP(t )
首页
(向前方程)
(t ) pik (t )qkj pij
k
注1
对时间连续齐次有限马氏链,向前方 程和向后方程均成立,且有
P(t ) P(t )Q QP(t )
假定X (t ), t 0具有转移概率矩阵 7 7e t 8 7 et 8 1 9 又初始分布为:p0 , p1 10 10 (1)计算概率P{ X (0.2) 0}; P{ X (0.2) 0 X (0) 0}; (2)P{ X (0.1) 0, X (0.6) 1, X (1.1) 1 X (0) 0}; (3)P{ X (1.1) 0, X (0.6) 1, X (0.1) 0}; (4)计算t时刻的绝对分布;计算P(t )及Q矩阵 1 7e t 8 P(t ) 1 et 8



e ( ) t
首页
第三节、 生灭过程(了解) 设有同一类型的个体组成的一群体, 模型 含义 其每一个体在任意时间 t 内,
繁殖一个新个体的概率是i t (t ) (i 0 ) ,
繁殖两个以上个体的概率是 (t ) ;
并设每一个体在此时间内也会死亡,且寿命服从参 数为 i 0 的指数分布。

qij
为马氏过程的速率函数。
注1
(1)对任意 i I ,

j
qij 0
qii 0
qij 0,(i j)
(2)对时间连续的齐次有限马氏链, i I ,有 定义3

i j
qij qii
q 01 L q 0N q 00 q q L q 10 11 1N 把矩阵Q= 叫 L L L L q NN q N0 q N1 L 马氏过程的速率矩阵。简称Q矩阵。
如何求P(t )
但 在实际问题中往往是很困难。
Q P(0)
所以实际问题中先得到 注2
(qij,再算 ) P(t )
费勒已经证明了向后方程与向前方程有同一解 pij (t ) 但具体应用哪一个方程组求解,要看具体问题而定。
定理5.7
lim pij (t ) j 存在,且
t
连续马氏链是不可约、正常返的,则
(1) p j (t ) pi pij (t ) (2) p j (t+ )= pi (t ) pij ( )
iI iI
(3)对任意 0 t1 t2
tn , i1 , i2 ,
, in I ,有
pi pii1 (t1 ) pi1i2 (t2 t1 )
q
跳跃强度
qii 与
qij 称为跳跃强度(速率函数)
3、柯尔莫哥洛夫定理 定理5.4(5) 满足正则条件的时间连续的齐次马氏链的转移概率:
pij (t )
对任意 i,j I 和 t 0 ,
(向前方程) (向后方程)
k

(t ) pik (t )qkj pij
(t ) qik pkj (t ) pij
随机连续 直观意义
1, i j lim pij (t ) pij (0) ij t 0 0 , i j
当系统经过很短时间,其状态几乎不变。
2.转移概率的性质
定理 5.2
性质1 性质2 定理5.3
成立
满足正则条件的时间连续的齐次马氏链,其
pij (t ) 是 t 的一致连续函数。证明见书(88 页)
P{X (tn1 ) i 1 | X (tn ) i}
称为时间连续的马尔可夫链
转移 概率
pij (s, t s) P{X (t s) j | X (s) i}
齐次马氏链
转移概率函数矩阵
转移概率函数仅由t决定而与s无关
pij (s, t s) pij (t ) P(t ) ( pij (t ))
lim pij (t ) j
t
存在且与i 无关,
其中 j (j =1,2,…,N)是方程组
j i pij (t )
i 1
N

j 0
N
j
1
的唯一解。
j (j =1,2,…,N)叫平稳分布
例 1
考虑一个电话总机接到的呼唤流,以X (t ) 表示 这个总机在[0,t]中接到的呼唤次数,由于呼唤 流在不相交的时间区间中接到的呼唤次数是相 互独立的,且 X (t )服从泊松分布,所以 X (t )是 一个时间连续状态离散的马氏过程,而且是齐 次的。写出它的转移概率。 其状态空间I={1,2,…}
2.性质
设{ X (t ) , t 0 }是状态空间为 I 时间连续的齐次马氏链
性质 (定理5.1)
pij (t ) 对 i,j I 和 t 0 , 0 ,满足
(2)
(1) pij (t ) 0

jI
pij (t ) 1
kI
(3)
pi j(t ) p i kt (p ) k j( )

p00 (0) 1
p00 (t )
C 1







e ( ) t
首页
类似地可解得
p10 (t ) (1 e ( )t )
p11 (t )
p01 (t )

(1 e ( )t )
切普曼——柯尔莫哥洛夫方程
正则性条件:
1, j i lim pij (t ) t 0 0, i j
定义 性质2
绝对概率分布: p j (t ) P{ X (t ) j}, j I 初始概率分布: p j =p j (0) P{ X (0) j}, j I
转移概率
j 时 pij (t ) 正是在 t 这段时间内发生 j i 次呼唤的概率
当呼唤次数 i
(t ) j i t e i j pij (t ) ( j i)! 0 i j
注 泊松过程为连续时间齐次马氏链
第二节、柯尔莫哥洛夫微分方程
1.随机连续
设{ X (t ) ,t 0 }是时间连续的齐次马氏链,
p10 (t ) 1 e
t (t )
t (t )
而由状态1转到0的概率为
t
。 试求时间t时的转移概率 pij (t ) (i, j 0,1 )
首页

e 1 p00 (t ) 1 q00 lim lim t 0 t 0 t t
注3
当| t | 较小时
pii (t ) 1 lim qii t 0 t
t 0
等价
pii (t ) 1 qii t + (t )
lim
pij (t ) t
qij
等价
pij (t ) qij t + (t )
它表明系统从状态i出发,是继续留在状态i,还是跳跃 到状态j,在不计一个高阶无穷小时,决定于 qii 与 ij
注2
但考虑到密度矩阵 Q (qij ) ,是由 P(t ) ( pij ) 在 t 0 的导数组成,

Q P(0)
qij ( pij (t ))
5 Q
' t 0
例2 填写速率矩阵Q的空白元素
6
3 6 0
例3 某一部电话在t时刻被使用时取 X (t ) 1, 否则置X (t ) 0,
据题意 有初始条件
相关文档
最新文档