二次函数一般式图像与性质PPT.
合集下载
二次函数图象和性质PPT课件
(2)图象 与x轴有交点吗?如果有,交点坐标是什 么(3?)当x取什么值时,y的值最小?最小值是什么?
你是如何知道的?
(4)当x<0时,随着x的值增大,y 的值如何变化? 当x>0呢?
y x2
当x<0 (在对称轴的 左侧)时,y随着x的增大而 减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而 增大.
2014最新人教版九年级上册数学
22.1.2二次函数y=ax²和 y=ax²+k的图像和性质
1、二次函数的一般形式是怎样的?
y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
① y x2
② y x2 1 x
③ y x x2 ④ y x2 x 1
二次函数
y=x2的图象
形如物体抛 射时所经过 的路线,我 们把它叫做 抛物线
y x2
这条抛物线关于 y轴对称,y轴就 是它的对称轴.
对称轴与抛物 线的交点叫做 抛物线的顶点.
议一
议观察图象,回答问题:
(1)图象是轴对称图形吗? 如果是,它的对称轴是什么? 请你找出几对对称点?
y
y x2
x O
同点和不同点?
共同点: 开口都向上; 顶点是原点而且是抛物线
的最低点,对称轴是 y 轴
在对称轴的左侧, y随着x的增大而减小。
y 2x2 y
10
9 8 7 6 5 4
3 2 1
y x2 y 1 x2
2
-5 -4 -3 -2 -1 o 1 2 3 4 5 x
在对称轴的右侧,y随着x的增大而增大。
当x
二次函数图像与性质ppt课件
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
5.二次函数的图像和性质课件
大
-1
当x=0时,y取最____值____。
02
知识精讲
平移口诀1
函数y=x2+1的图像可以由函数y=x2的图像向上平移一个单位长度得到;
函数y=x2-1的图像可以由函数y=x2的图像向下平移一个单位长度得到;
函数y=-x2+1的图像可以由函数y=-x2的图像向上平移一个单位长度得到;
函数y=-x2-1的图像可以由函数y=-x2的图像向下平移一个单位长度得到。
的图像和性质
01
情境引入
Q1:用描点法画出y=(x+3)2的图像,并与y=x2作对照
x
…
y=(x+3)2 …
x
y=x2
-6 -5
9 4
…
…
-4
1
-3
9
-3
0
-2
4
-2
1
-1
1
-1
4
0
0
0
9
1
1
…
…
2
4
当自变量偏移3个单位长
将点(1,1)向左平移3个
度时,两个函数的值相同
单位长度得(-2,1)……
3
【平移口诀1】上加下减
02
知识精讲
练一练1:根据平移口诀1,完成下列填空:
下
4
向_____平移_____个单位得到
上
8
向_____平移_____个单位得到
下
3
向_____平移_____个单位得到
上
6
向_____平移_____个单位得到
02
知识精讲
练一练2:根据练一练1平移后的图像,完成下列填空:
5
y=-2x2+3
-1
当x=0时,y取最____值____。
02
知识精讲
平移口诀1
函数y=x2+1的图像可以由函数y=x2的图像向上平移一个单位长度得到;
函数y=x2-1的图像可以由函数y=x2的图像向下平移一个单位长度得到;
函数y=-x2+1的图像可以由函数y=-x2的图像向上平移一个单位长度得到;
函数y=-x2-1的图像可以由函数y=-x2的图像向下平移一个单位长度得到。
的图像和性质
01
情境引入
Q1:用描点法画出y=(x+3)2的图像,并与y=x2作对照
x
…
y=(x+3)2 …
x
y=x2
-6 -5
9 4
…
…
-4
1
-3
9
-3
0
-2
4
-2
1
-1
1
-1
4
0
0
0
9
1
1
…
…
2
4
当自变量偏移3个单位长
将点(1,1)向左平移3个
度时,两个函数的值相同
单位长度得(-2,1)……
3
【平移口诀1】上加下减
02
知识精讲
练一练1:根据平移口诀1,完成下列填空:
下
4
向_____平移_____个单位得到
上
8
向_____平移_____个单位得到
下
3
向_____平移_____个单位得到
上
6
向_____平移_____个单位得到
02
知识精讲
练一练2:根据练一练1平移后的图像,完成下列填空:
5
y=-2x2+3
二次函数y=ax2的图象和性质ppt课件
例4 如图, 四个二次函数的图象分别对应 ① y=ax2 ;② y=bx2;
③ y=cx2;④ y=dx2,且①与③,②与④分别关于x 轴对称.
(1)比较a,b,c,d 的大小; (2)说明a 与c,b 与d 的数量关系.
解:(1)由抛物线的开口方向,知 a > 0,b > 0,c < 0,d < 0,
由抛物线的开口大小,知 |a| > |b|,|c| > |d|, 因此a > b,c < d. ∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称,
∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
课堂练习
1、下列函数中,y总随x增大而减小的是( B )
归纳总结
位置开 开口向上,在x轴上方 开口向下,在x轴下方
口方向
a的绝对值越大,开口越小
对称性 顶点最值
关于y轴对称,对称轴方程是直线x=0 顶点坐标是原点(0,0)
当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
1、如右图,观察函数y=( k-1)x2的图象, 则k的取值范围是 k>1 .
复习引入
1.二次函数的一般形式是怎样的? y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
①
②
③
④
⑤
3.一次函数的图象是一条 直线.
4.通常怎样画一个函数的图象? 列表、描点、连线
那么,二次函数的图象会是什么样的图形呢?这节课我们 来学习最简单的二次函数y=ax2的图像
不同点: a的值越大,开口越小.
《二次函数图象》PPT课件
-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c
二次函数的图像和性质(共48张PPT)
C、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向上,对称轴 x= >0,应在 y 轴的右侧,故符合 题意; D、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向下,a<0,故不合题意,图形错误; 故选:C.
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
二次函数 的图象和性质--PPT课件
点(h,k)坐标 Nhomakorabea对
称
x=h
轴
最 值
最小值为k
最大值为k
新知应用-----基础知识
新知应用-----拓展提高
这节课你学到了什么
图像及性质 合作、分享 类比、化归
知识 方法 思想
作业布置
• 课后习题 • 练习册
送给大家
函数是纲 纲举目张 数形结合 相得益彰
形如y=a(x-h)2+k二次函数图像性质探索
文件名
抛物 线
开口 方向
顶点 坐标
对称 轴
y=ax2(a>0) y=ax2(a<0)
向上
向下
(0,0) y轴
最值 最小值为0 最大值为0
温馨提示:鼠标拖动点A
文件名
抛物 线
开口 方向
顶点 坐标
对称 轴
y=ax2+k y=ax2+k (a>0) (a<0)
向上
向下
(0,K)
y轴
最值 最小值为k 最大值为k
文件名
抛物 线
开口 方向
顶点 坐标
对称 轴
最值
y=a(x-h)2 y=a(x-h)2
(a>0)
(a<0)
向上
向下
(h,0)
x=h
最小值为0
最大值为0
文件名
抛
物 y=a(x-h)2+k
线
(a>0)
y=a(x-h)2+k (a<0)
开
口
向上
方
向
向下
顶
人教版九年级上册22.二次函数的图像与性质课件(共129张)
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
人教版九年级数学上册《二次函数的图象和性质》PPT
22.1.4二次函数y=ax2+bx+c 图象和性质
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
a
x
b 2a
2
4ac b2 4a2
a x
b
2
4ac
b2
.
2a 4a
函数y=ax2+bx+c的顶点式
y a x
b
2
4ac
b2
.
2a
4a
(- b ,4ac - b2 ) 2a 4a
快速反应:火箭被竖直向上发射时,它的高度 h (m) 与 时间 t (s) 的关系为h = - 5 t ²+ 150 t +10 经过多长时 间,火箭到达它的最高点?最高点的高度是多少?
的顶点都在
( B)
A.直线y = x上 B.直线y = - x上
C.x轴上
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
a
x
b 2a
2
4ac b2 4a2
a x
b
2
4ac
b2
.
2a 4a
函数y=ax2+bx+c的顶点式
y a x
b
2
4ac
b2
.
2a
4a
(- b ,4ac - b2 ) 2a 4a
快速反应:火箭被竖直向上发射时,它的高度 h (m) 与 时间 t (s) 的关系为h = - 5 t ²+ 150 t +10 经过多长时 间,火箭到达它的最高点?最高点的高度是多少?
的顶点都在
( B)
A.直线y = x上 B.直线y = - x上
C.x轴上
二次函数的图像和性质ppt课件
二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件
目
CONTENCT
录
• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答
二次函数图像与性质(共44张PPT)
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.
二次项系数相同
a>0,开口都向上.
顶点坐标
是点(1,0).
想一想,在同一坐标系中作二次函数
y=3(x+1)2的图象,会在什么位置?
(4)x取哪些值时,函数y=3(x1)2的值随x值的增大而增大 ?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
2 (4)当x<0时,随着x的值增大,y 的1 值如何变化?当x>0呢?
(5)当x取-4什么-值3时,-y2的值最-1小?最0 小值1是什么2?你是3如何4知道的x ? -2
y x2
二次函数y=x2的 图象形如物体抛射 时所经过的路线,我
们把它叫做抛物线.
这条抛物线关于
y轴对称,y轴就
是它的对称轴.
二次函数的图象有什么关系?
你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形 式吗?
由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数 y=3(x-1)2的图象.
在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.
想一想
比较函数y 3x2与y 3x1的2 图象
右侧, y随着x的增大而减小.
当x=0时,最小值为0.
当x=0时,最大值为0.
做一做
函数y=ax2(a≠0)的图象和性质:
y
在同一坐标系中作出函数 y=x2和y=-x2的图象
y=x2
y=x2和y=-x2是y=ax2当a=±1
相同,可以看作是抛
物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.
二次项系数相同
a>0,开口都向上.
顶点坐标
是点(1,0).
想一想,在同一坐标系中作二次函数
y=3(x+1)2的图象,会在什么位置?
(4)x取哪些值时,函数y=3(x1)2的值随x值的增大而增大 ?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
2 (4)当x<0时,随着x的值增大,y 的1 值如何变化?当x>0呢?
(5)当x取-4什么-值3时,-y2的值最-1小?最0 小值1是什么2?你是3如何4知道的x ? -2
y x2
二次函数y=x2的 图象形如物体抛射 时所经过的路线,我
们把它叫做抛物线.
这条抛物线关于
y轴对称,y轴就
是它的对称轴.
二次函数的图象有什么关系?
你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形 式吗?
由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数 y=3(x-1)2的图象.
在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.
想一想
比较函数y 3x2与y 3x1的2 图象
右侧, y随着x的增大而减小.
当x=0时,最小值为0.
当x=0时,最大值为0.
做一做
函数y=ax2(a≠0)的图象和性质:
y
在同一坐标系中作出函数 y=x2和y=-x2的图象
y=x2
y=x2和y=-x2是y=ax2当a=±1
二次函数的图象和性质初中数学课件
增大
当x>0时,y随x的增大而
减小 ,
.
5.(1)已知点(-1,y1), (-3,y2)都在二次函数y=-5x2的图象
上,则y1,y2的大小关系是
y1 >y2 .
(2)已知点(-2,y1), (3,y2)都在二次函数y=7x2的图象上,
则y1 ,y2的大小关系是
y1 <y2
.
22.1二次函数的图象和性质
第2课时 二次函数y=ax²
的图象和性质
温故知新
图象的形状;
图象的形状;
图象的位置;
性质:y随x的增
大如何变化.
一
次
函
数
类比
y=kx
(k≠0)
由
特
殊
到
一
般
二
次
函
数
y=ax²
(a≠0)
k>0,k<0,
a>0,a<0,
y=x,y=-x.
y=x²,y=-x².
图象的位置;
性质:y随x的增
二次函数 y = ax 2 的图象特征.
(1)在同一直角坐标系中,画出a<0的几个二次函数的图象,并
考虑这些抛物线有什么共同点和不同点.
(2)当a<0时,说出二次函数 y = ax 2 的图象特征.
y
1
-8
-
-2
-
0
0
0
1
-
-
-2
2
-2
-8
…
…
…
1
2
-1
1
3
2
当x>0时,y随x的增大而
减小 ,
.
5.(1)已知点(-1,y1), (-3,y2)都在二次函数y=-5x2的图象
上,则y1,y2的大小关系是
y1 >y2 .
(2)已知点(-2,y1), (3,y2)都在二次函数y=7x2的图象上,
则y1 ,y2的大小关系是
y1 <y2
.
22.1二次函数的图象和性质
第2课时 二次函数y=ax²
的图象和性质
温故知新
图象的形状;
图象的形状;
图象的位置;
性质:y随x的增
大如何变化.
一
次
函
数
类比
y=kx
(k≠0)
由
特
殊
到
一
般
二
次
函
数
y=ax²
(a≠0)
k>0,k<0,
a>0,a<0,
y=x,y=-x.
y=x²,y=-x².
图象的位置;
性质:y随x的增
二次函数 y = ax 2 的图象特征.
(1)在同一直角坐标系中,画出a<0的几个二次函数的图象,并
考虑这些抛物线有什么共同点和不同点.
(2)当a<0时,说出二次函数 y = ax 2 的图象特征.
y
1
-8
-
-2
-
0
0
0
1
-
-
-2
2
-2
-8
…
…
…
1
2
-1
1
3
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
中学数学网(群英 学科)收集提供
函数y=ax²+bx+c的对称轴、 顶点坐标是什么? b
y ax bx c的对称轴是:x
2 2
2a
b 4ac b 顶点坐标是:( , ) 2a 4a 2 2. 抛物线y = 2x + bx + c的顶点坐标
为(- 1,2),则b = ______,c = ______ .
b 对称轴是直线x = 2a
① ② ③
a,b同号<=> 对称轴在y轴左侧; b=0 <=> 对称轴是y轴; a,b异号<=> 对称轴在y轴右侧
中学数学网(群英 学科)收集提供
⑶ c决定抛物线与y轴交点的位置: ① c>0 <=>图象与y轴交点在x轴上方; ② c=0 <=>图象过原点; ③ c<0 <=>图象与y轴交点在x轴下方。 2 b ⑷顶点坐标是( , 4ac b )。 2a 4a
y o x o y x o y x o y x
-3
x
o B -3xo源自C -3xo D -3
x
A
B
中学数学网(群英 学科)收集提供
C
D
函数y=ax² +bx+c的图象和性质: 2 b b 4ac-b 直线 x=对称轴: 顶点坐标: (- 2a , 4a ) 2a 2-4ac -b ± b 与y轴交点: (0,c) 与x轴交点: ( , 0) 2a 增减性 开口 最 值 b x>- b b 时, x<当 x = 向 2a 2a 2a a>0 上 2 4ac-b y有最小值: 4a x<- b x>- b 当x= - b 时, 2a 2a 2a 向 a>0 2 4ac-b 下 y有最大值: 中学数学网(群英 4a 学科)收集提供
中学数学网(群英 学科)收集提供
例:指出抛物线: y x 5 x 4 的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
2
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
2
(3) y= (x+1)2- 2
(4) y 3x 4 x 1
2
中学数学网(群英 学科)收集提供
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax bx c
2
2
b a( x x) c a b b 2 b 2 2 a[ x x ( ) ( ) ] c a 2a 2a 2 b 4ac b 2 a x 2a 4a
C.a+b+c=0
中学数学网(群英 学科)收集提供
6.若一次函数 y=ax+b 的图象经过第二、三、四 象限,则二次函数 y=ax2+bx-3 的大致图象是 y y y ( C )y
o
A 7.在同一直角坐标系中,二次函数 y=ax2+bx+c 与 一次函数y=ax+c的大致图象可能是 ( C)
中学数学网(群英 学科)收集提供
求下列二次函数图像的开口、顶点、对称轴
1 ①y=2x2-5x+3 ②y=- 2 x2+4x-9
③y=(x-3)(x+2)
请画出草图:
中学数学网(群英 学科)收集提供
抛物线位置与系数a,b,c的关系:
⑴a决定抛物线的开口方向: a> 0 开口向上 a<0 开口向下 ⑵ a,b决定抛物线对称轴的位置:
4.若二次函数 y=ax2 + b x + c 的图象如下,与x 轴的一个交点为(1,0),则下列各式中不成立 的是 ( ) y b B 2 A.b -4ac>0 B. 2a <0
1 o x D. 4ac-b2 >0-1 4a 5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向 下平移3个单位,得抛物线y=x2+bx+c,则( B ) A.b=2 c= 6 B.b=-6 , c=6 C.b=-8 c= 6 D.b=-8 , c=18
⑸△=b2-4ac决定抛物线与x轴交点情况: ① △>0<=>抛物线与x轴有两个交点; ② △=0<=>抛物线与x轴有唯一的公式点; ③ △<0<=>抛物线与x轴无交点。
中学数学网(群英 学科)收集提供
⑹二次函数有最大或最小值由a决定。
2 b 4ac b 当x= 时,y有最大(最小)值 2a 4a
中学数学网(群英 学科)收集提供
例3、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
3
据图象信息你能得到关于系数 a,b,c的 一些什么结论? y
1 3 .
. -1
1
x
中学数学网(群英 学科)收集提供
1.抛物线y=2x2+8x-11的顶点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限
(
C
)
2.不论k 取任何实数,抛物线y=a(x+k)2+k(a≠0) 的顶点都在 ( ) B A.直线y = x上 B.直线y = - x上 C.x轴上 D.y轴上 3.若二次函数y=ax2 + 4x+a-1的最小值是2,则a 的值是 (A) A. 4 B. -1 C. 3 D.4或-1
中学数学网(群英 学科)收集提供
中学数学网(群英 学科)收集提供
配方
函数y=ax²+bx+c的对称轴、 顶点坐标是什么? b
y ax bx c的对称轴是:x
2 2
2a
b 4ac b 顶点坐标是:( , ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
y 3x 4 x 1 y 2 x x 3
中学数学网(群英 学科)收集提供
说出下列函数的开口方向、对称 轴、顶点坐标:
(1) y a( x h) k (a 0) 1 5 2 3 (2) y ( x ) 3 3 3 2 2((3) 3) y= y (x+1) x 2 x2 1 配方
二次函数 2 y=ax +bx+c 图象和性质
y o x
中学数学网(群英 学科)收集提供
要修建一个圆形喷水池,在池中心竖直安装一根水 管,在水管顶端安一个喷水头,使喷出的抛物线形 水柱在于池中心的水平距离为1m处达到最高,高度 为3m水柱落地处离中心3m,水管多长
• 1画草图 • 2设函数关系式(注意自变量取值范围) • 3找特殊点求出函数关系
中学数学网(群英 学科)收集提供
函数y=ax²+bx+c的对称轴、 顶点坐标是什么? b
y ax bx c的对称轴是:x
2 2
2a
b 4ac b 顶点坐标是:( , ) 2a 4a 2 2. 抛物线y = 2x + bx + c的顶点坐标
为(- 1,2),则b = ______,c = ______ .
b 对称轴是直线x = 2a
① ② ③
a,b同号<=> 对称轴在y轴左侧; b=0 <=> 对称轴是y轴; a,b异号<=> 对称轴在y轴右侧
中学数学网(群英 学科)收集提供
⑶ c决定抛物线与y轴交点的位置: ① c>0 <=>图象与y轴交点在x轴上方; ② c=0 <=>图象过原点; ③ c<0 <=>图象与y轴交点在x轴下方。 2 b ⑷顶点坐标是( , 4ac b )。 2a 4a
y o x o y x o y x o y x
-3
x
o B -3xo源自C -3xo D -3
x
A
B
中学数学网(群英 学科)收集提供
C
D
函数y=ax² +bx+c的图象和性质: 2 b b 4ac-b 直线 x=对称轴: 顶点坐标: (- 2a , 4a ) 2a 2-4ac -b ± b 与y轴交点: (0,c) 与x轴交点: ( , 0) 2a 增减性 开口 最 值 b x>- b b 时, x<当 x = 向 2a 2a 2a a>0 上 2 4ac-b y有最小值: 4a x<- b x>- b 当x= - b 时, 2a 2a 2a 向 a>0 2 4ac-b 下 y有最大值: 中学数学网(群英 4a 学科)收集提供
中学数学网(群英 学科)收集提供
例:指出抛物线: y x 5 x 4 的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
2
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
2
(3) y= (x+1)2- 2
(4) y 3x 4 x 1
2
中学数学网(群英 学科)收集提供
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax bx c
2
2
b a( x x) c a b b 2 b 2 2 a[ x x ( ) ( ) ] c a 2a 2a 2 b 4ac b 2 a x 2a 4a
C.a+b+c=0
中学数学网(群英 学科)收集提供
6.若一次函数 y=ax+b 的图象经过第二、三、四 象限,则二次函数 y=ax2+bx-3 的大致图象是 y y y ( C )y
o
A 7.在同一直角坐标系中,二次函数 y=ax2+bx+c 与 一次函数y=ax+c的大致图象可能是 ( C)
中学数学网(群英 学科)收集提供
求下列二次函数图像的开口、顶点、对称轴
1 ①y=2x2-5x+3 ②y=- 2 x2+4x-9
③y=(x-3)(x+2)
请画出草图:
中学数学网(群英 学科)收集提供
抛物线位置与系数a,b,c的关系:
⑴a决定抛物线的开口方向: a> 0 开口向上 a<0 开口向下 ⑵ a,b决定抛物线对称轴的位置:
4.若二次函数 y=ax2 + b x + c 的图象如下,与x 轴的一个交点为(1,0),则下列各式中不成立 的是 ( ) y b B 2 A.b -4ac>0 B. 2a <0
1 o x D. 4ac-b2 >0-1 4a 5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向 下平移3个单位,得抛物线y=x2+bx+c,则( B ) A.b=2 c= 6 B.b=-6 , c=6 C.b=-8 c= 6 D.b=-8 , c=18
⑸△=b2-4ac决定抛物线与x轴交点情况: ① △>0<=>抛物线与x轴有两个交点; ② △=0<=>抛物线与x轴有唯一的公式点; ③ △<0<=>抛物线与x轴无交点。
中学数学网(群英 学科)收集提供
⑹二次函数有最大或最小值由a决定。
2 b 4ac b 当x= 时,y有最大(最小)值 2a 4a
中学数学网(群英 学科)收集提供
例3、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
3
据图象信息你能得到关于系数 a,b,c的 一些什么结论? y
1 3 .
. -1
1
x
中学数学网(群英 学科)收集提供
1.抛物线y=2x2+8x-11的顶点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限
(
C
)
2.不论k 取任何实数,抛物线y=a(x+k)2+k(a≠0) 的顶点都在 ( ) B A.直线y = x上 B.直线y = - x上 C.x轴上 D.y轴上 3.若二次函数y=ax2 + 4x+a-1的最小值是2,则a 的值是 (A) A. 4 B. -1 C. 3 D.4或-1
中学数学网(群英 学科)收集提供
中学数学网(群英 学科)收集提供
配方
函数y=ax²+bx+c的对称轴、 顶点坐标是什么? b
y ax bx c的对称轴是:x
2 2
2a
b 4ac b 顶点坐标是:( , ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
y 3x 4 x 1 y 2 x x 3
中学数学网(群英 学科)收集提供
说出下列函数的开口方向、对称 轴、顶点坐标:
(1) y a( x h) k (a 0) 1 5 2 3 (2) y ( x ) 3 3 3 2 2((3) 3) y= y (x+1) x 2 x2 1 配方
二次函数 2 y=ax +bx+c 图象和性质
y o x
中学数学网(群英 学科)收集提供
要修建一个圆形喷水池,在池中心竖直安装一根水 管,在水管顶端安一个喷水头,使喷出的抛物线形 水柱在于池中心的水平距离为1m处达到最高,高度 为3m水柱落地处离中心3m,水管多长
• 1画草图 • 2设函数关系式(注意自变量取值范围) • 3找特殊点求出函数关系