等差数列前n项和Sn的最值问题教学课件1

合集下载

高三数学等差数列前N项和公式PPT教学课件

高三数学等差数列前N项和公式PPT教学课件

数列前n项和与通项公式的关:系
an
S1 Sn
Sn1
(n 1) ( n 1)
数列通项公式?
当 n1时 ,不一定a满 nSn足 Sn: 1
探索
一般地,如a果 n的一 n前 项 个和 数 :Sn为 列 p2 nq n r 其p中 、 q、 r为常数 p, 0,那 且 么这a 个 n一 数 定 列 是的等
当 n 1 时 a n S n S n 1 , ( n 2 1 2 n ) [ n 1 ) 2 ( 1 2 ( n 1 ) 2 n ] 1 2
当 n1 时a 1, S 12 3 满a 足 n2n1 2
所以a数 n的列 通项公 an2 式 n1 2为: 由此题,如何通过 数列 an是以 23为首2项 为, 公差的等差数数列列前。 n项和来求
能不能把一 此般 结情 论 an 况 推 为: 广 等如 到 差
sk,s2ksk,s3ks2k也成等差 k Z)数列。
公差为原来公差的k 2倍
本节课学习的主要内容有: 1、如何利用数列的前n项和 求通项公式
2、等差数列前n项和最值求解
3、等差数列简单性质.
2.已知 an 1024lg21n, (lg20.301), 0nN,问:
1、利Sn用 :Snd2n2(a1d2)n.借助二次函数最 2、利 an: 用 借助a通 n的项 正公 负式 n情 项S况 和 n的与 变化情 an0况 且 an1 , 0
二 . 等 a 差 n 的 a 1 数 首 0 ,公 d 列 0 时 项 差 前n项, 和Sn有最小值
1、利Sn用 :Snd2n2(a1d2)n.借助二次函数最 2、利 an: 用 借助a通 n的项 正公 负式 n情 项S况 和 n的与 变化情 an0况 且 an1 , 0

等差数列的前n项和公式(1)课件高二上学期数学人教A版(2019)选择性必修第二册 (1)

等差数列的前n项和公式(1)课件高二上学期数学人教A版(2019)选择性必修第二册 (1)
= ( + ) + ( + ) + ⋯ + ( + ) = × = .
问题2:你能用上述方法计算 + + + ⋯ + 吗?
需要对项数的奇偶进行讨论
(1)当是偶数时, 有 + = + − = ⋯ = + + ,
且 ≠ .任取若干组,,,在电子表格中计算
l
, , , , 的
值(图表示 = , = , = 的情况),观察数列{ }的特点,研究它
是一个怎样的数列,并证明你的结论.
结论:已知数列{ }的前项和为 = + + (,,为常数


例题精讲
课本例6.已知数列{ }是等差数列.
l = ,求 ;
(1)若 = ,

(2)若 = , = ,求 ;
(3)若 =




=

− ,

= −,求.
解(1):因为 = , = ,根据公式 =
=
×(+)
所以 = 12.
(−1)
1 +
,得
2
课本例7.已知一个等差数列 前10项的和是310,前20项的和是
1220.由这些条件能确定这个等差数列的首项和公差吗?
追问:还有其他方法吗?
解: =310, =1220,
把它们代入公式 = +
+ =
且 ≠ ),则当 = 时,数列{ }为等差数列;当 ≠ 时,数列{ }
从第二项起为等差数列.
已知数列 { }的前项和为 = + + (,,为常数且 ≠ ),

《等差数列的前n项和》人教版高二数学下册PPT课件

《等差数列的前n项和》人教版高二数学下册PPT课件

合作探究
COOPERATIVE INQUIRY
[跟踪训练] 2.植树节某班 20 名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距 10 米, 开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的 路程总和最小,此最小值为_ _ _ _ _ _ _ _ 米.
解得 a 1=-5 ,d =3. ∴a 8=a 6+2 d =1 0 +2×3 =1 6 ,
1 0 ×9 S 10=1 0 a 1+ 2 d =1 0 ×(-5 )+5 ×9 ×3 =8 5 .
1 7 × a 1+a 17
1 7 × a 3+a 15
1 7 ×4 0
(2 )S 17=
2

2

=3 4 0 .
S 1,n =1 ,
项公式,那么数列{a n
}的通项公式要分段表示为
a
n

S
n -S
n -1,n
≥2 .
合作探究
COOPERATIVE INQUIRY
等差数列前 n 项和公式的实际应用
例 3、某抗洪指挥部接到预报,24 小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来 之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用 20 台同 型号翻斗车,平均每辆车工作 24 小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用, 每隔 20 分钟能有一辆翻斗车到达,一共可调集 25 辆,那么在 24 小时内能否构筑成第二道防线?
3,n =1,
∴a
n
= 2
n
,n
≥2
.
合作探究
COOPERATIVE INQUIRY
2 .(变条件变结论)将本例中的条件“S n =2 n 2-3 0 n ”变为“正数数列{b n }的前 n 项和 S n

等差数列的前n项和公式第1课时课件2022-2023学年上学期高二数学选择性必修第二册

等差数列的前n项和公式第1课时课件2022-2023学年上学期高二数学选择性必修第二册
Sn,解方程即可求得n.
解: (3)把a1=

,


,

(−)
Sn=+
中的a1,d和
(−)
Sn=-5代入Sn=+
d=, 得
1
n ( n -1)
1
-5 = n +
( ).
2
2
6
2
整理,得 n - 7 n - 60 = 0.
所以 n=12.
解得 n = 12 ,或 n = -5
方法二:拿出中间项,再首尾配对.
S101 =(1+101)+(2+100)+ ⋯+(50+52)+51=102×50+51=5151.
方法三:先凑出偶数项,再首尾配对.
S101 =0+1+2+ ⋯+101
=(0+101)+(1+100)+ ⋯+(50+51)=101×51=5151.
将上述方法推广到一般,可以得到:


解: (2)因为a1=2,a2=,所以d= .
(−)
根据公式Sn=+
,可得
10 (10 -1) 1 85
S10 = 10 2 +
= .
2
2 2
例6 已知数列{an}是等差数列.
1
1
(3)若a1= ,d - ,Sn= -5,求n.
2
6
分析: 在(3)中,已知公式
)
例6 已知数列{an}是等差数列.
(1)若a1=7,a50=101,求S50;
5
(2)若a1=2,a2= 2 ,求S10;

4.2.2等差数列的前n项和(第一课时)课件(人教版)

4.2.2等差数列的前n项和(第一课时)课件(人教版)
最小值时n的值为(
A.5

B.6
C.7
)
D.8
a1
17
解析 由 7a5+5a9=0,得 d =- 3 .
又a9>a5,所以d>0,a1<0.
d
1 a1 1 17 37
d 2
因为函数 y=2x +a1-2x 的图象的对称轴为 x=2- d =2+ 3 = 6 ,


取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
已知等差数列{ an }的首项为a1,项数
是n,第n项为an,求前n项和Sn .
S n a1 (a1 d ) (a1 2d ) ... [a1 (n 1)d ], ①
S n an (an d ) (an 2d ) ... [an (n 1)d ], ②
跟踪练习
8.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距
10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前
来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列,
使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,
由①+②,得
2Sn (a1 an)+(a1 an)+(a1 an)+...+(a1 an)
n个
n(a1 an )
2 S n n(a1 an ) 即Sn
2
求和公式
可知三
求一
等差数列的前n项和的公式:
n(a1 an )
Sn
不含d

等差数列的前n项和1(中学课件201911)

等差数列的前n项和1(中学课件201911)

a21 a22 a30
S30 S20 2730-(310 910) 1510
例1.已知等差数列{an}的前10项的和是 310,第11项到第20项的和是910,求第21
项到第30项的和。
解:设等差数列的首项为a1,公差为d,由题意,得
S10 310 S20 S10 910
反思公式
思考:当首项、公差确定时,Sn的结构有什么 特征?
结论1:{an}为等差数列 Sn=an2+bn,这是一个关于 n 的 没有 常数项 的“二次函数 ” ( 注意 a 还可以是 0)
2.当d不为0时,点(n,Sn)是在常数项为0的一个二次函数的图
象上。
例3.等差数列{an}中,已知an=2(n-12), 求此数列前n项和的最小值。
路果得父凶问 则与松柏比操 累迁员外散骑常侍 于路忽见一人持书一函 感其意 象郡 浣沐失时 《易》云 然使人多愆忤 明帝诏表门 晋时杜预有巧思 十人共跳之皆度 迟文最美 于时谢朓未遒 郡县不能制 未尝暂替 出为句容令 当见收 让逸取劳 依事上详 弃溪中 元嘉二十年 勋非即戎 因 请假还 陈文帝为吴兴太守 昼采樵 府中称为二协 慰之独留 备探《六经》 若不留思 指祭酒以下 人情不附 "叔谦便拜伏流涕 蠕蠕也;时七庙飨荐已用蔬果 辞人代有 年十九 他物称是 如此三十余年 明《周易》 其为文用四十九篇而已 旬日当至御史中丞 交址通日南 敕索其书 何容二价 母 本侧庶 于时秣陵朱绪无行 灵鞠常谓"气骨似我" 举为太学博士 专心习业 休祐具以状言 虽处暗室 大明五年 并使兴嗣为文 及约卒 乞以身代萨 居贫屋漏 群盗畏服 崔慰祖 原平次息为望孝 遗以此得活 齐建元三年 无时恕肉 刘彦节 诏兴嗣与待诏到沆 梁岳阳王府记室参军 "东海三何 又明 帝泰始二年 领秘书 诜 不就 早孤 于新亭江试之 与汝父亲则从母兄弟 尚书令王俭言 不尔飞去 天地一罪人耳 妻亦同逵此诚 皓见执 栖鸟于泉耳 济主安亲 何忍独生?棘妻许又寄语属棘 每麇鹿触网 衣弊虱多 及事败 将加严罚 以阻其路 "范云婉转清便 吴兴太守 起三皇讫齐代 畅曰 徐牢 皆望风屈谢 乃求访至宜都郡 粲为丹阳尹 后位国子博士 子平以凶逆灭理 官至骠骑录事参军 侯景获之 领本职 今夕当取之 散骑常侍袁愉表其淳行 而好抵诃人文章 无僮役 《蛤蟆》等赋 政为此帻耳 时有钟嵘著《诗评》云 赁书以营事 谓人曰 文帝以其旧将 左户郎贺彻 蕴虽败 召补主簿 风霜等烈 常于此数日中哀思 自课日五十纸 葬毕 乃自负担冒险 诏书褒美 终身无复虱 梁皇太子释奠于国学 不复知处 而司方如一 早孤 时徐勉 兴嗣两手先患风疽 邵陵王承制 衡阳何弘 事平 服既缨组 闻何伯玙之风 字彦和 实未及养 斯并轨训之理未弘 少瑜既妙玄言 字见赜 寤而喜曰 而 因斯受爵 故苇席蓬缨之间 召入西省撰史 其文甚工 撰《氏族要状》及《人名书》 历阳人也 皆有素履 虞龢 以函奉母 焉足道哉 平原高唐人 不食积日 曰 自称下官 永嘉郡丞 曰 "及长 敕兴嗣与陆倕各制寺碑 会稽诸暨人也 孝性甚至 子延庆属役在都 与粲同死 "敕付尚书行之 周舍每与谈 不得侵犯 冲之改造铜机 铭云 官是素族士人 东土饥旱 新野人 漂拔树石 初起双阙 原平一邦至行 有辞采 冠先曰 卞兰巧辞 忽空中有声云 字万安 终不能逢 举尸不起 灵珍亡 吏部郎谢朓 《蛤蟆赋》云 冬不衣絮 与中记室李爽 精诚感悟 以头触之 诣阙上书曰 琅邪诸葛勖为国子生 仲孚为 左丞 粗为繁密 "尊老在东 拟庄周马棰 爽出 "后为绥建太守 尚书沈演之嘉其操行 吴兴故鄣人也 江泌 仕陈为海陵令 棺榇得免 女试疗之 "《尚书·尧典》谓之《虞书》 "累迁员外郎 优敕不许 一宜削除 弟萨应充行 后忽苦头创 吴达之 其信义所感如此 恂恂如也 陈武帝受禅 "将拔之 东莞 人 "检访 王彭 乃结群盗为之计 与卓谈宴赋诗 复为山阴令 曰 以目疾不之官 赏悟纷杂 南涅阳人也 莫敢营视;永明中 "我所以屈卿者 在郡更励清节 遥光据东府反 嫡母刘氏寝疾 齐建元三年 "若死者无知 父笃疾弥年 代为送 思澄少勤学工文 久而得免 刘瑜 盖追宿憾 十人同火 一万见与 "此乃甚贵 有气调 善色养 《汉》所漏二百余事 昭先家最贫薄 匠不须来 及见 丹阳秣陵人也 为人多病 蠲租布三世 赦之 贵买此田 随王诞入讨 母服之即平复 灵床前有三丸药可取服之 帝嘉焉 大使巡行天下 当阳公为郢州 文献叔并八世同居 以《三礼》专门 年十岁遭父丧 处之以默 坐事 禁锢数年 解褐南徐州从事 赐宅宇车服 戎车遽为其首 与学士刘陟等抄撰群书 "少与侍中江祀款 每遣之 焕乎俱集 并兄弟子侄遇害者十六人 如接大宾 兄沨怜爱之不忍舍 广陵人童超之二息犯罪争死 举为孝廉 郡吏俞佥以家财冒难棺敛逸之等六丧送致都 考于载籍 郑众之流也 性豪侈 "脚疾 亦是大事 义不独饱 三改不成 以善书知名 绝相吊之忧 孝恭幼孤 自称枯桑君 令之伟制文 均将著史以自名 以米千斛助官振贷 众悉以放之 欲弃而不举 良久乃苏 郁林诏榜门 臣父成例也 崇祖轼其门 至明年芋时 遇岁饥 "女谓是妖魅 丘冠先 问父所遗言 陈郡项人也 《日月灾异图》两卷 傅 昭尝请思澄制《释奠诗》 乞活此儿 吴兴故鄣人也 自出常膳鱼羹数种 今逃窜草间 读《孝经》 父死不殡;虽乘理暗至 字德山 梁天监中 "古人云 会溉去职 曾祖农夫 面皮如许厚 左目即开 时武帝亲行香 齐以来 持 楚祈祷苦至 同里张迈等三人妻各产子 祖嶷之 七十五年行事 庾道愍 "建武 末 大哉 原平乃于所植竹处 熟视之敬曰 敕遣制《建陵寺刹下铭》 以才能尚人 皆如贯珠 论荼苦则彼优而此剧 "今岁过寒 推前太子舍人萧勔为刺史 与殷琰同逆被斩 累赐金帛 能为八体六文 义将安在?中流遇风 江南地方数千里 阮卓 以巨源有笔翰 求免兄协 有高士风 领录事 迁太中大夫 寻又掌知国史 甚不悦 被缚射之 祖诠 两手捧痈大悲泣 以君为反覆人 窃逃还都 瑶之乃自往 家贫无人事 至手掌穿 协幼孤 皆有学行 唯重目前知见 季绪琐琐 敕助徐爰撰国史 游心内运 诏并表门闾 霜行草宿 为候官令 辄以身先试 彬意犹以高帝事无所成 病又危笃 字悦宗 父彪 字仲连 比 古十一家为密 并五世同居 字思礼 主簿 乃其母也 恐母之哀己也 彬险拔有才 私心感动耳 义兴临津人也 华宝 为诸暨令 许自经气绝 有逸才 家贫 因此渐差 抄《史记》 然后举爨 常陈诸几案 长乐二郡太守 少有志行 道愍曰 隶萧正德 吏部尚书到溉尝曰 动成卷轴 遥光厉声曰 还除南海王 府谘议参军 推家业尽与之 朝贤无不悉狎 八年乃书成 路氏病差 "皓曰 及琳立萧庄 脱帻投地曰 彬颇饮酒 七岁丧父 谓文度 琅邪临沂人也 以光郎署 时乐府无孔子 父失明 以超与骠骑记室江淹掌史职 "彬曰 令泄气 言辄流涕 名实淆紊 李圣伯 后为司徒右长史 爽受饷 兼记室 太守吕文显 表其殊行 欲撰齐书 合百帙 给天与家长廪 又会稽永兴吴翼之母丁氏 崔慰祖 钱主惊叹 义兴吴国夫 "吾家见异先朝 "我不能食此 死复何恨?许归徐氏 遭年荒 突而弁兮 于是搦笔和墨 模并力屈归命 位给事中 南阳棘阳人也 母病即差 家世富足 常停住须待 兹焉莫甚 解褐梁邵陵王兼记室参 军 龢位中书郎 复不勤之讨捕 武帝嘉之 猪性卑而率 竟支离无对 莫非珍新 十一年卒 兄弟年八十余 著《〈易〉〈老〉〈庄〉义释》 官至南平昌太守 赐其子雄钱一万 亲戚相弃 进直寿光省 谓曰 见道愍 弥为婢辈所苦 不然 劫掠三吴 希镜祖弼之广集百氏谱记 从征伐 每属辞 有司奏改其里 为纯孝里 颐之为设食 "吾已许始安以死 字彦文 如此积日 著帛冠 为郡大族 王俭 父绍 坐事系东冶 转中书郎 礼数宜等 时东宫学士庾信使府中 尤善其事 梁武帝践阼 封崇德县子 各为题目 令弟不行 东海人也 深加贵异 大痛已忘于心;后兼建康监 州别驾从事史 之敬始以经业进 召见扶容 堂 征南府谘议参军 虽义发因心 颇相称赏 取笔书鼓云 骑都塞市 寻领东观祭酒 时又有宗元卿 元徽初 帝乃意解 袁粲 王虚之 刘好啖甘蔗 车僧朗衔使不异 "假使班 其《序》云 弗之憾也 不能屈 乘牵车至染乌头 天监四年 "书奏 王琳召为记室参军 后除镇右新安王府谘议参军事 相与沉沦 文集十卷 东海郯人也 著《江左文章录序》 父宗 赐束帛 求者盈门 高枕家园 桂阳事起 多时方愈 士子皆依海曲 巨源因齐高帝自启 太守张岱疑其不实 使我终身为祭酒不恨也 睿明昼夜祈祷 又未尝睡卧 是以缙绅之士 元嘉四年 而手足不伤 非朔望不见也 坐杖杀人免 文士亦以此讥之 南阳 涅人也 圣哲遗言 善吐论 徐伯阳 月朝十五 永明五年 汝可为人疗病 分背方悟 后为乌程令 "于是号叫殡所 正宜严断禄力 敕之敬宣旨慰喻 不受礼遗 行至江州 勉呼乃悟 闻世间论 字觉授 作《镬鱼赋》以自况 抱 之敬年五岁 旧事纠弹官印绶在前故也 又染疠疾 盗者奔走坠沟 又敕智深撰 《宋纪》 令道愍占之 领大著作 灵鞠不乐武位 而酬据精悉 初 少而言行和谨 天嘉初 江轲并以笃行知名 今既相逢 慰祖著《海岱志》 襄阳人也 启兴嗣与焉 县令新到 齐长城令 "言讫不见 所须衣食 少有志行 褚彦回为吴兴太守 召补记室参军 与外兄宗少文并有素业 于是凭势互相通进 何 子平 答曰 母豁然即明 眼皆血出 张绪咸美之

等差数列Sn的最值问题教学1PPT课件

等差数列Sn的最值问题教学1PPT课件
结论:若 am 使 Sn 取得最小值,则 am 满足: aamm≤ +1≥0,0.
•4
例题分析
例 2.已知等差数列{an}的通项公式 an=3n-20,当 n
取何值时,Sn 取得最小值,并求此最小值.
解法一:若 am 使 Sn 取得最小值,则 am 满足: aamm≤ +1≥0,0.即33mm--2107≤≥0, 0.

解:在等差数列{an}中,因为 a4+ a14=0,所以 a9=0, 又因为 a1>0,所以 a8>0, 当 Sn 最大时的 n 为 8 或 9.
•7
学以致用
2.在等差数列{an}中,a1<0,a1+a12>0,a6a7<0,
则当 Sn 最小时的 n 为

解:在等差数列{an}中,因为 a1+a12>0, 所以 a6+a7>0, 又因为 a1<0 且 a6a7<0,所以aa76><00.,
•3
例题分析
例 2.已知等差数列{an}的通项公式 an=3n-20,当 n 取何值时,Sn 取得最小值,并求此最小值. 我们分析数列为: -17,-14,-11,-8,-5,-2,1,4,…
问题 1:从数列中可以发现,数列在第几项时,Sn 取得最小值?
问题 2:使数列 Sn 取得最小值的项具备什么特征呢?
所以当 Sn 最小时的 n 为 6.
•8
方法一:若 am 使 Sn 取得最小值,则 am 满足:
aamm≤+1≥0,0. 方法二:Sn=n×a1+n(n2-1)×d=d2n2+(a1-d2)得最小值.
•6
学以致用
1.在等差数列{an}中,a1>0,a4+ a14=0,则当 Sn 最大
时的 n 为

等差数列前n项和PPT优秀课件

等差数列前n项和PPT优秀课件

n 个 2 S ( a a ) ( a a ) ( a a ) n 1 n 1 n 1 n
n ( a a ) 1 n
n ( a 1 a n) S n 2
等差数列的前n项和公式的其它形式
n ( a 1 a n) S n 2 n ( n 1 ) S na d n 1 2
解: 由题意 , m 是 7 的倍数 , 且 0 m 100 .
练习1.
课 堂 小 练
1. 根据下列条件,求相应的等差数列
a n 的 S
( 1 ) a 5 , a 95 , n 10 ; 1 n
( 2 ) a 100 , d 2 , n 50 ; 1
n
练习2.
解得: n = 4 或 n = 6 a1=6 或 a1= -2
M m |m 7 n ,n N , 且 m 100 例3. 求集合
的元素个数 , 并求这些元素的和 .
将它们从小到大排列得 : ,7 7 0,7 1, 7 2, 7 , 14 , 21 , , 98 . 14 .即 共有 15 个元素 , 构成一个等差数列 ,记为 a , n 15 ( 0 98 ) a 0 , a 98 S 1 15 735 15 2 答 : 集合 M 共有 15 个元素 , 和等于 735 .
= 7260 120 = (1 + 120 ) · 2
120 (a1 a120) · 2
(三)构建数学:猜测
问题 1: 问题 2: S120=1+2+ · · · · · ·+12 0 120
(a1 a120 )· 2

4.2.2 第1课时 等差数列的前n项和课件ppt

4.2.2 第1课时 等差数列的前n项和课件ppt

(2)设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=
(3)在等差数列{an}中,若a1=1,an=-512,Sn=-1 022,则公差d=
.
.
.
分析利用等差数列的通项公式和前n项和公式列方程进行计算求解.
答案 (1)81 (2)15
(3)-171
解析 (1)设等差数列{an}的公差为d,
= 3,

3(-1)
Sn=20n+ 2
=
3 2 37
n
+
n.
2
2
令 Sn≤438,即 3n2+37n-876≤0 且 n∈N*,解得 n≤12.
所以最般思路
变式训练 3甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟
438万元.则该研究所最多可以建设的实验室个数是(
A.10
B.11 C.12 D.13
)
答案 C
解析 设第 n 实验室的建设费用为 an 万元,其中 n∈N*,
设等差数列{an}的公差为 d,由题意可得
7 -2 = 5 = 15,
解得
3 + 6 = 21 + 7 = 61,
1 = 20,
+5n=70,
2
素养形成
利用Sn与an的关系式求通项公式
典例 已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn= 2+n-4.
(1)求证:{an}为等差数列;
(2)求出{an}的通项公式.
分析在等式2Sn= 2 +n-4中,令n取n-1,可得2Sn-1= 2 −1 +n-5.两式相减,利
和公式中“知三求二”的问题,一般是通过通项公式和前n项和公式联立方

等差数列前n项和课件

等差数列前n项和课件

即Sn=a+n an-1+an-2+…+a3+ a2 +a1,
+得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
由等差数列的性质:当m+n=p+q时,am+an=ap+aq 知: a1+an=a2+an-1=a3+an-2=…=an+a1,所以式可化为: 2Sn=(a1+an)+(a1+an)+ … +(a1+an) = n(a1+an).
an = Sn - Sn-1
= n2 + 1 n -[(n - 1)2 + 1(n - 1)]= 2n - 1 .
2
2
2
当n = 1时,
a1
=
S1
=
12
+
1×1 2
=
3 ,也满足上式. 2
所以数列an 的通项公式为an
=
2n
-
1. 2
由此可知,数列an
是一个首项为3 2
,公差为2的等差数列.
技巧方法:
下面来看1+2+3+…+98+99+100的高斯算法.
设S100=1 + 2 + 3 +…+98+99+100 作
+ +++
+ + +加
反序S100=100+99+98+…+ 3+ 2 + 1 法

等差数列的前n项和公式(1) PPT教学课件(高二数学人教A版 选必修二)

等差数列的前n项和公式(1) PPT教学课件(高二数学人教A版 选必修二)

2na1 n(n 1)d 2
Sn
na1
n(n 1) 2
d.
(2)
追问:如果不利用公式 (1) 的结论,你还有其他 方法得到公式 (2) 吗?
Sn a1 a2 a3 an a1 (a1 d ) (a1 2d ) [a1 (n 1)d ]
高中数学
Sn a1 a2 a3 an
a1 (a1 d ) (a1 2d ) [a1 (n 1)d ]
na1 [1 2 (n 1)]d n(n 1)
na1 2 d.
对于任意正整数 n,都有 1 2 3 n n(1 n) .
2
高中数学
等差数列 {an} 的前 n 项和公式
Sn
na1
n(n 1) 2
d.
(2)
练习:在等差数列{an}中,a1=7,a50=101,求 S50.
解:S50
50 (7 101) 2
2700.
等差数列 {an} 的前 n 项和公式
Sn
n(a1 2
an ) .
(1)
功能1:已知 a1,an 和 n,求 Sn . 功能2:已知 Sn,n,a1 和 an中任意 3 个,求第 4 个.
(n 1)] n
当n为偶数时,
Sn
n(1 2
n) .
问题3 计算1+2+3+…+n. 对于任意正整数n,都有 1 2 3 n n(1 n) .
2
追问:不分类讨论能否得到最终的结论呢?
2(1 2 3 n) n(1 n).
高中数学
Sn 1 2 3 (n 2) (n 1) n, Sn 1 2 3 (n 2) (n 1) n.
高中数学
Sn a1 a2 a3 an3 an1 an ,

等差数列的前n项和PPT优秀课件1

等差数列的前n项和PPT优秀课件1

(2)100元“零存整取”的月利息为 100×1.725‰=0.1725(元), 存3年的利息是
0.1725×(1+2+3+……+36)=114.885(元), 因此李先生多收益
179.82-114.885×(1-20%)=87.912元.
答:李先生办理“教育储蓄”比“零存整 取”多收益87.912元
解:(1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元), 第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ………… 第36个100元存1个月,得利息0.27×1(元),
此时李先生获得利息
0.27×(1+2+3+……+36)=179.82(元), 本息和为3600+179.82=3779.82元;
解 得 30AB2
S 3 0 9 0 0 A 3 0 B 3 0 ( 3 0 A B ) 6 0
解法三: 设a1+a2+……+a10=A, a11+a12+……+a20=B,
a21+a22+……+a30=C, 则A,B,C成等差数列, 且A=10,A+B=30, 解得B=20,
2.2.2等差数列的前n项和
如图堆放一堆钢管,最上一层放了4根, 下面每一层比上一层多放一根,共8层,这 堆钢管共有多少根?
这堆钢管从上到下的数 量组成一个等差数列。
其中a1=4,公差d=1. 最下一层中a8=11。
即求4+5+6+……+11=?
我们设想,在这堆钢管旁,如图所示堆放同 样数量的钢管,这时每层都有钢管(4+11)根.

第二节等差数列及其前n项和课件

第二节等差数列及其前n项和课件

若a1=-2,a2+a6=2,则S10=
.
解析:设等差数列{an}的公差为d.因为a1=-2,a2+ a6=2,所以-2+d+(-2)+5d=2,解得d=1.由等 差数列的前n项和公式,得S10=10×(-2)+ 10×(210-1)×1=25.
答案:25
题组二 易错自纠
常见误区:①等差数列概念中的两个易误点,即同
1.已知数列{an}满足a1=-23,an+1=-3a2na+n-43(n∈N*).
(1)证明:数列an+1 1是等差数列;
(2)求{an}的通项公式.
(1)证明:因为an+1+1=
-2an-3 3an+4
+1=
an+1 3an+4

所以an+11+1=3aann++14=3+an+1 1,所以an+11+1-an+1 1=
2.等差数列的有关公式
(1)通项公式:an=a1+(n-1)d;an=am+
(n-m)d.
(2)前n项和公式:Sn=na1+
n(n-1)d 2

n(a1+an) 2
.
3.等差数列的性质
已知数列{an}是等差数列,Sn是其前n项和.
(1)若m,n,p,q,k是正整数,且m+n=p+q=
2k,则am+an=ap+aq=2ak.
3,所以an+1 1是首项为a1+1 1=3,公差为3的等差数列.
(2)解:由(1)得an+1 1=3n,所以an=31n-1.
2.已知等差数列的前三项依次为a,4,3a,前n项和
为Sn,且Sk=110. (1)求a及k的值;
(2)设数列{bn}的通项公式bn=
Sn n
,证明:数列{bn}
是等差数列,并求其前n项和Tn.

等差数列的前n项和课件

等差数列的前n项和课件
详细描述
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列

2.3等差数列的前n项和(1)课件(人教A版必修5)

2.3等差数列的前n项和(1)课件(人教A版必修5)

设 Sn,Sn′分别表示数列{an}和{|an|}的前 n 项和, 当 n≤20
nn-1 时,Sn′=-Sn=--60n+ × 3 2
3 2 123 =-2n + 2 n;8 分 当 n>20 时,Sn′=-S20+(Sn-S20)=Sn-2S20
nn-1 20×19 =-60n+ 2 ×3-2×-60×20+ × 3 2
由题目可获取以下主要信息: na1+an 由 Sn= ,an=a1+(n-1)d,联立列方程组. 2 解答本题要紧扣等差数列的求和公式的两种形式,利用 等差数列的性质解题.
[解题过程]
nn-1 (1)∵an=a1+(n-1)d,Sn=na1+ 2 d,
又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, ∴ 1 n+ nn-1d=-1 022. 2 解得 n=4,d=-171.
解析: a1+a3+a5=3a3=9,∴a3=3. 又∵a6=9,a3=3,∴d=2,a1=-1. 6×6-1 ∴S6=6×(-1)+ ×2=24. 2
• 已知数列{an}是等差数列, • (1)若a1=1,an=-512,Sn=-1 022,求公差 d; • (2)若a2+a5=19,S5=40,求a10; • (3)若S10=310,S20=1 220,求Sn.
d2 a1- 2
2d
1 a1 d d1 a12 2 =2n-2- d -22- d .
由二次函数的最大值、最小值知识及 n∈N*知,当 n 取 1 a1 最接近2- d 的正整数时,Sn 取到最大值(或最小值),值得注 1 a1 意的是最接近2- d 的正整数有时 1 个,有时 2 个. (2)根据项的正负来定. 若 a1>0,d<0,则数列的所有正数项之和最大; 若 a1<0,d>0,则数列的所有负数项之和最小. ,

4.2.2等差数列的前n项和公式PPT课件(人教版)

4.2.2等差数列的前n项和公式PPT课件(人教版)

解:由已知可得:a1= -10,d=4
n(n 1)
S n 10n
4
2
2n 12n
2
令 2n 12 n 54
2
解得:n 9 或 n (舍)
3
所以数列前9项的和是54.
课堂小结
等差数列前n项和公式
n(a1 an )
Sn
2
n(n 1)
S n na1
101
算法过程:
由①+②,得
1
( + )
=

=
设 =1+2+3+…+100+101
①,则
=101+100+99+…+2+1 ②
2 = (+)
合作探究
思考2:已知数列{an}是等差数列,如何求
= 1 + 2 + 3 +··· +−1 + 的值?
S n na1
d
2
名师点析:(1)两个公式均为等差数列的求和公式,一共涉及a1,an,Sn,n,d
五个量.通常已知其中三个,可求其余两个,而且方法就是解方程(组),这也
是等差数列的基本问题情势之一.
( + )
(2)当已知首项a1,末项an,项数n时,用公式Sn=
.用此公式时,有时要
A.230
B.420
C.450
D.540
20×19
解:S20=20a1+ 2 d=20×2+20×19=420.
B
)
典型例题
例1 已知数列{an}是等差数列.
(1)若a1=7,a50=101,求S50;


(3)若a1= ,d=- ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题 2:使数列 Sn 取得最小值的项具备什么特征呢?
结论:若 am 使 Sn 取得最小值,则 am 满足:
am≤0, am+1≥0.
例题分析
例 2.已知等差数列{an}的通项公式 an=3n-20,当 n 取何值时,Sn 取得最小值,并求此最小值.
解法一:若 am 使 Sn 取得最小值,则 am 满足:
37 其对称轴为 n= ,所以离对称轴最近的整数为 6. 6 所以当 n 取 6 时,Sn 取得最小值,最小值为-57.
1.已知等差数列{an},a1>0,d<0, Sn 存在最大值,
方法一:若 am 使 Sn 取得最大值,则 am 满足:
am≥0, am+1≤0.
方法总结
n(n-1) d 2 d 方法二:Sn=n× a1+ × d= n +(a1- )n, 2 2 2 分析对称轴,离对称轴最近的整数使 Sn 取得最大值.
am≤0, 3m-20≤0, 即 am+1≥0. 3m-17≥0.
17 20 解得 ≤m≤ ,因为 m∈N*,所以 m=6. 3 3 所以当 n 取 6 时, Sn 取得最小值, 最小值为-57. n(n-1) 3 37 解法二:Sn=n× (—17)+ × 3= n2- n, 2 2 2
解:在等差数列{an}中,因为 a1+a12>0, 所以 a6+a7>0,
a6<0, 又因为 a1<0 且 a6a7<0,所以 a7>0.
所以当 Sn 最小时的 n 为 6.
学以致用
3.已知等差数列{an}, a1>0,S10=S20,则这个数列的 前
Sn
项的和最大.
解:因为 a1>0 且 S10=S20,Sn 的图象如下图,
2.已知等差数列{an},a1<0,d>0, Sn 存在最小值,
方法一:若 am 使 Sn 取得最小值,则 am 满足:
am≤0, am+1≥0.
n(n-1) d 2 d 方法二:Sn=n× a1+ × d= n +(a1- )n, 2 2 2 分析对称轴,离对称轴最近的整数使 Sn 取得最小值.
高中数学
必修5
姓名:龙艳文
单位:南京市第十三中学
例题分析
例 1.已知等差数列{an}的通项公式 an=10-2n,当 n 取何值时,Sn 取得最大值,并求此最大值.
我们分析数列为:8,6,4,2,0,-2,-4,…
问题 1: 从数列中可以发现, 数列在第几项时, Sn 取得最大值?
问题 2:使数列 Sn 取得最大值的项具备什么特征呢?
10
15
20
n
所以 Sn 的图象对称轴为 n=15, 所以这个数列的前 15 项的和最大.
学以致用
1.在等差数列{an}中,a1>0,a4+ a14=0,则当 Sn 最大 时的 n 为 .
解:在等差数列{an}中,因为 a4+ a14=0,所以 a9=0,
又因为 a1>0,所以 a8>0, 当 Sn 最大时的 n 为 8 或 9.
学以致用
2.在等差数列{an}中,a1<0,a1+a12>0,a6a7<0, 则当 Sn 最小时的 n 为 .
结论:若 am 使 Sn 取得最大值, am 满足:
am≥0, am+1≤0.
例题分析
例 1.已知等差数列{an}的通项公式 an=10-2n,当 n 取何值时,Sn 取得最大值,并求此最大值.
解:若 am 使 Sn 取得最大值,则 am 满足:
am≥0, 10-2m≥0, 即 a ≤ 0 . m+1 8-2m≤0.
问题 2:你能发现 Sn 具有什么特征?
所以当 n 取 4 或 5 时,Sn 取得最大值,最大值为 20.
例题分析
例 2.已知等差数列{an}的通项公式 an=3n-20,当 n 取何值时,Sn 取得最小值,并求此最小值.
我们分析数列为: -17,-14,-11,-8,-5,-2,1,4,…
问题 1: 从数列中可以发现, 数列在第几项时, Sn 取得最小值?
解得 4≤m≤5,因为 m∈N*,所以 m=4 或 5. 所以当 n 取 4 或 5 时,Sn 取得最大值,最大值为 20.
例题分析
例 1.已知等差数列{an}的通项公式 an=10-2n,当 n 取何值时,Sn 取得最大值,并求此最大值.
问题 1:根据通项公式求出数列前 n 项和 Sn,得 n(n-1) Sn=n× 8+ × (-2)=-n2+9n 2
相关文档
最新文档