综合练习一及解答
2023年教师资格之中学综合素质练习题(一)及答案
![2023年教师资格之中学综合素质练习题(一)及答案](https://img.taocdn.com/s3/m/8b4594abed3a87c24028915f804d2b160b4e8626.png)
2023年教师资格之中学综合素质练习题(一)及答案单选题(共40题)1、下列关于教师职业责任的发展趋势的说法不正确的是()A.社会发达程度越高,教师职业的劳动越复杂,所负担的责任就越大,在社会发展和经济建设中发挥的作用就越重要B.教师的职责发展是一个连续性的过程C.教师的职业责任是随着社会的发展而不断变化更新的D.教师的职业责任发展趋于单一专业化【答案】 D2、学校派张老师参加省里的骨干教师培训,但扣其绩效工资五百元。
这种做法()A.侵犯了教师进修培训权B.加强了经费管理C.体现了按劳取酬D.节约了办学成本【答案】 A3、年轻的男老师王勇在课堂上与男生互动多,与女生互动很少,理由是“避免别人认为我与女生太亲近”。
王老师的做法()。
A.合理,体现教育智慧B.合理,符合传统观念C.不合理,违背因材施教的原则D.不合理,有悖公平待生的理念【答案】 D4、确定国家基本药物制度框架的机构是A.卫生行政部门B.国家药品监督管理部门C.人力资源和社会保障部门D.国家基本药物工作委员会【答案】 D5、(2020年真题)在教育测量中,题目难度计算常用极端分组法。
现共有200人回答了某道试题,总分排名最前面的54人中有45人答对,总分排名最后的54人中有9人答对,则这道题的难度是()。
A.0.83B.0.58C.0.50D.0.32【答案】 C6、作用机制属于影响免疫功能的是A.解热镇痛药作用于环氧合酶,阻断前列腺素合成B.消毒防腐药对蛋白质的变性作用C.胰岛素治疗糖尿病D.环孢素用于器官移植的排斥反应E.抗高血压药卡托普利抑制血管紧张素转换酶【答案】 D7、如果要从一个幻灯片淡人到下一个幻灯片,应使用( )命令进行设置。
A.动作按钮B.预设动画C.幻灯片切换D.自定义动画【答案】 C8、在Excel工作表中,单元格D5中有公式“=MYMBMYM2+C4”,删除第A列后C5单元格中的公式为()。
A.=MYMAMYM2+B4B.=MYMBMYM2+B4C.=MYMAMYM2+C4D.=MYMBMYM2+C4【答案】 A9、当选定文件或文件夹后,不将文件或文件夹放到“回收站”中,而直接删除的操作是( )A.按Delete(Del)键B.用鼠标直接将文件或文件夹拖放到“回收站”中C.按Shift+Delete(Del)键D.用【我的电脑】或【资源管理器】窗口中【文件】菜单中的删除命令【答案】 C10、依据《中华人民共和国教育法》学校及其他教育机构中的管理人员应当实行()A.教学复制人员职务制度B.管理职员制度C.专业技术职务聘任制度D.教育职员制度【答案】 D11、我国长江三峡形成的主要外力作用是()。
北京市丰台区2020年中考数学综合练习(一) (解析版)
![北京市丰台区2020年中考数学综合练习(一) (解析版)](https://img.taocdn.com/s3/m/b8b8800bd15abe23492f4d0e.png)
北京市丰台区2020年中考数学综合练习(一)一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×1083.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.308.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为元.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.19.解不等式组:.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.22.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为分;(3)请你估计该年级采用公共交通方式上学共有人,其中单程不少于60分钟的有人.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.参考答案与试题解析一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16000000用科学记数法表示为:1.6×107.故选:B.3.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形【分析】首先可求得每个外角为60°,然后根据外角和为360°即可求得多边形的边数.【解答】解:180°﹣120°=60°,360°÷60°=6.故选:C.6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=,由a2+3a﹣2=0,得到a2+3a=2,则原式=,故选:B.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.30【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【解答】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:,解得:,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选:B.8.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③【分析】根据题意在坐标系中画出对应的图象即可.【解答】解:如图所示:①中,与x=6的交点大于75,故错误②中,乙与x=6的交点大于甲与x=6的交点,所以期末总评成绩乙大于甲,正确③中,由图象可知,期末总评成绩占60%,故错误故选:C.二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为x≥2.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.【分析】由质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,∴投掷这个骰子一次,则向上一面的数字是偶数的概率为:=.故答案为:.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是0(答案不唯一).【分析】举出一个能使得ac=bc或ac<bc的一个c的值即可.【解答】解:若a>b,当c=0时ac=bc=0,故答案为:0(答案不唯一).12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是60°.【分析】根据垂径定理求出=,求出、、的度数,即可求出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得:y﹣x =4.5;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:;组成方程组即可.【解答】解:根据题意得:;故答案为:.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.【分析】由△EDF∽△CBF,可得=,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC.AD=BC,设AD=3a,则AE=a,∵DE∥BC,∴△EDF∽△CBF,∴===故答案为.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为80元.【分析】分5种方案计算费用比较即可.【解答】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=80(元)方案④:买一日票1张,五日票1张:20+70=90(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=80(元)故答案为80.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为4.【分析】连接CD.根据直角三角形斜边中线的性质求出CD=A′B′=2,利用三角形的三边关系即可解决问题.【解答】解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,故答案为4.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行)(填推理依据).【分析】(1)根据要求作图即可;(2)根据等腰三角形的性质和平行线的判定及角平分线的定义求解可得.【解答】解:(1)如图所示:直线PE即为所求.(2)证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行).故答案为:∠PEA,∠CAD,内错角相等两直线平行.18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.【分析】原式利用零指数幂、负整式指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣6×﹣1+2=1.19.解不等式组:.【分析】分别求得各不等式的解集,然后求得公共部分即可.【解答】解:由①得x≤2;由②得x>﹣1;故不等式组的解集为﹣1<x≤2.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先求出判别式△的值,再根据“△”的意义证明即可;(2)根据求根公式得出x1=3,x2=﹣m,即可求出m的值和方程的根.【解答】(1)证明:△=(m﹣3)2﹣4×1×(﹣3m),=m2﹣6m+9+12m,=(m+3)2,无论m取任何实数,(m+3)2≥0,即△≥0,∴原方程总有两个实数根.(2)解:∵△=(m+3)2,由求根公式,得,,原方程的根为:x1=3,x2=﹣m,∵方程的两个根都是整数,∴取m=1,方程的两根为x1=3,x2=﹣1.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.【分析】(1)由角平分线的性质和垂直平分线的性质可证∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,由菱形的判定可证结论;(2)过点D作DH⊥BC,由菱形的性质可得DE=DG=6,DG∥EC,由直角三角形的性质可得BH=DH=3,HG=DH=3,即可求BG的长.【解答】解:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=6,DG∥EC∴∠ACB=∠DGB=30°,且DH⊥BC∴DH=3,HG=DH=3∵∠B=45°,DH⊥BC∴∠B=∠BDH=45°∴BH=DH=3∴BG=BH+HG=3+322.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.【分析】(1)由等腰三角形的性质可得∠BAP=∠BP A,可证∠BAP+∠P AO=90°,∠C+∠CPO=90°,结论得证;(2)作BD⊥AP于点D,先求出OB,OP的长,再求出CP长,根据△BPD∽△CPO,得出比例线段,求PD的长,则AP可求.【解答】(1)证明:∵AB=BP,∴∠BAP=∠BP A,∵AB与⊙O相切于点A,∴OA⊥BA,∴∠BAO=90°,即∠BAP+∠P AO=90°,∵OA=OC,∴∠P AO=∠C,∵∠BP A=∠CPO,∴∠C+∠CPO=90°,∴∠COP=90°,即CO⊥BO;(2)解:如图,作BD⊥AP于点D,在Rt△ABO中,AB=3,OA=4,则BO=5,OP=2,在Rt△CPO中,PO=2,CO=4,则CP=2,∵BA=BP,∴AD=PD,由(1)知∠COP=90°,∵∠BDP=90°,∠BPD=∠CPO,∴△BPD∽△CPO,∴,即,∴PD=,∴AP=2PD=.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.【分析】(1)由点A的横坐标利用反比例函数图象上点的坐标特征可求出n值,进而可得出点A的坐标,由点A的坐标利用待定系数法可求出k值;(2)分AB=AO,OA=OB,BO=BA三种情况考虑:①当AB=AO时,利用等腰三角形的性质可求出CB1的长度,结合点C的坐标可得出点B1的坐标;②当OA=OB时,由点A的坐标利用勾股定理可求出OA的长度,利用等腰三角形的性质可得出OB2的长度,进而可得出点B2的坐标;③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中利用勾股定理可得出关于m的方程,解之即可得出点B3的坐标.综上,此题得解.【解答】解:(1)∵点A(2,n)在双曲线y=上,∴n==4,∴点A的坐标为(2,4).将A(2,4)代入y=kx,得:4=2k,解得:k=2.(2)分三种情况考虑,过点A作AC⊥y轴于点C,如图所示.①当AB=AO时,CO=CB1=4,∴点B1的坐标为(0,8);②当OA=OB时,∵点A的坐标为(2,4),∴OC=4,AC=2,∴OA==2,∴OB2=2,∴点B2的坐标为(0,2);③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中,AB32=CB32+AC2,即m2=(4﹣m)2+22,解得:m=,∴点B3的坐标为(0,).综上所述:点B的坐标为(0,8),(0,2),(0,).24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为31分;(3)请你估计该年级采用公共交通方式上学共有200人,其中单程不少于60分钟的有8人.【分析】(1)用被抽查总人数乘以乘公共交通对应的百分比可得其人数,再减去其它分组的人数求出40≤x<50的人数,从而补全图形;(2)根据中位数的概念计算可得;(3)利用样本估计总体思想计算可得.【解答】解:(1)∵选择公共交通的人数为100×50%=50(人),∴40≤x<50的人数为50﹣(5+17+14+4+2)=8(人),补全直方图如下:(2)采用公共交通方式单程所花费时间共50个数据,其中位数是第25、26个数据的平均数,所以采用公共交通方式单程所花费时间的中位数是=31(分),故答案为:31;(3)估计该年级采用公共交通方式上学共有400×50%=200(人),其中单程不少于60分钟的有200×=8(人),故答案为:200、8.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质.【分析】(1)利用配方法得y═m(x﹣3)2+1,由此即可得出顶点坐标;(2)根据抛物线的对称轴以及AB=4,即可得到A、B两点的坐标,代入抛物线即可求出m的值;(3)结合图象即可得出当抛物线与线段CD和线段EF都没有公共点时m的取值范围.【解答】解:(1)∵y=mx2﹣6mx+9m+1=m(x﹣3)2+1,∴抛物线的顶点坐标为(3,1);(2)∵对称轴为直线x=3,且AB=4,∴A(1,0),B(5,0),将点A的坐标代入抛物线,可得:m=﹣;(3)如图:①当m>0时满足,解得:m>;②当m<时满足0,解得:m<﹣1;]综上,m<﹣1或m>.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△P AP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【解答】解:(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°;(2)结论:BP+DP=AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠P AP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=AC•C'G,Rt△ABC中,AB=BC=,∴AC==2,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD=C'D=,OD=AC=1,∴C'G=﹣1,∴S△AC'C=AC•C'G==﹣1.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【考点】MR:圆的综合题.【专题】21:阅读型;23:新定义.【分析】(1)①找到x、y轴距离最大为3的点即可;②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行选择即可;(2)先求出C、D点坐标以及CD长度,分析出N点到坐标轴距离中最小距离为,从而确定r的最小值,根据CD长度确定r的最大值.【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②点B在直线y=x+6上,当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)∵T1(﹣1,t1)、T2(4,t2)是直线l上的两点,∴t1=﹣k﹣3,t=4k﹣3.∵k>0,∴|﹣k﹣3|=k+3>3,4k﹣3>﹣3.依据“等距点”定义可得:当﹣3<4k﹣3<4时,k+3=4,解得k=1;当4k﹣3≥4时,k+3=4k﹣3,解得k=2.综上所述,k的值为1或2.②∵k=1,∴y=x﹣3与坐标轴交点C(0,﹣3)、D(3,0),线段CD=3.N点在CD上,则N点到x、y轴的距离最大值中最小数为,若半径为r的⊙O上存在一点M与N是“等距点”,则r最小值为,r的最大值为CD长度3.所以r的取值范围为≤r≤3.故答案为E、F;(﹣3,3)。
中考数学 综合能力提升练习一(含解析)-人教版初中九年级全册数学试题
![中考数学 综合能力提升练习一(含解析)-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/26e4a9ef6edb6f1afe001fd6.png)
综合能力提升练习一一、单选题1.如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是( )①②③④A. ①B. ③C. ①或③D . ②或④2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A. 3B. 5C. 8D. 112﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣14 13 26A. 4B. 3C. 2D. 14.三棱柱的顶点个数是()A. 3B. 4C. 5D. 62+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根 C. 没有实数根 D. 只有一个实数根6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A. a2﹣b>0B. a+|b|>0 C. a+b2>0 D. 2a+b>07.满足x-5>3x+1的x的最大整数是()A. 0B. -2C. -3D. -48.如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则+++…+=()A. B. 2021 054 C. 2022060D.二、填空题9.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=________ °.10.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, =3,则 MN 的长为________ .11.计算:( +1)(3﹣)=________.12.一个多边形的每一个内角为108°,则这个多边形是________ 边形,它的内角和是________m________时,不等式mx<7的解集为x>-5℃,冷库乙的温度是-15℃,则温度高的是冷库________.三、计算题15.计算:16.计算:()2+(π﹣2016)0﹣4cos60°+()﹣3.17.先化简,再求值:÷(a﹣),其中a=2+ ,b=2﹣.18.计算(1)计算:+()﹣1﹣2cos60°+(2﹣π)0;(2)化简:.19.已知x﹣y=5,xy=4,求x2+y2的值.20.解方程:﹣= .四、解答题21.如图,△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE=2,求CE的长.22.如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且.(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△AC D是否相似?并说明理由.23.计算:|﹣3|﹣2.24.解方程组:.五、综合题25.甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象.(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;(2)当x为多少时,两人相距6km?(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象.答案解析部分一、单选题1.如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是( )①②③④A. ①B. ③C. ①或③D . ②或④【答案】C【考点】二次函数的图象【解析】【分析】由图中可知:长度d是一开始就存在的,如果点P向上运动,那么d的距离将逐渐变大;当点P运动到和0,A在同一直线上时,d最大,随后开始变小;当运动到点A时,距离d为0,然后继续运动,d开始变大;到点P时,回到原来高度相同的位置.①对,②没有回到原来的位置,应排除.④回到原来的位置后又继续运动了,应排除.如果点P向下运动,那么d的距离将逐渐变小,到点A的位置时,距离d为0;继续运动,d的距离将逐渐变大;当点P运动到和0,A在同一直线上时,d最大,随后开始变小,到点P时,回到原来高度相同的位置.③对.故选C.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A. 3B. 5C. 8D. 11【答案】C【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,小于:3+8=11.则此三角形的第三边可能是:8.故选:C.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值X围,再进一步选择.2﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣14 13 26A. 4B. 3C. 2D. 1【答案】D【考点】估算一元二次方程的近似解【解析】【解答】解:根据表格中的数据,知:方程的一个解x的X围是:1<x<2,所以方程的其中一个解的整数部分是1.故选D.【分析】根据表格中的数据,可以发现:x=1时,2x2﹣x﹣2=﹣1;x=2时,2x2﹣x﹣2=4,故一元二次方程2x2﹣x﹣2=0的其中一个解x的X围是1<x<2,进而求解.4.三棱柱的顶点个数是()A. 3B. 4C. 5D. 6【答案】D【考点】认识立体图形【解析】【解答】解:一个直三棱柱由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2可知,它有6个顶点,故选:D.【分析】一个直三棱柱是由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2进行填空即可.2+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根 C. 没有实数根 D. 只有一个实数根【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=3,c=1,∴△=b2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根.故选A.【分析】首先求得△=b2﹣4ac的值,然后即可判定一元二次方程x2+3x+1=0的根的情况.6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A. a2﹣b>0B. a+|b|>0 C. a+b2>0 D. 2a+b>0【答案】A【考点】数轴【解析】【解答】解:根据数轴得a<﹣1,0<b<1,∴a2>1,b2<1,∴a2﹣b>0,故A正确;∴a+|b|<0,故B错误;∴a+b2<0,故C错误;∴2a+b<0,故D错误,故选A.【分析】根据数轴可得出a<﹣1,0<b<1,再判断a2, b2的X围,进行选择即可.7.满足x-5>3x+1的x的最大整数是()A. 0B. -2C. -3D. -4【答案】D【考点】解一元一次不等式,一元一次不等式的整数解【解析】【分析】先移项,再合并同类项,最后化系数为1,即可求得结果.x-5>3x+1-2x>6x<-3所以满足条件的x的最大整数是-4故选D.【点评】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8.如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则+++…+=()A. B. 2021 054 C. 2022060D.【答案】B【考点】反比例函数的图象,反比例函数的性质,探索数与式的规律【解析】【分析】设CP=m,由tanA==得AC=mn,则A(1-m,1+mn),将A点坐标代入y=中,得出a n=1-m的表达式,寻找运算规律.【解答】依题意设CP=m,∵P点横坐标为1,则C点横坐标为1-m,即a n=1-m,又∵tanA==,∴AC=mn,则A(1-m,1+mn),将A点坐标代入y=中,得(1-m)(1+mn)=1,1-m+mn-m2n=1,m(n-1-mn)=0,则n-1-mn=0,1-m=,则a n=1-m=,即=n,∴+++…+=2+3+4+…+2010==2021054.故选B.【点评】本题主要考查反比例函数的图象和性质,关键是根据三角函数值设直角三角形的边长,表示A点坐标,根据A点在双曲线上,满足反比例函数解析式,从而得出一般规律.二、填空题9.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=________ °.【答案】50【考点】三角形内角和定理【解析】【解答】解:∵在△ABC中,∠A=30°,∠C=2∠B,∠A+∠B+∠C=180°,∴30°+3∠B=180°,∴∠B=50°.故答案是:50.【分析】根据三角形内角和是180°列出等式∠A+∠B+∠C=180°,据此易求∠B的度数.10.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, =3,则 MN 的长为________ .【答案】【考点】全等三角形的判定与性质,勾股定理的应用【解析】【解答】将逆时针旋转得到,连接,是等腰直角三角形,在和中,由勾股定理得,【分析】根据旋转的性质得到对应边、对应角相等;由△ABC是等腰直角三角形,得到△MAN≌△FAN,得到对应角、对应边相等,再根据勾股定理求出MN 的长.11.计算:( +1)(3﹣)=________.【答案】2【考点】二次根式的混合运算【解析】【解答】解:原式= ( +1)(﹣1)= ×(3﹣1)=2 .故答案为2 .【分析】先把后面括号内提,然后利用平方差公式计算.12.一个多边形的每一个内角为108°,则这个多边形是________ 边形,它的内角和是________【答案】五;540°【考点】多边形内角与外角【解析】【解答】解:∵多边形的每一个内角都等于108°,∴多边形的每一个外角都等于180°﹣108°=72°,∴边数n=360°÷72°=5,内角和为(5﹣2)×180°=540°.故答案为:五;540°.【分析】先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.m________时,不等式mx<7的解集为x>【答案】<0【考点】不等式的性质【解析】【解答】根据不等式mx<7的解集为x>,可以发现不等号的方向发生了改变,根据不等式的性质,所以m<0.【分析】可根据不等式的性质,两边同时除以负数,不等号发生改变.-5℃,冷库乙的温度是-15℃,则温度高的是冷库________.【答案】甲【考点】有理数大小比较【解析】【解答】解:∵-5>-15∴温度高的是冷库甲故答案为:甲【分析】比较-5和-15的大小,可解答。
二次函数综合练习一(含答案)
![二次函数综合练习一(含答案)](https://img.taocdn.com/s3/m/0157340fb52acfc789ebc9a5.png)
2013年-----二次函数综合练习一一.选择题(共17小题)1.(2013•重庆)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()2.C D.3.(2013•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为().C D.2.C D.5.(2013•宿迁)下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数6.(2013•深圳)已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( ).CD .7.(2013•齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横8.(2013•攀枝花)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是().CD .9.(2013•聊城)二次函数y=ax 2+bx 的图象如图所示,那么一次函数y=ax+b 的图象大致是( ).CD .10.(2013•呼和浩特)在同一直角坐标系中,函数y=mx+m 和y=﹣mx +2x+2(m 是常数,且m ≠0)的图象可能是.CD .11.(2013•达州)二次函数y=ax 2+bx+c 的图象如图所示,反比例函数与一次函数y=cx+a 在同一平面直角坐标系中的大致图象是( ).CD .12.(2012•西宁)如图,二次函数y=ax 2+bx+c 的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是( )13.(2012•泰安)二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )14.(2013•舟山)若一次函数y=ax+b (a ≠0)的图象与x 轴的交点坐标为(﹣2,0),则抛物线y=ax 2+bx 的对称轴216.(2013•泰安)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,17.(2013•日照)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()二.填空题(共10小题)18.(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于_________.19.(2013•荆州)若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第_________象限.20.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.21.(2013•绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是_________(写出你认为正确的所有结论序号).22.(2013•贺州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是_________.(填正确结论的序号)23.(2013•德阳)已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有_________.24.(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为_________.25.(2013•本溪)在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是_________.26.(2012•南京)已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x﹣3的图象的有_________(填写所有正确选项的序号).27.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM= _________cm时,四边形ABCN的面积最大,最大面积为_________cm2.三.解答题(共3小题)28.(2013•宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.29.(2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.30.(2013•牡丹江)如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.2013年-----二次函数综合练习一参考答案与试题解析一.选择题(共17小题)1.(2013•重庆)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()y=﹣﹣>﹣2.C D.3.(2013•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为().C D.﹣图象在第一三象限,2.C D.(2013•宿迁)下列三个函数:①y=x+1;②;③y=x2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数5.y=的函数图象,既是轴对称图形,又是中心对称图形;6.(2013•深圳)已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是().C D.7.(2013•齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横的图象,即可得解.y=8.(2013•攀枝花)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( ).CD .,9.(2013•聊城)二次函数y=ax 2+bx 的图象如图所示,那么一次函数y=ax+b 的图象大致是( ).C D.﹣10.(2013•呼和浩特)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是.C D.,与x=11.(2013•达州)二次函数y=ax2+bx+c的图象如图所示,反比例函数与一次函数y=cx+a在同一平面直角坐标系中的大致图象是().C D.的图象在第一、三象限,12.(2012•西宁)如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()13.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()14.(2013•舟山)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴即可求解.=﹣216.(2013•泰安)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,﹣17.(2013•日照)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有(),(舍去),二.填空题(共10小题)18.(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.x=x==∴19.(2013•荆州)若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第二象限.的图象位于第二、四象限,=y=20.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.21.(2013•绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是①③④(写出你认为正确的所有结论序号).>x﹣轴交点的横坐标分别为﹣b=x﹣>>m+n22.(2013•贺州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是①②⑤.(填正确结论的序号)=1=123.(2013•德阳)已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有①③④.=1,代入得(﹣24.(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.y=时,25.(2013•本溪)在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是y=﹣(x+1)2+4.x﹣(26.(2012•南京)已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x﹣3的图象的有①③(填写所有正确选项的序号).27.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.,即=x×﹣x+,﹣=最大,最大值是﹣×(+×+=cm 故答案是:,三.解答题(共3小题)28.(2013•宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.29.(2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.∴,∴30.(2013•牡丹江)如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.﹣×。
2.房山区2023-2024学年度第二学期综合练习(一)九年级数学答案20240425
![2.房山区2023-2024学年度第二学期综合练习(一)九年级数学答案20240425](https://img.taocdn.com/s3/m/138b767f2bf90242a8956bec0975f46527d3a789.png)
房山区2023-2024学年度第二学期综合练习(一)答案九年级数学第一部分选择题一、选择题(共16分,每题2分)第二部分非选择题二、填空题(共16分,每题2分)9.3x ≠10.(2)(2)y x x +-11.5x =12.<13.36014.1215.216.(1)答案不唯一:ABD ;ACD ;ACE ;ADE ;BE ;(2)ACD .(注:第16题一空1分)三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:116sin 45()32-︒++--6232=⨯++-5=.18.解:原不等式组为47135.2x x x x ->-⎧⎪⎨-<⎪⎩①②,解不等式①,得2x >.解不等式②,得5x <.∴原不等式组的解集为25x <<.19.解:22222x xy y x y-+-2()2()x y x y -=-2x y -=.∵30x y --=,∴3x y -=.∴原式322x y -==.20.解:设矩形菜园的宽为x 米,则矩形菜园的长为6x 米.由题意可得,106 4.5223x x --=.解得 1.5x =.∴1060.52x-=.答:预留通道的宽度是0.5米,矩形菜园的宽是1.5米.21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴ADB CBD ∠=∠.∵ABD CBD ∠=∠,∴ABD ADB ∠=∠.∴AB AD =.∴四边形ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,∴AC BD ⊥,2BD OB =,12DBE ABC ∠=∠.∵DE ∥AC ,∴90BDE BOC ∠=∠=︒.∵OB =,∴2BD OB ==.∵60ABC ∠=︒,∴1302DBE ABC ∠=∠=︒.在Rt △BDE 中,tan 3DBE ∠=,BD =.∴tan 3DE DBE BD ∠==.∴2DE =.22.解:(1)∵函数(0)y kx b k =+≠的图象由函数2y x =的图象平移得到,∴2k =.∴得到函数的解析式为2y x b =+.∵函数2y x b =+的图象过点(23),,∴223b ⨯+=.∴1b =-.∴函数y kx b =+的解析式为21y x =-.(2)1m ≥.23.解:(1)30m =,26n =;(2)<;(3)271.24.(1)证明:∵ AE AE =,∴ACE ABE ∠=∠,又∵BE ∥CD ,∴ABE D ∠=∠.∴ACE D ∠=∠.(2)解:连接OC ,交BE 于点F .∵CD 是⊙O 的切线,切点为C ,∴90OCD ∠=︒.∵BE ∥CD ,∴90OFB OCD ∠=∠=︒.∴BE ⊥OC .∴F 为BE 中点.∵O 为直径AB 中点,∴OF 为△AEB 的中位线,∴OF =12AE .∵3AE =,∴32OF =.∵ AE AE =,∴ACE ABE ∠=∠.∵3tan 4ACE ∠=,∴3tan 4ABE ∠=.∵AB 是⊙O 的直径,∴90AEB ∠=︒.在Rt △AEB 中∵3tan 4ABE ∠=,∴4BE =.由勾股定理得5AB =.∴52OC =.∴1CF =.∵F 为BE 中点,4BE =,∴2EF =.在Rt △ECF 中,由勾股定理得CE ==.25.(1)画出函数2y 的图象,如图.(2)①9.2;② 2.3,3.1,5.0.26.解:(1)令0x =,则22y a =-.当1a =时,1y =-.∴抛物线与y 轴的交点坐标为(01)-,;∵22222()2y x ax a x a =-+-=--,当1a =时,抛物线的顶点坐标为(12)-,.(2)∵11()A x y ,,22()B x y ,是抛物线2222y x ax a =-+-上任意两点,∴211()2y x a =--,222()2y x a =--.∴2212121212()()()(2)y y x a x a x x x x a -=---=-+-.∵1102x <<,2112x <<,∴12x x <,121322x x <+<.∵12x x <,12y y >,∴1220x x a +-<.即122x x a +<.∴322a ≥.∴34a ≥.27.(1)依题意补全图形,如图.(2)90ABE ∠=︒.证明:延长ED 至点M ,使DM ED =,连接AM ,CM .在△EHD 与△MCD 中,HD CD EDH MDC ED DM =⎧⎪∠=∠⎨⎪=⎩,,.∴△EHD ≌△MCD (SAS).∴EHD MCD ∠=∠.∵AD EM ⊥,ED DM =,∴AE AM =.∴22EAM EAD α∠=∠=.∵2BAC α∠=,∴BAE CAM ∠=∠.∵AB AC =,∴△ABE ≌△ACM (SAS).∴ABE ACM ∠=∠.∵EB EH =,∴EBH EHB ∠=∠.设ABC x ∠=,ACM y ∠=.∴EHD MCD x y ∠=∠=+,ABE ACM y ∠=∠=.∴EHB EBH y x ∠=∠=-.∵180EHB EHD y x x y ∠+∠=-++=︒.∴90y =︒.∴90ABE ∠=︒.28.(1)①1P ,2P ;②解:依题意可知,点(20)M ,,点N 为等边三角形边上的点,则12MN ≤≤.∵OP 与以MN 为半径的⊙M 相切于点P ,∴OP MP ⊥,MP MN =.∴90OPM ∠=︒.∴点P 在以OM 为直径的⊙Q 上,且12MN ≤≤,其中点(10)Q ,.∴符合条件的点P 组成的图形为 COD(点O 除外),其中点3(22C ,,33()22D -,,如图,当直线y x b =+与⊙Q 相切时,设切点为G ,与x 轴交点为H ,则QG 与直线y x b =+垂直时,45GHQ ∠=︒.由1QG =,可得QH =∴(10)H .当直线y x b =+过(10)H 时,代入y x b =+中,可得1b =.当直线y x b =+过点3()22D -,时,代入y x b =+中,可得322b =--.∵直线y x b =+上存在“相关切点”,∴b 的取值范围是33122b --≤≤.(2)21m ≤≤或10m ≤.。
西师版六年级上册《问题解决》综合练习及答案一
![西师版六年级上册《问题解决》综合练习及答案一](https://img.taocdn.com/s3/m/165d63205bcfa1c7aa00b52acfc789eb172d9e23.png)
西师版六年级上册《问题解决》综合练习及答案一基础作业1.根据下列条件,写出相应的数量关系。
(1)一根钢管,锯掉它的15。
(2)一堆矿石重2400吨,运走了56。
(3)一条公路,已修了47。
2.看图列式解答。
(1)(2)3.一艘轮船从上海开往汉口,行了15,离汉口还有900千米。
上海到汉口的水路长多少千米?4.一本课外读物,小红看了全书的27,正好还剩下45页,这本课外读物一共有多少页?5.商店运来一批水果,批发这批水果的57后还剩720千克。
这批水果一共有多少千克?6.体育组有排球13个,足球15个,这些球正好是校球类总数的47,学校球类总数是多少个?7.书店运来一批科技书和文艺书,已知科技书占两种书总数的25,文艺书有300本。
书店运来的这两种书共有多少本?培优作业8.修一条公路,已经修了全长的27,离中点还有9千米,这条公路全长多少千米?参考答案:1.(1)钢管的长度×15=锯掉的长度(2)矿石总重量×56=运走的重量(3)公路的总长×47=已修的长度2.(1)100÷(1-57)=350(千克)(2)40÷15=200(m)3.900÷(1-15)=1125(千米)4.45÷(1-27)=63(页)5.720÷(1-57)=2520(千克)6.(13+15)÷47=49(个)7.300÷(1-25)=500(本)8.9÷(12-27)=42(千米)。
民法学综合练习题及详细解答
![民法学综合练习题及详细解答](https://img.taocdn.com/s3/m/b10b1627bb68a98270fefa20.png)
民法学综合练习题综合练习题(一)一、单项选择题1.甲公司要运输一批货物给收货人乙公司,甲公司法定代表人丙电话联系了某出租汽车的丁公司。
丁公司安排本公司汽车司机刘某驾驶,因刘某的过失发生交通事故,致货物受损,就损失承担发生纠纷而诉至法院。
该损失应由谁来负担?()A.甲公司B.丙C.刘某D.丁公司2.A公司委托王某去某市B公司购买机械表1000只,王某见B公司还有电子表可供应,在B公司说明电子表是从正规渠道进货后,就在购销合同上添加了购买2000只电子表的条款。
王某付款后将机械表和电子表运往A公司途中,2000只电子表被海关以走私品没收。
A 公司收到机械表后,发现不好销,遂以合同无效要求退货。
下列论述正确的是()。
A.该购销合同中购买2000只电子表的条款无效B.该购销合同中购买2000只电子表的条款可撤销C.该购销合同中购买2000只电子表的条款效力未定D.该购销合同无效3.甲、乙为亲兄弟,父母双亡。
甲在县城工作,乙年满14岁,精神病人。
乙在父母死后暂住叔父丙家。
甲、丙就担任乙的监护人发生纠纷诉至法院,则乙的监护人应是谁?()A.甲B.丙C.甲或丙D.甲和丙共同4.刘某亲自到公证机关办理了遗嘱的公证,将遗产由其长子继承70%,次子继承30%。
其第三子为此不满与刘某争吵。
后离家出走,在途中被毒蛇咬伤,丧失劳动能力。
第三子虽已年满25岁,但未结婚,至今没有工作。
第三子出走后,刘某曾后悔,与邻居王某、李某说,要将自己的财产分一半给第三子。
王李与刘某一家并无亲戚关系。
听到第三子出事的消息后,刘某因伤心过度而死亡。
在对刘某遗产的继承上,发生纠纷。
则依法,刘某的遗产应()。
A.按公证遗嘱继承B.按口头遗嘱继承C.先按口头遗嘱继承,后按公证遗嘱继承D.先依法定继承保留第三子的遗产份额,后按公证遗嘱确定的分配原则继承5.某合伙组织委托某甲在重庆市购买一批三峡牌电风扇,某甲因某种原因又私自委托某乙去买,某乙买了其他牌号的电风扇,某合伙组织将该风扇用于销售两周后,认为这种电扇不好销,坚决不要,双方发生纠纷,根据民事法律规定,这一直接后果应由谁来承担?()A.某合伙组织B.某甲C.某乙D.某甲与某乙6.某摄影社职工张某因嫉恨其女友王某与他人相好,遂将王某赠送给他的照片复印若干张,经涂抹丑化后张贴到王某的工作单位。
2023年教师资格之小学综合素质练习题(一)及答案
![2023年教师资格之小学综合素质练习题(一)及答案](https://img.taocdn.com/s3/m/ba23ca7fe418964bcf84b9d528ea81c758f52ea5.png)
2023年教师资格之小学综合素质练习题(一)及答案单选题(共30题)1、橡皮膏是A.第一类医疗器械B.第二类医疗器械C.第三类医疗器械D.特殊用途医疗器械【答案】 A2、当体育界、工业界和其他领域中的一些领导者将他们的成功归因于一种高度的( )意识时,一个社会还是应该更好地为那些即将成为领导者的年轻人灌输一种( )的意识。
填人括号部分最恰当的一项是:A.竞争、合作B.大局、协作C.协作、分工D.危机、团队【答案】 A3、手术衣是A.第一类医疗器械B.第二类医疗器械C.第三类医疗器械D.特殊用途医疗器械【答案】 A4、根据我国《未成年人保护法》的规定,学校对未成年学生在校内或者本校组织的校外活动中发生人身伤害事故的,应当及时()A.报告政府B.通知家长C.保护现场D.救护学生【答案】 D5、王老师在大西北的穷僻山村当小学校长。
这个学校30多年来分来几十位老师,只留下了5位,最长的干了两年,最短的只待了半年。
而王老师却一直守着这个山村。
他甘守清贫,为山村教育事业默默奉献自己的一切。
王老师的做法符合教师职业道德( )的要求。
A.爱岗敬业B.关爱学生C.爱国守法D.为人师表【答案】 A6、《中共中央国务院关于深化教育改革全面推进素质教育的决定》进一步强调指出:“全面推进素质教育,根本上要( )来保障”。
A.靠教师B.靠社会C.靠学生D.靠法治、靠制度【答案】 D7、科学家发现大洋底部的裂陷扩展从来没有停止过。
这个发现可能会解答一个曾引起人们关注的问题。
地球每天的时间都比前一天延长1/700秒,即每过一年,一天要延长0.5秒,据此预测,再过2亿年,一年将只有250天了。
A.大洋底部裂陷扩展,地球运行时间延长B.大洋底部裂陷扩展,地球运行时间缩短C.大洋底部裂陷扩展,地球自转速度减慢D.大洋底部裂陷扩展,地球自转速度加快【答案】 C8、脏与脏在血液方面关系密切的有A.心与肝B.心与肾C.肝与脾D.心与脾E.脾与肺【答案】 A9、下面对中国知网中《中国学术期刊网络出版总库》的检索说法,不正确的是( )A.该库可以检索已发表的论文B.该库的二级检索功能可实现准确率的不断提高C.该库没有付费或没有授权就不能进行检索D.该库可按主题、篇名、关键词、摘要、全文等方式检索【答案】 C10、寒邪的性质及致病特点是A.寒性凝滞B.寒为阴邪,易伤阳气C.寒性黏滞D.寒性收引E.寒易伤肺【答案】 A11、鲁迅满怀悲愤地写道:“不是年青的为年老的写记念,而在这三十年中,却使我目睹许多青年的血,层层淤积起来,将我埋得不能呼吸,我只能用这样的笔墨,写几句文章,算是从泥土中挖一个小孔,自己延口残喘,这是怎样的世界呢。
微积分综合练习题与参考答案完美版
![微积分综合练习题与参考答案完美版](https://img.taocdn.com/s3/m/9bc91457960590c69fc376ca.png)
微积分综合练习题与参考答案完美版综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e2)(='')0(f 2-(1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-=综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2xD .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
集合综合练习题及答案
![集合综合练习题及答案](https://img.taocdn.com/s3/m/30c7754517fc700abb68a98271fe910ef02dae14.png)
集合综合练习题及答案一、选择题1、下列哪个选项不是集合?A. {1,2,3,4,5}B. {x|x是正方形}C. {x|0<x<10}D. {x|x是中国的城市}答案:D. {x|x是中国的城市}。
因为D中的元素是不确定的,而集合中的元素必须是确定的。
2、下列哪个选项是集合?A. {1,2,3,4,5}的元素都是整数。
B. {x|x是正方形}的元素都是四边形。
C. {x|0<x<10}的元素都是正数。
D. {x|x是中国的城市}的元素都是城市。
答案:A. {1,2,3,4,5}的元素都是整数。
因为选项A中的元素都是确定的,符合集合的定义。
3、下列哪个选项不是集合?A. {1,2,3,4,5}的元素个数为5。
B. {x|x是正方形}中的元素为四边形。
C. {x|0<x<10}中的元素为正数。
D. {x|x是中国的城市}中的元素为城市。
答案:B. {x|x是正方形}中的元素为四边形。
因为B中的元素不是确定的,不符合集合的定义。
二、填空题1、写出集合{1,2,3,4,5}的所有子集:______。
2、写出集合{x|x是正方形}的所有子集:______。
3、写出集合{x|0<x<10}的所有子集:______。
4、写出集合{x|x是中国的城市}的所有子集:______。
答案:1、{∅,{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}}。
2、{∅,{正方形}}。
3、{∅,{正数}}。
4、{∅,{城市}}。
2 集合综合练习题合作经营可行性分析报告一、引言随着全球化的深入发展,企业间的合作已经成为一种趋势。
通过合作经营,企业可以共享资源、降低风险、提高效率,进而实现更大的商业价值。
本报告旨在分析合作经营的可行性,为企业决策提供参考。
二、合作经营的定义与优势合作经营是指两个或多个企业在一定领域内共同出资、共同经营、共担风险、共享收益的一种经营模式。
培优专题综合练习题(一)(含答案)-
![培优专题综合练习题(一)(含答案)-](https://img.taocdn.com/s3/m/81e57667dcccda38376baf1ffc4ffe473368fd9f.png)
培优专题综合练习题(一)一、选择题1.如图所示的立方体,如果把它展开,能够是下列图形中的()2.将图中的硬纸片沿虚线折起来,便可做成一个正方体,•则这个正方体的2号面的对面是()号面A.3 B.4 C.5 D.63.对图中最左面的一些几何体,从正面看,图A、B、C、D中准确的是()4.若a、b、c、d为互不相等的整数,abcd=25,那么a+b+c+d等于() A.-8 B.0 C.12 D.285.使用计算器计算-24÷(-4)×(12)2-12×(-15+24)3,准确的是()A.-10 B.10 C.-11 D.116.计算:34°45′÷5+47°42′37″×2准确的是()A.101°22′14″ B.102°22′14″B.102°23′14″ D.102°24′14″7.若(x2+nx+3)(x2-3x+m)的展开式中不含x2和x3项,则m-3n的值为()A.-3 B.3 C.15 D.-158.若一个整数为两位数,等于其数字和的k倍,现互换其数字的位置,则此新数为其数字和的()A.(k-1)倍 B.(9-k)倍 C.(10-k)倍 D.(11-k)倍二、填空题1.计算:4×(32+1)(34+1)(38+1)(316+1)(332+1)=__________.2.已知2a2-3a-5=0,则4a4-12a3+9a2-10的值为___________.3.已知一个角的余角的补角等于这个角的5倍加上10°,则这个角等于_______.4.线段AB=1996cm,P、Q为线段AB上两点,线段AQ=1200cm,线段BP=1050cm,•则线段PQ=________cm.三、解答题1.计算:1+12+1+12+13+23+1+23+13+14+12+34+1+34+12+14+…+120+110+320+…+1920+1+1920+…+120.2.一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.3.如图综-4有3个面积都是k的圆放在桌面上,桌面被圆覆盖的面积是2k+2,•并且重叠的两块是等面积的,直线L过两圆心A、B,如果直线L下方被圆覆盖的面积是9,试求k的值.答案:一、1.D 2.C 3.D 4.B提示:∵a、b、c、d是互不相等的整数且abcd=25,∴abcd=25=(-1)×1×(-5)×5.5.C 6.B 7.A提示:含x2项是mx2+3x2-3n x2=(m+3-3n)x2,含x3项是-3x3+nx3=(n-3)x3.∵展开式中不含x2项和x3项,∴30330nm n-=⎧⎨-+=⎩解得63mn=⎧⎨=⎩∴m-3n=6-3×3=-3.提示:设两位数字的十位数字和个位数字分别为a、b,则10a+b=k(a+b)①现互换其数字的位置后所得新数为其数字和x倍,则10b+a=x(b+a)②①+②得11(a+b)=(k+x)(a+b),∴11=k+x,即x=11-k.二、1.12×363-12.提示:设原式=M则2M=2×4×(32+1)(34+1)(38+1)(316+1)(332+1) =(3-1)(3+1)(32+1)…(332+1)=(32-1)(32+1)…(332+1)…=(332-1)(332+1)=364-1.∴M=(364-1)×12=12×364-12.2.15.提示:∵2a2-3a-5=0,∴2a2-3a=5.∴4a4-12a3+9a2-10=4a4-6a3-6a3+9a2-10=2a2(2a2-3a)-3a(2a2-3a)-10 =10a2-15a-10=5(2a2-3a)-10=25-10=15.3.20°.提示:设这个角为x °,则这个角的余角为(90-x )°,余角的补角为(180-90+x ) 由题意得:180-90+x=5x+10.解之得 x=20°.4.254cm .提示:如图综-1, A PPQ=AQ-AP=AQ-(AB-BP )=1200-(1996-1050)=254.三、1.210.提示:原式=1+1212+++(12)233+⨯++(123)244++⨯++… +(12319)22020++++⨯+=1+2+3+…+20=20(120)2⨯+=210. 2.495.提示:设N 为所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c•不全相等),将其数码重新排列后,连同原数共得到6个三位数:abc 、acb 、bac 、bca 、cab 、cba ,设其中最大数为abc ,则其最小数为cba .根据“新生数”定义,•得:N=abc -cba =(100a+10b+c )-(100c+10b+a )=99(a-c ).可知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这9个数中,只有954-459=495.∴495是惟一的三位“新生数”.3.6.提示:设两圆重叠部分的每一块面积为m ,则:m=12[3k-(2k+2)] =22k - ∴9=2k +2k +k-22k --12·22k -9=322k+-24k-9=54k+32∴k=6.。
八年级上册历史综合练习(一)答案
![八年级上册历史综合练习(一)答案](https://img.taocdn.com/s3/m/0fb3c30aaaea998fcc220e92.png)
八年级第一学期历史综合练习(一)答案及解析第一部分选择题(20分)1.D结合所学知识可知,1921年中国共产党第一次全国代表大会在上海召开,会议明确提出中国共产党当前的任务是组织工人阶级,开展工人运动。
点睛:本题难度较小,主要考查学生对中国共产党的诞生史实的识记。
对于这一内容,还可以考查中国共产党诞生的历史条件、时间、标志和影响。
2.B【详解】依据所学知识可知,1924年1月中国国民党第一次全国代表大会的召开,标志着国共第一次合作的正式开始,国民革命统一战线正式建立。
ACD项与题意不符,故选B。
3.A【详解】依据所学知识可知,1926年,广州国民政府决定北伐,以推翻吴佩孚、孙传芳、张作霖等北洋军阀的统治,统一全国。
7月,国民革命军十万人誓师北伐,蒋介石任北伐军总司令。
由此可知A项符合题意。
冯玉祥参与了北伐战争,不属于北伐的对象,所以含有④的选项BCD三项不符合题意。
故选A。
4C依据所学可知,1927年八月一日周恩来、贺龙领导的南昌起义爆发,标志着中国共产党创建军队、独立领导武装斗争的开始。
南昌起义是我国共产党独立领导革命的开始,从此,一支英雄的人民军队开始诞生。
C项符合题意,故此题选C。
5.C1934年10月,由于红军反围剿失利,被迫进行长征。
1936 年10 月红军三大主力在甘肃会宁会师,标志长征胜利结束。
BD发生在长征期间,不符合题意。
红军三大主力在会宁会师,故A表述不准确,不符合题意。
故答案选C。
6.B【详解】依据所学知识可知,1921年7月,中国共产党第一次全国代表大会在上海召开。
大会通过了中国共产党历史上第一个党纲。
党纲确定党的名称为中国共产党,奋斗目标是推翻资产阶级政权,建立无产阶级专政,实现共产主义。
中共一大的召开,标志着中国共产党的诞生。
中国共产党的诞生,是中国历史上开天辟地的大事。
自从有了中国共产党,中国革命的面貌就焕然一新了。
由此可知B项符合题意。
五四运动标志着新民主主义革命的开始,A项不符合题意;第一次国共合作的实现与题干信息无关,C项不符合题意;西安事变的和平解决标志着十年内战基本结束,抗日民族统一战线初步形成,D项不符合题意。
高考语文复习练习题 语言文字运用综合练习一含解析
![高考语文复习练习题 语言文字运用综合练习一含解析](https://img.taocdn.com/s3/m/f5005ca9bcd126fff6050b1f.png)
天天练25 语言文字运用综合练习(一)基础过关1.下列各句中加点成语的使用,全都不正确的一项是( )①这个时代可能存在不少问题,但向前行进是主流,是大势,作家应与自己所处的时代桴鼓相应....,只有这样,我们的写作才有意义。
②学术批评少见,前沿探索稀缺,前瞻对策难有,这样的论文有多少学术价值?再加之文风晦涩,真让人不忍卒读....。
③强化不敢腐的震慑,扎牢不能腐的笼子,增强不想腐的自觉,通过不懈努力夺取反腐败斗争的压倒性胜利,只有这样才能换来海晏河清....。
④方案明确,教育行政部门是学生欺凌综合治理的牵头单位,负责对学生欺凌治理进行组织、指导、协调和监督。
这抓住了问题的“牛鼻子”,可谓纲举目张....。
⑤因为生活的内容决定作品的内容,精神的高度决定创作的高度,一旦暌隔生活主潮、疏离人民大众,所谓创作也就只能是涸辙之鲋....。
⑥书中的五百多幅高品质实拍图片,全方位呈现自然世界,摒弃毛举细故....,为我们再现地球从无到有、从简到繁的壮丽时刻。
A.①③④B.①③⑥C.②④⑤ D.②⑤⑥答案:D解析:①桴鼓相应:用鼓槌打鼓,鼓就响起来,比喻相互应和,紧密配合。
使用正确。
②不忍卒读:不忍心读完,多形容文章悲惨动人。
不合语境。
③海晏河清:形容天下太平。
使用正确。
④纲举目张:比喻做事抓住主要的环节,带动次要的环节。
也形容文章条理分明。
使用正确。
⑤涸辙之鲋:比喻处在困境中急待救援的人。
使用对象有误。
⑥毛举细故:烦琐地列举细小的事情。
不合语境。
2.下列各句中,没有语病的一句是( )A.当前世界经济回暖,有望进入新的增长周期,但其深层次矛盾能否解决,关键在于全球合力,推进包容性增长。
B.电影《二十二》上映后,“慰安妇”问题引起了各界关注,也以一种新的方式让抗日战争的历史呈现在观众面前。
C.岛上的古渔村已有四千余年的历史,这里景色幽美,民风淳朴,水产丰富,被誉为“苍洱第一村”,其原住民的籍贯都是白族。
D.民警将伤人恶犬扑杀的行为,不仅符合相关法律规定,也保护了公共安全,还考虑到了“手枪射击容易跳弹伤人”的安全隐患。
【整合】部编版七年级上册语文综合实践练习题及答案(1)
![【整合】部编版七年级上册语文综合实践练习题及答案(1)](https://img.taocdn.com/s3/m/44906a25a88271fe910ef12d2af90242a895abb9.png)
2.“一年之计在于春”,让我们走进春天,去寻觅春的芳踪。 (1)【描春】请联系全诗,仿照画线的诗句,将下面这首小诗补充完整。 春天的色彩 东风吹开了河面的薄冰 多彩的春姑娘便亮相了 洁白的头巾上 闪烁着纯真与无邪 湛蓝的眼眸里 透露出憧憬和希望
翠绿的衣裙间 展现出青春与美丽 (2)【赏春】春天到了,小明同学去踏春,欣赏春天的美景,并拍摄了两张照片,想各用 一个成语给照片取名字,请你帮他从下列成语中选择恰当的成语,将序号填入C.春回大地
(3)【护春】因为人类对自然的破坏,如今,朱自清笔下的春已失去了昔日的美丽。为了 让人类重新拥有美丽的春天,请你拟写一则环保公益广告。 【分析】(1)本题考查句子的仿写。根据前面给出的句子,可见此句应描写的是“春姑 娘”的美丽外貌,然后根据前两个句子的结构仿写即可。如:细嫩的面庞上,洋溢着青春 的气息。 (2)本题考查成语的理解。观察图画内容,再根据成语的理解,即可作出正确的选择。第 一幅图中是出土的嫩芽,应是“春回大地”合适;第二幅图中是盛开的花,选择“春暖花 开”。 (3)本题考查拟写广告语。为某个活动拟写广告语,所拟写的广告语一定要主题突出,语 意简洁明了,有号召性和鼓动性,一般多采用比喻和对偶的修辞。据此可拟写为:树木拥 有绿色,地球才有脉搏。 【解答】答案: (1)示例:翠绿的衣裙间 展现出青春与美丽 (2)C A (3)示例:树木拥有绿色,地球才有脉搏。 【点评】仿写要注意的几个问题: 1.仿句与被仿句不能雷同。二者的内容要做到:“花开两朵,各表一枝”。要有创新。
部编版七年级上册语文综合实践训练试题
一、综合实践题
1.学完课文《济南的冬天》后,班级开展了以“感悟冬天”为主题的综合性学习活动,请 你完成下面的任务。 (1)【补填诗句】请结合你的知识积累,将下面描写冬天的诗句补充完整。(任选两句) ①日暮苍山远, 天寒白屋贫 。 ② 燕山雪花大如席 ,纷纷吹落轩辕台。 ③千山鸟飞绝, 万径人踪灭 。 ④墙角数枝梅, 凌寒独自开 。 (2)【提取信息】“冬至”是二十四节气之一,请仔细阅读下面两段文字,从中提取关于 “冬至”的三条信息。
2022年五年级数学上册试题 53《梯形的面积》综合练习1 西师大版(含答案)
![2022年五年级数学上册试题 53《梯形的面积》综合练习1 西师大版(含答案)](https://img.taocdn.com/s3/m/af2ff8340c22590103029d23.png)
《梯形的面积》综合练习1根底作业1.填空。
〔l〕两个〔〕的梯形可以拼成一个平行四边形。
拼成的平行四边形的底等于梯形的〔〕,平行四边形的高等于梯形的〔〕。
每个梯形的面积是拼成的平行四边形面积的〔〕,因为平行四边形的面积=〔〕×〔〕,所以梯形的面积=〔〕×〔〕÷2。
〔2〕沿梯形两腰〔〕的连线剪开,可以拼成一个平行四边形。
这个平行四边形的高是梯形高的〔〕,底是梯形〔〕。
因为平行四边形的面积=〔〕×〔〕,所以梯形的面积=〔〕×〔〕÷2。
〔3〕梯形的上底是4dm,下底是6dm,高是5dm,它的面积是〔〕dm2。
2.计算下面梯形的面积。
〔单位:cm〕〔1〕〔2〕〔3〕3.先量出下列图中有关数据,再计算图形的面积。
〔单位:cm〕〔1〕〔2〕〔3〕4.一个零件的平面图是由两个完全相同的梯形组成的〔如图〕。
它的面积是多少平方毫米?5.如图是一条铁路路基的横截面,求它的面积。
〔单位:m〕培优作业6.一个直角梯形,假设下底增加,那么面积就增加2;假设上底增加,就得到一个正方形。
这个直角梯形的面积是多少平方米?参考答案:1.〔1〕完全一样上底与下底的和高一半底高上底下底高〔2〕中点一半上底与下底的和,底高上底下底高〔3〕252.〔1〕〔4+6〕×4.5÷2=〔cm2〕〔2〕〔3+5〕×7.5÷2=30〔cm2〕〔3〕〔+〕×7.2÷2=〔cm2〕3.〔1〕量得梯形上底1cm。
,下底,高2cm。
〔1+〕×2÷2=〔cm2〕〔2〕量得梯形上底,下底,高。
〔+〕×÷2=〔cm2〕〔3〕量得梯形上底,下底,高。
〔+〕×÷2=〔cm2〕4.〔200+300〕×230÷2×2=115000〔mm2〕5.〔3+7〕×1.2÷2=6〔m2〕6.×2÷=〔m〕-=〔m〕〔+〕×4.2÷2=〔m2〕第二课时图形的放大或缩小一、单项选择题1.一个角是60°,画在1:3的图上,应画〔〕A. 20°B. 60°C. 180°D. 无法确定2.如图,把三角形A按1∶2缩小后,得到三角形B.三角形B三条边的长分别是〔〕A. 14cm、10cm、8cmB. 3.5cm、2.5cm、4cmC. 3.5cm、2.5cm、2cm3.图形的各边按相同的比例放大或缩小后,所得到的图形〔〕不变.A. 面积B. 体积C. 周长D. 形状4.把一个长4厘米、宽2厘米的长方形,画在纸上,( )与原图形相似.A. 长4厘米,宽1厘米B. 长2厘米,宽2厘米C. 长8厘米,宽4厘米5.一个长4cm,宽2cm的长方形按2:1放大,得到的图形的面积是〔〕cm2.A. 2B. 16C. 32D. 64二、判断题6.把一个长方形按3:1放大后,它的面积是原来的3倍。
小升初数学试题解答应用题训练综合练习带答案解析(1)1
![小升初数学试题解答应用题训练综合练习带答案解析(1)1](https://img.taocdn.com/s3/m/79897a11c8d376eeafaa31ad.png)
小升初数学试题解答应用题训练综合练习带答案解析(1)1一、人教六年级下册数学应用题1.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。
①测量出整个瓶子的高度是22厘米;②测量出瓶子圆柱形部分的内直径是6厘米;③给瓶子里注入一些水,把瓶子正放时,测量出水的高度是5厘米;④把瓶盖拧紧,将瓶子倒置放平,无水部分是圆柱形,测量出无水部分圆柱的高度是12厘米。
(1)要求这个瓶子的容积,上面记录中的哪些信息是必须有的?________(填实验序号)(2)请根据选出的信息,求出这个瓶子的容积。
2.水果店里西瓜个数与哈密瓜个数的比为7:5,如果每天卖哈密瓜40个,西瓜50个,若干天后,哈密瓜正好卖完,西瓜还剩36个。
水果店里原来有西瓜多少个?3.以小强家为观测点,量一量,填一填,画一画。
(1)新城大桥在小强家________方向上________m处。
(2)火车站在小强家________偏________(________)°方向上________m处。
(3)电影院在小强家正南方向上1500m处。
请在图中标出电影院的位置。
(4)商店在小强家北偏西45°方向上2000m处。
请在图中标出商店的位置。
4.民航部门规定:乘坐飞机的旅客,携带行李超过20千克的部分,每千克要按飞机票原价的1.5%另行支付行李逾重费。
李青青从上海乘飞机,购买了七折机票,付钱707元,他携带了30千克的行李,应付行李逾重费多少元?5.某商店按15%的利润定价,然后又按定价打九折出售,结果每件还赚70元,这一商品的成本价是多少元?6.一个底面半径是6cm的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9cm的圆锥形铅锥,当铅锥从水中取出后,水面下降了0.5cm,这个圆锥的底面积是多少平方厘米?7.一堆圆锥形小麦,量得它的底面周长是12.56米,高是1.2米,如果每立方米小麦重0.6吨,这堆小麦重多少吨?(用“四舍五入”法保留一位小数)8.爸爸想在网上买一个小家电,A店打八五折销售,B店每满200元减30元。
长度单位综合练习题及答案
![长度单位综合练习题及答案](https://img.taocdn.com/s3/m/c75d1d63ae45b307e87101f69e3143323968f529.png)
长度单位综合练习题及答案长度单位综合练习题及答案在日常生活中,我们经常会遇到各种各样的长度单位,比如米、千米、厘米等。
掌握这些长度单位的换算和应用是非常重要的。
下面,我们来进行一些综合练习题,帮助大家巩固对长度单位的理解和应用。
题目一:请将以下长度按从小到大的顺序排列:1千米、1米、1分米、1厘米、1毫米。
答案:1毫米 < 1厘米 < 1分米 < 1米 < 1千米。
题目二:小明需要从家里走到学校,他的家离学校有3千米。
如果他每天步行走2千米,那么他需要走多少天才能到达学校?答案:小明每天走2千米,那么他需要走3千米÷ 2千米/天 = 1.5天。
由于不能走半天,所以他需要走2天才能到达学校。
题目三:一辆汽车以每小时60千米的速度行驶,那么它行驶1千米需要多长时间?答案:汽车以每小时60千米的速度行驶,所以它行驶1千米需要 1千米÷ 60千米/小时 = 1/60小时 = 1分钟。
题目四:小红用了10分钟跑完了400米的赛跑项目,那么她的平均速度是多少?答案:小红用了10分钟跑完了400米,所以她的平均速度是 400米÷ 10分钟= 40米/分钟。
题目五:一根绳子的长度是2米75厘米,如果将它剪成3段,每段的长度相等,那么每段的长度是多少?答案:将2米75厘米转换成厘米为275厘米。
将275厘米分成3段,每段的长度是 275厘米÷ 3 = 91.67厘米。
通过以上的综合练习题,我们可以看到,掌握长度单位的换算和应用并不难。
只需要熟悉各个单位之间的换算关系,并能够运用到实际问题中,就能轻松解答这些题目。
在生活中,我们还会经常遇到一些特殊的长度单位,比如光年、天文单位等。
这些单位通常用于描述非常大或非常小的长度。
光年是天文学中常用的长度单位,它表示光在真空中传播一年的距离,约等于9.461万亿千米。
天文单位是天文学中常用的长度单位,它表示地球到太阳的平均距离,约等于1.496亿千米。
2020-2021初四数学圆的有关计算综合练习题1(附答案详解)
![2020-2021初四数学圆的有关计算综合练习题1(附答案详解)](https://img.taocdn.com/s3/m/83d13f2fdaef5ef7ba0d3cdb.png)
2010-2021初四数学圆的有关计算综合练习题1(附答案详解)一.选择题(共10小题)1.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为()A.B.C.D.2.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.93.若一个正多边形的一个内角是135°,则这个正多边形的中心角为()A.20°B.45°C.60°D.90°4.下列圆的内接正多边形中,中心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形5.如图,圆上有A、B、C、D四点,其中∠BAD=80°,若弧ABC、弧ADC的长度分别为7π、11π,则弧BAD的长度是()A.4πB.8πC.l0πD.15π6.如图,四边形ABCD为⊙O的内接四边形,⊙O的半径为3,AO⊥BC,垂足为点E,若∠ADC=130°,则的长等于()A.B.C.D.7.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣8.已知圆锥的底面半径为5cm,侧面积为60πcm2,设圆锥的母线与高的夹角为θ,则sinθ的值为()A.B.C.D.9.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π10.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2二.填空题(共10小题)11.我们规定:一个正n边形(n为整数,n≥4)的最长对角线与边长的比值,叫做这个正n边形的“特征值”,记为a n,那么a6=.12.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.13.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.14.如图,点O是正八边形ABCDEFGH的中心点,点M和点N分别在AB和DE上,且AM=DN,则∠MON的大小为度.15.如图,半径为6的⊙O的直径AB与弦CD垂直,且∠BAC=40°,则劣弧BD的长是(结果保留π).16.如图,已知扇形的圆心角∠AOB=120°,半径OA=2,则扇形的弧长为.17.如图,等边△ABC的边长是4,O是△ABC的中心,连接OB,OC,把△BOC绕着点CO旋转到△AO′C的位置,在这个旋转过程中,线段OB所扫过的图形的面积是.18.如图是一个圆锥形冰淇淋,已知它的母线长是13cm,高是12cm,则这个圆锥形冰淇淋的底面面积是.19.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于cm.20.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.三.解答题(共8小题)21.如图,在正五边形ABCDE中,CA与DB相交于点F,若AB=1,求BF.22.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.23.求半径为3的圆的内接正方形的边长.24.如图,在⊙O中,AB是直径,点D是⊙O上的一点,点C是的中点,连结AD、BC 若,∠DAB=30°.(1)求∠ABC的度数;(2)若AD=8,求的长度(结果保留π).25.如图,半圆O的直径AB=6,弦CD=3,的长为π,求的长.26.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB=4,∠BAC=45°,求阴影部分的面积.27.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.28.一个圆柱形容器的内半径为10厘米,里面盛有一定高度的水,将一个长25厘米,宽6厘米的长方体金属块完全淹没,结果容器内的水升高了4厘米(没有溢出),问这个金属块的高是多少厘米?(π的取值3)答案详解:一.选择题(共10小题)1.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为()A.B.C.D.【解答】解:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1且相似比为2:1,∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为,同理可得,第二个六角形的面积为:=,第三个六角形的面积为:=,第四个六角形的面积为:=.故选:D.2.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.9【解答】解:分别过正六边形的顶点A,B作AE⊥MN于E,BF⊥MN于F,则∠EAM=∠NBF=30°,EF=AB=2,∵AM=BN=2=1,∴EM=FN=1=,∴MN=++2=3,∴△PMN的周长3×3=9,故选:D.3.若一个正多边形的一个内角是135°,则这个正多边形的中心角为()A.20°B.45°C.60°D.90°【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n==8,∴该正多边形为正八边形,故这个正多边形的中心角为:=45°.故选:B.4.下列圆的内接正多边形中,中心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选:A.5.如图,圆上有A、B、C、D四点,其中∠BAD=80°,若弧ABC、弧ADC的长度分别为7π、11π,则弧BAD的长度是()A.4πB.8πC.l0πD.15π【解答】解:∵、的长度分别为7π,11π,∴圆的周长为18π,∵∠A=80°,∴∠C=180°﹣80°=100°,故=×18π=10π.故选:C.6.如图,四边形ABCD为⊙O的内接四边形,⊙O的半径为3,AO⊥BC,垂足为点E,若∠ADC=130°,则的长等于()A.B.C.D.【解答】解:连接OB、OC,∵四边形ABCD为⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣∠ADC=50°,∴∠AOC=100°,∴∠EOC=80°,∵AO⊥BC,OB=OC,∴∠BOC=2∠EOC=160°,∴的长==π,故选:D.7.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣【解答】解:如图,连接BE,则BE=BC=2,在Rt△ABE中,∵AB=1、BE=2,∴∠AEB=∠EBC=30°,AE==,则阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形BCE=1×2﹣×1×﹣=2﹣﹣,故选:A.8.已知圆锥的底面半径为5cm,侧面积为60πcm2,设圆锥的母线与高的夹角为θ,则sinθ的值为()A.B.C.D.【解答】解:设圆锥的母线长为R,由题意得60π=π×5×R,解得R=12.∴sinθ=,故选:C.9.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π【解答】解:圆锥的侧面积为:×2π×1×3=3π,故选:B.10.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2【解答】解:根据侧面积公式可得π×2×3×6=36πcm2,故选:B.二.填空题(共10小题)11.我们规定:一个正n边形(n为整数,n≥4)的最长对角线与边长的比值,叫做这个正n边形的“特征值”,记为a n,那么a6=2.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC,根据题意得:BE是正六边形最长的对角线,∵ABCDEF是正六边形,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵ABCDEF是正六边形,∴OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,即∠BEC=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴BC=BE,∴=2,∴a6=2,故答案为2.12.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是7.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为:18,7.13.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.【解答】解:正五边形的内切圆与外接圆所围圆环的面积为:π(OA2﹣OH2)=π×AH2=.故答案为:.14.如图,点O是正八边形ABCDEFGH的中心点,点M和点N分别在AB和DE上,且AM=DN,则∠MON的大小为135度.【解答】解:连接OA、OB、OC、OD;∵正八边形是中心对称图形,∴中心角为360°÷8=45°;∴∠OAM=∠ODN=67.5°,∵OA=OD,∠OAM=∠ODN,AM=DN,∴△OAM≌△ODN(SAS),∴∠AOM=∠DON,∴∠MON=∠MOB+∠BOC+∠COD+∠NOD=3∠AOB=135°,故答案为:135.15.如图,半径为6的⊙O的直径AB与弦CD垂直,且∠BAC=40°,则劣弧BD的长是π(结果保留π).【解答】解:如图,连接OC、OD,∵∠BAC=40°,∴∠BOC=2∠BAC=80°.∵⊙O的直径AB与弦CD垂直,∴=,∴∠BOC=∠BOD=80°,∴劣弧BD的长是:=π.故答案为π.16.如图,已知扇形的圆心角∠AOB=120°,半径OA=2,则扇形的弧长为.【解答】解:由弧长公式得:扇形的弧长==;故答案为:.17.如图,等边△ABC的边长是4,O是△ABC的中心,连接OB,OC,把△BOC绕着点CO旋转到△AO′C的位置,在这个旋转过程中,线段OB所扫过的图形的面积是.【解答】解:∵等边△ABC的边长是4,O是△ABC的中心,∴OB=OC=,∴线段OB所扫过的图形的面积=S扇形OAB﹣S扇形OCO′=﹣=﹣=,故答案为:.18.如图是一个圆锥形冰淇淋,已知它的母线长是13cm,高是12cm,则这个圆锥形冰淇淋的底面面积是25πcm2.【解答】解:如图,圆锥的母线AB=13cm,圆锥的高AO=12cm,圆锥的底面半径OB =r,在Rt△AOB中,(cm),∴S=πr2=π×52=25πcm2.故答案为25πcm2.19.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于5cm.【解答】解:根据题意得:S=πrl,即r===5,则圆锥底面圆的半径长等于5cm,故答案为:520.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是20πcm2.【解答】解:这个圆柱的侧面积=5×2π×2=20π(cm2).故答案为20πcm2.三.解答题(共8小题)21.如图,在正五边形ABCDE中,CA与DB相交于点F,若AB=1,求BF.【解答】解:在正五边形ABCDE中,∵∠ABC=∠DCB=108°,BC=BA=CD,∴∠BAC=∠BCA=∠CDB=∠CBD=36°,∴∠ABF=72°,∴∠AFB=∠CBD+∠ACB=72°,∴∠AFB=∠ABF,∠FCB=∠FBC,∴AF=AB=1,FB=CF,设FB=FC=x,∵∠BCF=∠BCA,∠CBF=∠CAB,∴△BCF∽△ACB,∴CB2=CF•CA,∴x(x+1)=1,∴x2+x﹣1=0,∴x=或(舍去),∴BF=.22.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.【解答】(1)解:∵六边形ABCDEF是正六边形,∴∠F AB==120°;(2)证明:连接OA、OB,∵OA=OB,∴∠OAB=∠OBA,∵∠F AB=∠CBA,∴∠OAG=∠OBH,在△AOG和△BOH中,,∴△AOG≌△BOH(SAS)∴OG=OH.23.求半径为3的圆的内接正方形的边长.【解答】解:如图,∵四边形ABCD是⊙O的内接正方形,∴∠OBE=45°;而OE⊥BC,∴BE=CE;而OB=3,∴sin45°=,cos45°=,∴OE=,BE=,∴BC=3,故半径为3的圆内接正方形的边长为3.24.如图,在⊙O中,AB是直径,点D是⊙O上的一点,点C是的中点,连结AD、BC 若,∠DAB=30°.(1)求∠ABC的度数;(2)若AD=8,求的长度(结果保留π).【解答】解:(1)如图,连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,∴∠ABD=90°﹣30°=60°.∵C是的中点,∴∠ABC=∠DBC=∠ABD=30°.(2)如图,连接OC,则∠AOC=2∠ABC=60°,∵∠A=30°,AD=8,.∴AB=16,∴AO=8,∴的长度==π.25.如图,半圆O的直径AB=6,弦CD=3,的长为π,求的长.【解答】解:(1)连接OD、OC,∵CD=OC=OD=3,∴△CDO是等边三角形,∴∠COD=60°,∴的长==π,又∵半圆弧的长度为:×6π=3π,∴=3π﹣π﹣=.26.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB=4,∠BAC=45°,求阴影部分的面积.【解答】(1)证明:连结AD,∵AB为⊙O直径,∴AD⊥BC,又∵AB=AC,∴BD=CD;(2)解:连结OE,∵AB=4,∠BAC=45°,∴∠BOE=90°,BO=EO=2,∠AOE=90°,∴S阴=S△BOE+S扇形OAE=×2×2+=π+2.27.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180,答:此圆锥侧面展开图的圆心角是180°.28.一个圆柱形容器的内半径为10厘米,里面盛有一定高度的水,将一个长25厘米,宽6厘米的长方体金属块完全淹没,结果容器内的水升高了4厘米(没有溢出),问这个金属块的高是多少厘米?(π的取值3)【解答】解:设长方形的高是xcm,则利用体积公式可得25×6x=π×102×4,解得x≈8.答:这个金属块的高是8厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《网络信息编辑》模拟题一一、单项选择题1、被人们称为“第四媒体”的是()。
A. 网络媒体B. 广播C. 电视D. 报刊2、以下新闻网站具有采访资格的是()。
A. 千龙网B. 搜狐网C. 网易D. 新浪网3、根据国家有关规定,综合性商业网站如果要登载新闻,合法的新闻来源是()。
A. 国外新闻媒体网站B. 国内新闻媒体网站C. 专业网站D. 任何商业网站4、在一个网站的基本结构中,频道之下一般设置若干个()。
A. 网站B. 栏目C. 子栏目D. 文章5、请看下面网络稿件中的一句话,分析它的语病在哪里。
()“企业可以利用互联网向外部企业发布商品信息、销售信息,以及营业、技术维护情况。
”A. 用词错误B. 搭配不当C. 句式杂糅D. 成分残缺6、从网络信息整合的角度来看,超链接属于()。
A. 单稿件整合B. 多稿件整合C. 专题整合D. 形式整合7、下面网络标题构成要素中,哪些要素为必要要素?()A. 小标题B. 主题C. 准导语D. 题图8、下列网络稿件标题中借用了诗词佳句的是()。
A.《雨雪潜入夜落地了无痕》B.《至死不渝:相拥五千年的恋人》C.《双“福“临门》D.《最爱的人伤她却是最深》9、标题形式的编排和美化是网页编辑的重要组成部分,除文字和图片外,下面的编排手段中哪种是使用最多的。
()A. 题花B. 空白C. 线条D. 色彩10、关键词选取和设置中最重要的原则是()。
A.“精确性”和“规范性”B.“全面性”和“适度性”C.“逻辑性”和“层次性”D.“规范性”和“逻辑性”11、确定网络专题的选题时,首先需要考虑的方面是()。
A. 可操作性B. 吸引力C. 充足和高质量的相关资源D. 足够的背景与材料的支持12、在为战争、海啸等大的人类自然或社会灾难专题配色时,网站编辑最好选用的颜色是()。
A. 蓝色B. 绿色C. 黄色D. 黑白13、以下属于突发性事件专题的是()。
A. 两会专题B. 抗击非典专题C. 构建社会主义和谐社会专题D. 春运专题14、论坛内容管理最主要的工作是()。
A. 论坛内容的审核B. 论坛帖子的管理C. 论坛论题的管理D. 论坛内容的组织15、下列叙述错误的是()。
A. 论坛版主是论坛的象征B. 论坛成员才是论坛的主角C. 论坛成员只是被管理的对象D. 论坛版主是论坛的主要管理者16.信息组织上的非线性和非顺序性以及网状的复杂信息结构体现了网络媒体的()特点。
A. 海量性B. 多媒体性C. 互动性D. 超文本性17.负责协调部门内和部门之间的工作安排和合作,签发和审定权限范围内的稿件的一级网络编辑是()A. 总编辑/副总编辑B. 主任/副主任编辑C. 频道/栏目主编D. 普通编辑18.一般来说,网站自己采集信息进行内容原创的方式主要有3种,下列哪项不符合原创方式?()A. 自己网站的编辑队伍对内容进行搜集整理B. 特约评论员开设专栏或建立自己的写作团队C. 整合传统媒体信息并转换为电子文档D. 组织人员对热点事件追踪报道19.进行网络信息资源筛选时,对作者的声誉和知名度、电话、电子邮件等进行的了解和确认遵循的是网络信息价值判断的()原则。
A. 权威性B. 趣味性C. 真实性D. 时效性20.()是针对某一行业的专业搜索引擎,是搜素引擎的细化和延伸。
A. 全文搜索B. 目录索引类搜索C. 网络数据库搜索D. 垂直搜索21.频道设置是网站的全局性工作。
下列关于频道设置的说法中表述不当的是()A. 频道的设置与栏目可有交叉B. 应努力扩大频道的内涵C. 频道设置要有明确的定位D. 频道名称应简短明确22.下列选项中对“关键词”表述准确的是()A. 关键词与表达主题有关,但其意义比主题要狭窄B. 文中出现频率较高的词就是关键词C. 出现在题名、摘要、层次标题和正文重要段落的词就是关键词D. 关键词以名词为主,包括人物、时间、人物所属领域、事件所属领域等23.综合网站的博客栏、博客网站的专栏频道采用的都是()的这种网络稿件归类原则。
A. 按文稿体裁归类B. 按信息形式归类C. 按作者归类D. 按文稿涉及主要人物身份归类24.网络稿件中数字的使用也有严格的规范,请从下列选项中选出使用不当的一项()A. 七八十种B. 20挂零C. 不管三七二十一D. 秦文公四十四年25.下列选项中标点符号使用不当的是()A. 在广州的花市上,牡丹、吊兰、水仙、山茶、梅花……春秋冬三季的鲜花都挤在一起啦!B. 我国秦岭—淮河以北地区属于温带季风气候区,夏季高温多雨,冬季寒冷干燥。
C. “北京——广州”直达快车19:55发车。
D. 她轻轻地哼起了《摇篮曲》:“月儿明,风儿静,树叶儿遮窗棂啊”……26.利用论坛专门策划和组织论题进行讨论是网络编辑工作的内容之一。
在选择或提供论坛论题时应注意避免哪种情况?()A. 论题应明确具体,让人一目了然B. 论题要注意引导舆论,应有明确结论C. 论题现实性要强,才能吸引网民更多的关注D. 论题本身要有讨论的余地27.网络编辑作为网络论坛的管理者,必须想方设法采取一些灵活的方式促进论坛的发展。
以下方式中使用不当的是()A. 管理者应及时制止交流过程中随时出现的违规行为B. 采取一定的激励机制保证和鼓励成员积极参与讨论C. 体现人情味,使成员感受到论坛的关切和温暖D. 本着畅所欲言的原则,允许网民自由发表言论28.下列关于网页内容编排选项中的表述不准确的是()A. 内容段落中链接不宜过多B. 图像、声音等文件运用过多容易导致网民流失C. 重要的内容放在页面右上角和顶部,然后按重要性递减顺序由上而下放置其他内容D. 重要内容不适合放在深度链接中29.网络编辑策划网络专题需要遵循一定的原则,下列说法中体现明确性原则是()A. 编辑策划的专题要有一定的未来发展性和容涵力B. 在材料的选择、栏目名称的确定、内容结构的搭建等方面要清楚明细,方便网民阅读查询C. 栏目与栏目之间、文章与文章之间要有内在联系,不能各自为政D. 以不同栏目、不同角度呈现内容,提供多种阐释与深度挖掘的可能30.在网络时评的几种基本形态中,影响最大的是()A. BBSB. E-mailC. UsenetD. Blog31.按照编辑部内部岗位职责设置,负责领导和管理部门日常业务工作,监管日常的网上内容制作、编辑、编译和发布工作,指导业务工作的是()。
A. 总编辑/副总编辑B. 主任/副主任编辑C. 频道/栏目主编D. 普通编辑32.下列说法中不属于网络著作权侵权行为表现形式的是()。
A. 擅自将网上作品下载并发表在传统媒体上B. 擅自将传统媒体上发表的作品在网站上传播C. 擅自通过网上登载作品使公民或法人社会评价降低D. 擅自将传统媒体上发表的作品移植到网站上33.处理网络信息的基本出发点是()。
A. 判断信息价值B. 判断信息来源C. 判断信息要素D. 分析信息质量34.“由于网络的动态性,对已选择的资源要注意维护,还要不断增加新的资源。
”这种表述是基于网络信息资源筛选的哪种原则?()A. 科学性原则B. 针对性原则C. 连续性原则D. 预见性原则35.请看下面网络稿件中的一句话,分析它的语病是什么。
()“目前,我国各方面人才的数量和质量还不能满足经济和社会发展。
”A. 用词错误B. 指代不明C. 成分残缺D. 搭配不当36.从网络编辑角度看,下列句子中没有语病的是()A. 记得我认识他的时候,还是一个小青年,现在,胡子都白了。
B. 我们在教学上一定要提倡普通话。
C. 校对不认真有可能产生歧义、错误、甚至造成事故。
D. 第四十三届世乒赛的主题是和平、友谊、繁荣、发展。
37.与传统媒体的标题相比,不属于网络稿件标题基本特点的是()。
A. 题文分开B. 超文本链接编排C. 题文合一D. 多媒体辅助优势38.网络标题《健康杯“喝出”不健康》采用了()修辞手法。
A. 比喻B. 对比C. 借代D. 拈连39.网络编辑在进行文章的关键词标引时应该注意避免下面哪种错误?()A. 关键词数量的选取要适当B. 多个关键词排列时要考虑各词之间的逻辑关系和层次性要求C. 应尽量使用某些作为常规研究对象的特征词作为关键词D. 所选关键词要有利于受众搜索和利用40.一般来说超级链接的运用方式大致有三种,下列表述不正确的是()。
A. 利用超级链接设置延伸性阅读B. 利用超级链接改写文章C. 利用超级链接改变传统文本的写作方式D. 为文章中的某些关键词设置超级链接41.基于网络专题的超链接性特点,使得网络信息也具有了一些新的不同于传统新闻标题的特点,即集束性、()和可选择性。
A. 非地域性B. 高时效性C. 强互动性D. 多层面性42.在对专题网页进行编排设计时要按照一定的步骤进行,下列选项中排序正确的是()。
a. 编排栏目b. 设计页面c. 选择图片d. 搭配色彩e. 制作标题A. abdceB. bcdaeC. badecD. bdeca43.下列关于网络调查的说法中表述不正确的是()。
A. 网络调查的结果容易造假B. 调查进行的顺利与否取决于被调查者对调查题目是否感兴趣C. 网络调查中的被调查者是主动的D. 当前与网络调查有关的法律和管理规定非常匮乏44.网络论坛具有一些基本的结构要素,下列选项中不属于其基本要素的是()。
A. 板块B. 分论坛C. 帖子索引D. 专题45.网络时评的写作要注意两个方面,即加强时效性和()。
A. 标题要生动B. 保证真实性C. 语言要简洁D. 结构要多层46、做好编辑工作的立身之本是()。
A. 扎实的编辑业务能力B. 必备的信息素养C. 丰厚的知识储备D. 较高的政治素质47、最简单、最直接地获取信息的方式是()。
A. 数字图书馆B. 搜索引擎C. 网络数据库D. 专业网站48、将网络稿件分为国内、国际,国内又分为某省某市,这种归类角度是()。
A. 按主题归类B. 按地域归类C. 按稿件重要性归类D. 按稿源归类49、网络稿件中出现的错别字、语法错误、标点符号误用、数字使用不规范、行文格式不统一等问题属于()。
A. 知识性错误B. 事实性错误C. 辞章性错误D. 政治性错误50、在稿件的主标题下标明稿件来源、发布日期、发布时刻等内容的部分属于()。
A. 随文部分B. 效果字符C. 主观标示D. 准导语51、要制作好网络稿件标题,首先要做的事情是()。
A. 命意B. 立言C. 修饰D. 看稿52、下列网络稿件标题中采用了拟人化修辞手法的是()。
A. 《计算机也要“扫盲”了》B. 《我科学家在兔耳上复制出“人耳”》C. 《天津:“卡”在节日好尴尬》D. 《中俄美新世纪将上演新版“三国演义”》53、下面有关“关键词”表述不正确的是()。
A. “关键词”的主要特征就是它所揭示的是文献最核心的内容B. “关键词”能高度概括和代表整个文献的基本内容,是文献的灵魂C. 凡单词或术语不应被选作“关键词”D. “关键词”可用于文献的标引和检索54、对网络传播来说,作为“因特网的核心技术”,“超级链接”的出现和运用具有无比重要的意义。