高考数学专题讲义数列综合

合集下载

高考数学一轮总复习课件:数列的综合应用

高考数学一轮总复习课件:数列的综合应用

又因为an≤15,所以6×1.2n-1≤15, 所以n-1≤5,所以n≤6. 所以an=611×,1n.2=n-11,,2≤n≤6,
15,n≥7.
(2)由(1)得,2021年全年的投资额是(1)中数列{an}的前12项 和,所以S12=a1+(a2+…+a6)+(a7+…+a12)=11+6×(1.2+… +1.25)+6×15=101+6×1.2×(1.21-.251-1)≈154.64(万元).
(1)证明:an+2-an=λ; (2)是否存在λ,使得{an}为等差数列?并说明理由. 【思路】 (1)已知数列{an}的前n项和Sn与相邻两项an,an+1间 的递推关系式anan+1=λSn-1,要证an+2-an=λ,故考虑利用an+1= Sn+1-Sn消去Sn进行证明. (2)若{an}为等差数列,则有2a2=a1+a3,故可由此求出λ,进 而由an+2-an=4验证{an}是否为等差数列即可.
【解析】 (1)证明:由已知,得bn=2an>0. 当n≥1时,bbn+n 1=2an+1-an=2d. 所以数列{bn}是首项为2a1,公比为2d的等比数列. (2)函数f(x)=2x在(a2,b2)处的切线方程为y-2a2=(2a2ln2)(x -a2),它在x轴上的截距为a2-ln12. 由题意,a2-ln12=2-ln12,解得a2=2. 所以d=a2-a1=1,所以an=n,bn=2n,anbn2=n·4n.
比数列.所以an+1=45+-25190n.
(3)因为an+1>60%,即
4 5

-25
9 10
n
>
3 5
,则
9 10
n
<
1 2
,所以
n(lg9-1)<-lg2,n>1-lg22lg3≈6.572 1.

高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]预计2025年高考会从以下两个角度对数列的综合问题进行考查:(1)考查等差、等比数列的基本运算和数列求和的问题,可能与函数、方程、不等式等知识综合起来进行考查;(2)以新定义为载体,考查对新数列性质的理解及应用,以创新型题目的形式出现.考点一等差、等比数列的综合问题例1(2024·山东滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解(1)设等差数列{a n }的公差为d ,因为b 2=4,所以a 2=2log 2b 2=4,所以d =a 2-a 1=2,所以a n =2+(n -1)×2=2n .又a n =2log 2b n ,即2n =2log 2b n ,所以n =log 2b n ,所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1,即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n ,因为b 7=a 26=a 64,b 8=a 27=a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的,所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11302.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.利用方程思想和通项公式、前n 项和公式求解,求解时注意对性质的灵活运用.1.(2022·浙江高考)已知等差数列{a n }的首项a 1=-1,公差d >1.记{a n }的前n项和为S n (n ∈N *).(1)若S 4-2a 2a 3+6=0,求S n ;(2)若对于每个n ∈N *,存在实数c n ,使a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,求d 的取值范围.解(1)因为S 4-2a 2a 3+6=0,a 1=-1,所以-4+6d -2(-1+d )(-1+2d )+6=0,所以d 2-3d =0,又d >1,所以d =3,所以a n =3n -4,所以S n =n (a 1+a n )2=3n 2-5n2.(2)因为a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,所以(a n +1+4c n )2=(a n +c n )(a n +2+15c n ),(nd -1+4c n )2=(-1+nd -d +c n )(-1+nd +d +15c n ),c 2n +(14d -8nd +8)c n +d 2=0,由已知可得方程c 2n +(14d -8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d -8nd +8)2-4d 2≥0,所以(16d -8nd +8)(12d -8nd +8)≥0对于任意的n ∈N *恒成立,所以[(n -2)d -1][(2n -3)d -2]≥0对于任意的n ∈N *恒成立,当n =1时,[(n -2)d -1][(2n -3)d -2]=(d +1)(d +2)≥0,当n =2时,由(2d -2d -1)(4d -3d -2)≥0,可得d ≤2,当n ≥3时,[(n -2)d -1][(2n -3)d -2]>(n -3)(2n -5)≥0,又d >1,所以1<d ≤2,即d 的取值范围为(1,2].考点二通项与求和问题例2(2023·黑龙江哈九中模拟)在①S 3=2a 3-15;②a 2+6是a 1,a 3的等差中项;③2S n =t n +1-3(t ≠0)这三个条件中任选一个作为已知条件,补充在下面的问题中,并解答.已知正项等比数列{a n }的前n 项和为S n ,a 1=3,且满足________.(1)求数列{a n }的通项公式;(2)设a n =b n -1b n ,求数列2n n 项和T n .注:若选择多个条件分别解答,按第一个解答计分.解(1)设正项等比数列{a n }的公比为q (q >0),若选①:由S 3=2a 3-15,得a 1+a 2+a 3=2a 3-15,所以a 3-a 2-a 1=15,又由a 1=3,可得3q 2-3q -18=0,解得q =3或q =-2(舍去),所以a n =3×3n -1=3n (n ∈N *).若选②:由a 2+6是a 1,a 3的等差中项,可得a 1+a 3=2(a 2+6),又因为a 1=3,可得3+3q 2=2(3q +6),即q 2-2q -3=0,解得q =3或q =-1(舍去),所以a n =3×3n -1=3n (n ∈N *).若选③:由2S n =t n +1-3(t ≠0),当n =1时,2a 1=6=2S 1=t 2-3,解得t =3或t =-3(舍去),所以2S n =3n +1-3,当n ≥2时,2a n =2S n -2S n -1=3n +1-3-(3n -3)=2·3n ,所以a n =3n (n ≥2).经验证当n =1时,满足a n =3n ,所以a n =3n (n ∈N *).(2)由(1)知a n =3n ,所以b n -1b n =3n ,n =9n ,所以b 2n +1b 2n=9n+2,所以T n 2122 (2)n (91+2)+(92+2)+…+(9n +2)=91+92+…+9n+2n =9(1-9n )1-9+2n =9n +1+16n -98.解决非等差、等比数列求和问题的两种思路思路一转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成思路二不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和2.(2024·广东深圳中学月考)若一个数列的奇数项为公差为正的等差数列,偶数项为公比为正的等比数列,且公差、公比相同,则称数列为“摇摆数列”,其表达式为a n =1+n -12d ,n =2k +1,k ∈N ,2qn -22,n =2k ,k ∈N *,若数列{a n }(n ∈N *)为“摇摆数列”且a 1=1,a 1+a 2=a 3,a 2a 3=20.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前2n 项和T 2n ∑ni =1i 2解(1)+a 2=a 3,2a 3=202=4,3=52=-5,3=-4(舍去),∴d =q =4,∴a n n -1,n =2k +1,k ∈N ,n ,n =2k ,k ∈N *.(2)b n =na n n 2-n ,n =2k +1,k ∈N ,·2n ,n =2k ,k ∈N *.先求奇数项的和:b n =2n 2-n ,n =2k +1,k ∈N ,S n =2×[12+32+…+(2n -1)2]-n 2,引入W n =22+42+…+(2n )2=4(12+22+…+n 2),12(S n +n 2)+W n =∑2ni =1i 2=n (2n +1)(4n +1)3⇒S n=2(∑2ni =1i 2-W n )-n 2=2n (2n +1)(4n +1)3-4×n (n +1)(2n +1)6-n 2=8n 3-3n 2-2n 3,再求偶数项的和:b n =n ·2n ,n =2k ,k ∈N *,S n ′=2×22+4×24+…+2n ×22n ,4S n ′=2×24+4×26+…+2(n -1)×22n +2n ×22n +2,两式相减,得-3S n ′=2×22+2×24+2×26+…+2×22n -2n ×22n+2=8×(1-4n )1-4-2n ×22n +2=(1-3n )×22n +3-83,∴S n ′=(3n -1)22n +3+89,∴T 2n =S n +S n ′=8n 3-3n 2-2n3+(3n -1)22n +3+89.考点三数列与不等式的综合问题例3(2023·安徽十校联考)已知数列{a n }满足a 1+a 2+…+a n -1-a n =-2(n ≥2且n ∈N *),a 2=4.(1)求数列{a n }的通项公式;(2)n 项和为T n ,求证:23≤T n <1.解(1)因为a 1+a 2+…+a n -1-a n =-2,所以a 1+a 2+…+a n -a n +1=-2,两式相减得a n +1=2a n (n ≥2),当n =2时,a 1-a 2=-2,又a 2=4,所以a 1=2,a 2=2a 1,所以a n +1=2a n (n ∈N *),所以{a n }是首项为2,公比为2的等比数列,所以a n =2n (n ∈N *).(2)证明:因为2n(a n -1)(a n +1-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1<1,由n ≥1,得2n +1≥4,所以1-12n +1-1≥23,综上,2≤T n <1.1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.2.放缩法常见的放缩技巧(1)1k 2<1k 2-1=121k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k.(3)2(n +1-n )<1n<2(n -n -1).(4)12n +1<12n +1<12n ,13n <13n -1≤12·3n -1.3.(2023·河南五市高三二模)已知数列{a n }满足a 1=23,且2a n +1-a n +1a n =1,n∈N *.(1){a n }的通项公式;(2)记T n =a 1a 2a 3…a n ,n ∈N *,S n =T 21+T 22+…+T 2n .证明:S n 解(1)由2a n +1-a n +1a n =1,得a n +1=12-a n ,则11-a n +1-11-a n=1,是首项为11-a 1=3,公差d =1的等差数列,所以11-a n =3+(n -1)=n +2,整理得a n =n +1n +2(n ∈N *),经检验,符合要求.(2)证明:由(1)得a n =n +1n +2(n ∈N *),T n =a 1a 2…a n =2n +2,∴T 2n =4(n +2)2>4(n +2)(n +3)=∴S n =T 21+T 22+…+T 2n -14+…+1n +2-即S n 考点四数列与函数的综合问题例4(2024·江苏辅仁中学阶段考试)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列前n 项和T n .解(1)由已知,得b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 的图象在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.则a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n 2n -1.因此2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n.所以T n =2n +1-n -22n.数列与函数综合问题的常见类型及注意事项常见类型类型一已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题类型二已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形注意事项注意点一数列是一类特殊的函数,其定义域是正整数集(或有限子集),它的图象是一群孤立的点注意点二转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题注意点三利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化4.(2024·湖南湘潭一中阶段考试)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .解(1)令f ′(x )=12+cos x =0,所以cos x =-12,解得x =2k π±2π3(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-2π3(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-2n π3=n (n +1)π-2n π3,所以sin S n =sinn (n +1)π-2n π3.因为n (n +1)表示两个连续正整数的乘积,所以n (n +1)一定为偶数,所以sin S n =-sin2n π3.当n =3m -2(m ∈N *)时,sinS n =-m π=-32;当n =3m -1(m ∈N *)时,sin S n =-m π=32;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S nn =3m -2(m ∈N *),=3m -1(m ∈N *),3m (m∈N *).课时作业1.(2023·新课标Ⅱ卷){a n }为等差数列,b n n -6,n 为奇数,a n ,n 为偶数,记S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .2.(2023·江苏徐州第七中学校考一模)已知等比数列{a n }的前n 项和为S n =12·3n +b (b 为常数).(1)求b 的值和数列{a n }的通项公式;(2)记c m 为{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数,求数列{a m c m }的前n 项和T n .解(1)由题设S n =12·3n +b ,显然等比数列{a n }的公比不为1,设{a n }的公比为q ,则S n =a 1(1-q n )1-q=a 11-q -a 1q n1-q ,∴b =a 11-q =-12且q =3,∴a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)令-3m ≤3n -1≤3m ,n ∈N *,解得0≤n -1≤m ,∴1≤n ≤m +1,数列{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数为m +1,则c m =m +1,∴a m c m =(m +1)×3m -1,∵T n =2×30+3×31+…+(n +1)×3n -1,①3T n =2×31+3×32+…+(n +1)×3n ,②两式相减,得-2T n =2×30+31+…+3n-1-(n +1)×3n=1+1-3n1-3-(n +1)·3n =(-1-2n )·3n +12,∴T n n -14.3.(2024·河南郑州外国语学校阶段考试)已知f (x )=-4+1x2,数列{a n }的前n 项和为S n ,点P n n ∈N *)在曲线y =f (x )上,且a 1=1,a n >0.(1)求数列{a n }的通项公式;(2)数列{b n }的前n 项和为T n ,且满足T n +1a 2n =T na 2n +1+16n 2-8n -3,确定b 1的值使得数列{b n }是等差数列.解(1)因为f (x )=-4+1x2,且点P n ,n ∈N *)在曲线y =f (x )上,所以1a n +1=4+1a 2n ,即1a 2n +1-1a 2n=4,1为首项,4为公差的等差数列,所以1a 2n=1+4(n -1)=4n -3,即a n =14n -3(n ∈N *).(2)由(1)知T n +1a 2n =T n a 2n +1+16n 2-8n -3,即为(4n -3)T n +1=(4n +1)T n +(4n -3)(4n +1),整理得T n +14n +1-T n 4n -3=1,T 1为首项,1为公差的等差数列,则T n 4n -3=T 1+n -1,即T n =(4n -3)(T 1+n -1),当n ≥2时,b n =T n -T n -1=4b 1+8n -11,若{b n }是等差数列,则b 1适合上式,令n =1,得b 1=4b 1-3,解得b 1=1.4.(2023·黑龙江齐齐哈尔模拟)在①S n =32a n -3,其中S n 为数列{a n }的前n 项和;②a 1=1,a n -a n +1=a n a n +1这两个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }满足________.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得a m +a m +1为数列{a n }中的项?若存在,求出m ;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分.解若选择条件①:(1)令n =1,则a 1=321-3,所以a 1=6,由于S n =32a n -3,则当n ≥2时,S n -1=32a n -1-3,两式相减,得a n =32a n -32a n -1,则a n a n -1=3,所以{a n }是首项为6,公比为3的等比数列,则数列{a n }的通项公式为a n =6×3n -1=2×3n .(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则2×3m +2×3m +1=2×3k ,所以4×3m =3k ,此等式左边为偶数,右边为奇数,所以不存在正整数m 满足题意.若选择条件②:(1)因为a 1=1,a n -a n +1=a n a n +1,所以a n ≠0,1a n +1-1a n=1,是首项为1a 1=1,公差为1的等差数列,所以1a n =1+(n -1)×1=n ,所以a n =1n.(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则1m +1m +1=1k,化简得m 2+(1-2k )m -k =0,解得m =2k -1+1+4k 22,因为2k <1+4k 2<2k +1,所以2k -12<m <2k ,m 无正整数解,故不存在正整数m 满足题意.5.已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ成立,求实数λ的取值范围.解(1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4,∴a n =5-n ,S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m 1-1281m ,的值随m 增加而减小,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )-814,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ,则10<8+λ,解得λ>2.故实数λ的取值范围为(2,+∞).6.(2024·河北衡水调研)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.(1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:1271S n <7528.解(1)由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3an +1-3,即1a n +1-1又因为1a 1-1=73-1=43,是首项为43,公比为43的等比数列,所以1a n -1,所以a n =11.(2)证明:由(1)可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-<7528.综上所述,1271S n <7528成立.。

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。

数列高考专题突破数列的综合应用课件pptx

数列高考专题突破数列的综合应用课件pptx

2. 在解决一些与长度相 关的几何问题时,可以 通过数列的递推关系式 得出结论,例如利用等 差数列的通项公式求出 某条线段的长度。
3. 数列还可以用于解决 一些与图形数量关系相 关的问题,例如利用等 差数列和等比数列的求 和公式可以求出某个图 形中线条的数量。
数列在经济中的应用
01
02
总结词:数列在经济中 的应用主要表现在利用 数列模型描述经济现象 的变化规律,以及求解 与经济决策相关的问题 。
04
数列的综合应用
数列在几何中的应用
01
02
总结词:数列在几何中 的应用涉及利用数列的 性质解决与几何图形相 关的问题,如求面积、 周长等。
详细描述
03
04
05
1. 利用等差数列和等比 数列的性质,可以求出 一些几何图形的面积或 周长,例如等差数列的 前n项和公式可以用于 求平行四边形的面积, 等比数列的前n项和公 式可以用于求圆的面积 。
前n项和公式
03
$S_n = \frac{a_1(1 - q^n)}{1 - q}$。
数列的极限与收敛性
极限的定义
如果当$n$趋于无穷大时,数列$a_n$的项无限接近于某个确定的数$A$,则称$A$为数 列$a_n$的极限。
收敛性的定义
如果数列$a_n$有极限,则称该数列收敛;否则称该数列发散。
极限的存在性定理
数列的应用
实际生活中的应用
如定期存款的复利计算,贷款的月还款额 计算,物价的指数上涨等都涉及到数列的 知识。
VS
数学领域中的应用
如在微积分、统计学、计算机科学等领域 中,数列的知识都起到了重要的作用。
02
等差数列与等比数列的基 本性质
等差数列的基本性质

高考数学总复习 基础知识名师讲义 第五章 第六节数列的综合问题 理

高考数学总复习 基础知识名师讲义 第五章 第六节数列的综合问题 理

第六节 数列的综合问题知识梳理一、等差、等比数列的一些重要结论1.等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q . 2.等比数列{a n }中,若m +n =p +q ,则a m ·a n =a p ·a q .3.等差数列{a n }的任意连续m 项的和构成的数列S m ,S 2m -S m ,S 3m -S 2m ,S 4m - S 3m ,……仍为等差数列.4.等比数列{a n }的任意连续m 项的和构成的数列S m ,S 2m -S m ,S 3m -S 2m ,S 4m - S 3m ,……仍为等比数列(m 为偶数且公比为-1的情况除外).5.两个等差数列{a n }与{b n }的和、差构成的数列{a n +b n },{a n -b n }仍为等差数列.6.两个等比数列{a n }与{b n }的积、商、倒数构成的数列{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n ,⎩⎨⎧⎭⎬⎫1b n 仍为等比数列.7.等差数列{a n }的任意等距离的项构成的数列仍为等差数列. 8.等比数列{a n }的任意等距离的项构成的数列仍为等比数列. 9.若{a n }为等差数列,则{}ca n (c >0)是等比数列.10.若{b n }(b n >0)是等比数列,则{log c b n }(c >0且c ≠1)是等差数列. 二、几个数成等差、等比数列的设法三个数成等差的设法:a -d ,a ,a +d ;四个数成等差的设法:a -3d ,a -d ,a +d ,a +3d .三个数成等比的设法:a q ,a ,aq ;四个数成等比的设法:a q ,a q,aq ,aq 3(因为其公比为q 2>0,对于公比为负的情况不能包括).三、用函数的观点理解等差数列、等比数列1.对于等差数列a n =a 1+(n -1)d =dn +(a 1-d ),当d ≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列;当d =0时,函数是常数函数,对应的数列是常数列;当d <0时,函数是减函数,对应的数列是单调递减数列.若等差数列的前n 项和为S n ,则S n =pn 2+qn (p ,q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列a n =a 1q n -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列; 当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 四、数列应用的常见模型 1.等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差数列模型,增加(或减少)的量就是公差.在具体的问题情境中,识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.2.等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比.3.递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.基础自测1.设{a n },{b n }分别为等差数列与等比数列,a 1=b 1=4,a 4=b 4=1,则下列结论正确的是( )A .a 2>b 2B .a 3<b 3C .a 5>b 5D .a 6>b 6解析:设{a n }的公差为d ,{b n }的公比为q ,由题可得d =-1, q =322,于是a 2=3>b 2=232.故选A. 答案:A2.设数列{a n }的前n 项和为S n (n ∈N *),关于数列{a n }有下列三个命题: ①若数列{a n }既是等差数列又是等比数列,则a n =a n +1;②若S n =an 2+bn (a ,b ∈R ),则数列{a n }是等差数列;③若S n =1-(-1)n,则数列{a n }是等比数列. 这些命题中,真命题的个数是( )A .0B .1C .2D .3解析:①不妨设数列{a n }的前三项为a -d ,a ,a +d ,则其又成等比数列,故a 2=a 2-d 2,∴d =0,即a n =a n +1,为真命题.②由S n 的公式,可求出a n =(2n -1)a +b ,故{a n }是等差数列,为真命题.③由S n 可求出a n =2×(-1)n -1,故数列{a n }是等比数列,为真命题.故选D.答案:D3.在数列{}a n 和{}b n 中,b n 是a n 与a n +1的等差中项,a 1=2且对任意n ∈N *都有3a n +1-a n =0,则数列{}b n 的通项公式为 ____________.答案:b n =4·3-n (n ∈N *)4. 一种专门占据内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB 内存(1MB =210KB).解析:依题意可知:a 0=2,a 1=22,a 2=23,…,a n =2n +1,64MB =64×210=216KB ,令2n+1=216,得n =15.∴开机后45分钟该病毒占据64MB 内存. 答案:451.(2013·福建卷)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC.数列{c n}为等比数列,公比为qm2 D.数列{c n}为等比数列,公比为qm n 解析:∵b n=a m(n-1)(q+q2+…+q m)∴b n+1b n=a mn q+q2+…+q ma m n-1q+q2+…+q m=a mna m n-1=q m(常数).而b n+1-b n不是常数.又∵c n=(a m(n-1))m q1+2+…+m=⎝⎛⎭⎪⎫a m n-1 qm+12m,∴c n+1c n=⎝⎛⎭⎪⎫a mna m n-1m=(q m)m=qm2(常数).而cn+1-c n不是常数.故选C.答案:C2.(2012·江西卷)已知数列{a n}的前n项和S n=-12n2+kn(其中k∈N*),且S n的最大值为8.(1)确定常数k,并求a n;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n2n的前n项和T n.解析:(1)当n=k∈N*时,S n=-12n2+kn取最大值,即 8=-12k2+k2=12k2,故k=4,从而a n=S n-S n-1=92-n(n≥2).又a1=S1=72符合上式,∴a n=92-n(n∈N*).(2)令b n=9-2a n2n=n2n-1,则T n=b1+b2+…+b n=1+22+322+…+n-12n-2+n2n-1,∴T n=2T n-T n=2+1+12+…+12n-2-n2n-1=4-12n-2-n2n-1=4-n+22n-1.1.(2013·广州二模)数列{a n}的项是由1或2构成,且首项为1,在第k个1和第k+1个1之间有2k-1 个2,即数列{a n} 为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列 {a n}的前n项和为S n,则S20=__________;S2 013=__________.解析:设f(k)=2k-1,则数列为1,2,1,2,2,2,1,2,2,2,2,2,1,…,所以前20 项中共有16个2,4个1,所以S20=16×2+4×1=36.记第k个1与其后面的k个2组成第k组,其组内元素个数记为b k,则b k=2k,b1+b2+…+b n=2+4+…+2n=n(n+1)<2 013,而46×45=2 080<2 011,47×46=2 162>2 013,故n=45即前2 011项中有45个1以及1 968个2,所以S2 013=45+1 968×2=3 981.答案:36 3 9812.已知数列{a n},{b n}中,对任何正整数n都有a1b1+a2b2+a3b3+…+a n-1b n-1+a n b n=(n-1)·2n+1.(1)若数列{b n}是首项为1和公比为2的等比数列,求数列{a n}的通项公式.(2)若数列{a n}是等差数列,数列{b n}是否是等比数列?若是,请求出通项公式;若不是,请说明理由.(3)求证:∑i=1n1a ib i<32.(1)解析:依题意,数列{b n }的通项公式为b n =2n -1,由a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1+a n b n =(n -1)·2n+1,可得a 1b 1+a 2b 2+a 3b 3+…+a n -1b n -1=(n -2)·2n -1+1()n ≥2,两式相减,可得a n ·b n =n ·2n -1,即a n =n .当n =1时,a 1=1,从而对一切n ∈N *,都有a n =n .所以数列{a n }的通项公式是a n =n (n ∈N *).(2)解析:(法一)设等差数列{a n }的首项为a 1,公差为d ,则a n =a 1+(n -1)d .由(1)得a n ·b n =n ·2n -1,即b n =n ·2n -1a 1+ n -1 d()n ≥2. ∴b n =n ·2n -1 a 1-d +nd =2n -1a 1-dn+d.要使b n +1b n是一个与n 无关的常数,当且仅当a 1=d ≠0,即当等差数列{a n }满足a 1=d ≠0时,数列{b n }是等比数列,其通项公式是b n =2n -1d;当等差数列{a n }满足a 1≠d 时,数列{b n }不是等比数列.(法二)设等差数列{a n }的首项为a 1,公差为d ,则a n =a 1+(n -1)d .由(1)得a n ·b n =n ·2n -1,即b n =n ·2n -1a 1+ n -1 d()n ≥2. 若数列{b n }是等比数列,则 b n +1b n =2[dn 2+a 1n + a 1-d ]dn 2+a 1n, 要使上述比值是一个与n 无关的常数,需且只需a 1=d ≠0,即当等差数列{a n }满足a 1=d ≠0时,数列{b n }是等比数列,其通项公式是b n =2n -1d;当等差数列{a n }满足a 1≠d 时,数列{b n }不是等比数列.(3)证明:由(1)知a n b n =n ·2n -1,∑i =1n1a i b i =11×1+12×2+13×22+14×23+…+1n ×2n -1,∑i =1n1a i b i <11×1+12×2+12×22+12×23+…+12×2n -1=11+14+18×1-⎝ ⎛⎭⎪⎫12n -21-12≤11+14+14=32()n ≥3,当n =1时,1a 1b 1=1<32,当n =2时,1a 1b 1+1a 2b 2=1+14=54<32,故∑i =1n1a i b i <32.。

高中数学等比数列综合讲义(知识点+高考所有题型解析)

高中数学等比数列综合讲义(知识点+高考所有题型解析)

高中数学等比数列综合讲义(知识点+高考所有题型解析)一、理解概念L1:概念:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这样的数列就叫做等比数列L2:上位是:数列 L3:特殊之处:[两项之间]每一项与它的前一项的比等于同一个常数 L4:举例:1.数列 1,2,4,8···; 2.数列 1,3,9,27···;二、研究概念Y1:背景:棋盘上放麦粒的故事定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,通常用字母q表示)(其中可表示为2,),0(*1≥Ν∈=≠−n n q a a q n nY2:构成: [项] },,,,,{4321""""n a a a a a [首项] }{1a[奇项] },,,,,{127531""""−n a a a a a [偶项] },,,,,{28642""""n a a a a a [质数] },,,,{7532""a a a a [合数] },,,,{9864""a a a a [子数列] },,,,{131211""+++k k k a a a a },,,,{232222""+++k k k a a a a #},,,,{32""m k m k m k m a a a a +++[本质]: ()q a a a a a a a a n n =====−13423121"" ())(2去分母的项数的次数为分子的项数减q q a a m n mn−= ()1123+−•=k k ka a a ,k n k n na a a −+⋅=2, mm n n mn m n a a a )()()(=−+ ()q p n m a a a a q p n m ⋅=⋅+=+则若,4重要组成部分:⎩⎨⎧≥)2(1n a a nY3:分类: [q] 常数数列(q=1)非常数数列 (q 1≠) 极限不存在 (q 1>且无限)极限为零 (q<1且无限) [1a ] 首项为1的数列 ;11;1qq S qa nn n n −−==−首项不为1的数列 ;1)1(;111qq a S qa a n n n n −−=⋅=− [0,1,,1a q ] 时递增数列或10,01,011<<<>>q a q a 。

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

高考数学总复习§数列的综合应用精品课件大纲人教版

高考数学总复习§数列的综合应用精品课件大纲人教版
∴Sn=(1+λ)-λan.
(2)

f(λ)

λ 1+λ


bn

1+bnb-n1-1⇒
1 bn

bn1-1+1.
∴数列{b1n}是首项为b11=2,公差为 1 的
等差数列,
∴b1n=2+(n-1)=n+1,∴bn=n+1 1.
【思维总结】 通过公比的函数关系 f(λ),
将解{:bn当}转λ化=为1 时{b1n,}求an=通项(12).n-1,∴cn=an(b1n-1)=(12)n -1n, ∴Tn=1+2×12+3×(12)2+…+n×(12)n-1,①
【解】 (1)由题意知 S6=-S155=-3, a6=S6-S5=-8, 所以5aa1+1+51d=0d-=58, , 解得 a1=7.4 分
所以 S6=-3,a1=7.6 分
(2)因为 S5S6+15=0, 所以(5a1+10d)(6a1+15d)+15=0, 即 2a21+9da1+10d2+1=0,10 分 故(4a1+9d)2=d2-8,所以 d2≥8.
所以10年内总投入20760万元,总收入为 13301万元.
【思维总结】 本题是求两个等比数列的前 10项和.
数列的综合问题
数列的综合问题主要有以下两类:一是已知 函数的条件,利用函数的性质图象研究数列 问题,如恒成立、最值问题等.二是已知数 列条件,利用数列的范围、公式、求和方法 等知识对式子化简变形,从而解决函数问 题.
m.
解:(1)∵an+1=f(a1n)=2+33an=an+23, ∴数列{an}是以23为公差的等差数列, 又 a1=1,∴an=2n3+1. (2)Tn = a1a2 - a2a3 + a3a4 - a4a5 + … -

第45讲、数列的综合应用(学生版)2025高考数学一轮复习讲义

第45讲、数列的综合应用(学生版)2025高考数学一轮复习讲义

第45讲数列的综合应用知识梳理1、解决数列与数学文化相交汇问题的关键2、新定义问题的解题思路遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.3、数列与函数综合问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性.4、数列与不等式综合问题的求解策略解决数列与不等式的综合问题时,若是证明题,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.利用等价转化思想将其转化为最值问题.()a F n >恒成立max ()a F n ⇔>;()a F n <恒成立min ()a F n ⇔<.5、现实生活中涉及银行利率、企业股金、产品利润、人口增长、产品产量等问题,常常考虑用数列的知识去解决.(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点①根据题意,正确确定数列模型;②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.6、在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.必考题型全归纳题型一:数列在数学文化与实际问题中的应用例1.(2024·河南·河南省内乡县高级中学校考模拟预测)“角谷猜想”首先流传于美国,不久便传到欧洲,后来一位名叫角谷静夫的日本人又把它带到亚洲,因而人们就顺势把它叫作“角谷猜想”.“角谷猜想”是指一个正整数,如果是奇数就乘以3再加1,如果是偶数就除以2,这样经过若干次运算,最终回到1.对任意正整数0a ,按照上述规则实施第n 次运算的结果为()N n a n ∈,若51a =,且()1,2,3,4i a i =均不为1,则0a =()A .5或16B .5或32C .5或16或4D .5或32或4例2.(2024·河南郑州·统考模拟预测)北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差数列求和的问题.现有一货物堆,从上向下查,第一层有1个货物,第二层比第一层多2个,第三层比第二层多3个,以此类推,记第n 层货物的个数为n a ,则使得22n a n >+成立的n 的最小值是()A .3B .4C .5D .6例3.(2024·四川成都·石室中学校考模拟预测)南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,第四层10个…,则第三十六层球的个数为()A .561B .595C .630D .666变式1.(2024·全国·高三专题练习)科赫曲线因形似雪花,又被称为雪花曲线.其构成方式如下:如图1将线段AB 等分为线段,,AC CD DB ,如图2.以CD 为底向外作等边三角形CMD ,并去掉线段CD ,将以上的操作称为第一次操作;继续在图2的各条线段上重复上述操作,当进行三次操作后形成如图3的曲线.设线段AB 的长度为1,则图3中曲线的长度为()A .2B .169C .6427D .3变式2.(2024·全国·高三专题练习)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,...,则此数列的前34项和为()A .959B .964C .1003D .1004变式3.(2024·全国·高三专题练习)南宋数学家杨辉在《详解九章算术》中提出了高阶等差数列的问题,即一个数列{}n a 本身不是等差数列,但从{}n a 数列中的第二项开始,每一项与前一项的差构成等差数列{}n b (则称数列{}n a 为一阶等差数列),或者{}n b 仍旧不是等差数列,但从{}n b 数列中的第二项开始,每一项与前一项的差构成等差数列{}n c (则称数列{}n a 为二阶等差数列),依次类推,可以得到高阶等差数列.类比高阶等差数列的定义,我们亦可定义高阶等比数列,设数列1,1,2,8,64…是一阶等比数列,则该数列的第8项是().A .82B .152C .212D .282【解题方法总结】(1)解决数列与数学文化相交汇问题的关键(2)解答数列应用题需过好“四关”题型二:数列中的新定义问题例4.(2024·江西·江西师大附中校考三模)已知数列{}n a 的通项()*21N n a n n =-∈,如果把数列{}n a 的奇数项都去掉,余下的项依次排列构成新数列为{}n b ,再把数列{}n b 的奇数项又去掉,余下的项依次排列构成新数列为{}n c ,如此继续下去,……,那么得到的数列(含原已知数列)的第一项按先后顺序排列,构成的数列记为{}n P ,则数列{}n P 前10项的和为()A .1013B .1023C .2036D .2050例5.(2024·人大附中校考三模)已知数列{}n a 满足:对任意的N n *∈,总存在N m *∈,使得n m S a =,则称{}n a 为“回旋数列”.以下结论中正确的个数是()①若2023n a n =,则{}n a 为“回旋数列”;②设{}n a 为等比数列,且公比q 为有理数,则{}n a 为“回旋数列”;③设{}n a 为等差数列,当11a =,0d <时,若{}n a 为“回旋数列”,则1d =-;④若{}n a 为“回旋数列”,则对任意N n *∈,总存在N m *∈,使得n m a S =.A .1B .2C .3D .4例6.(2024·湖北武汉·统考三模)将1,2,,n ⋅⋅⋅按照某种顺序排成一列得到数列{}n a ,对任意1i j n ≤<≤,如果i j a a >,那么称数对(),i j a a 构成数列{}n a 的一个逆序对.若4n =,则恰有2个逆序对的数列{}n a 的个数为()A .4B .5C .6D .7变式4.(2024·全国·高三专题练习)记数列{}n a 的前n 项和为n S ,若存在实数0M >,使得对任意的*n ∈N ,都有n S M <,则称数列{}n a 为“和有界数列”.下列命题正确的是()A .若{}n a 是等差数列,且首项10a =,则{}n a 是“和有界数列”B .若{}n a 是等差数列,且公差0d =,则{}n a 是“和有界数列”C .若{}n a 是等比数列,且公比1q <,则{}n a 是“和有界数列”D .若{}n a 是等比数列,且{}n a 是“和有界数列”,则{}n a 的公比1q <变式5.(2024·全国·高三专题练习)斐波那契数列又称黄金分割数列,因数学家列昂纳多•斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用n a 表示斐波那契数列的第n 项,则数列{}n a 满足:12211,n n n a a a a a ++===+.,记121n i n i a a a a ==+++∑ ,则下列结论不正确的是()A .1055a =B .223(3)n n n a a a n -+=+≥C .201920211i i a a ==∑D .20212202120221i i a a a ==⋅∑变式6.(2024·河北·统考模拟预测)数学家杨辉在其专著《详解九章算术法》和《算法通变本末》中,提出了一些新的高阶等差数列.其中二阶等差数列是一个常见的高阶等差数列、如数列2,4,7,11,16,从第二项起,每一项与前一项的差组成新数列2,3,4,5,新数列2,3,4,5为等差数列,则称数列2,4,7,11,16为二阶等差数列,现有二阶等差数列{}n a ,其前七项分别为2,2,3,5,8,12,17.则该数列的第20项为()A .173B .171C .155D .151【解题方法总结】(1)新定义数列问题的特点通过给出一个新的数列的概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.(2)新定义问题的解题思路遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.题型三:数列与函数、不等式的综合问题例7.(2024·重庆巴南·统考一模)已知等比数列{}n a 满足:1220a a +=,2380a a +=.数列{}n b 满足()2log n n b a n *=∈N ,其前n 项和为n S ,若8n n b S λ≤+恒成立,则λ的最小值为.例8.(2024·四川泸州·四川省泸县第四中学校考模拟预测)设数列{}n a 的前n 项和为3,4n S a =,且1111n n a a n +⎛⎫=+ ⎪+⎝⎭,若212n n S ka +≥恒成立,则k 的最大值是.例9.(2024·河南新乡·统考三模)已知数列{}n a 满足18a =,14n n a a n +-=,则n a n的最小值为.变式7.(2024·上海杨浦·高三复旦附中校考阶段练习)已知数列{}n a 满足120232020a =,且对于任意的正整数n ,都有111n n n a a a +-=-.若正整数k 使得11n i ik a =>∑对任意的正整数成立,则整数k 的最小值为.【解题方法总结】(1)数列与函数综合问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性.(2)数列与不等式综合问题的求解策略解决数列与不等式的综合问题时,若是证明题,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.利用等价转化思想将其转化为最值问题.()a F n >恒成立max ()a F n ⇔>;()a F n <恒成立min ()a F n ⇔<.题型四:数列在实际问题中的应用例10.(2024·全国·高三专题练习)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足关系式()()22151,2,,1290n n S n n n =--=⋅⋅⋅,按此预测,在本年度内,需求量超过1.5万件的月份是.例11.(2024·高三课时练习)某研究所计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,且每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列.已知第五实验室比第二实验室的改建费用高42万元,第七实验室比第四实验室的改建费用高168万元,并要求每个实验室改建费用不能超过1700万元,则该研究所改建这十个实验室投入的总费用最多需要万元.例12.(2024·全国·高三专题练习)冰墩墩作为北京冬奥会的吉祥物特别受欢迎,官方旗舰店售卖冰墩墩运动造型多功能徽章,若每天售出件数成递增的等差数列,其中第1天售出10000件,第21天售出15000件;价格每天成递减的等差数列,第1天每件100元,第21天每件60元,则该店第天收入达到最高.变式8.(2024·全国·高三专题练习)沈阳京东MALL 于2022年国庆节盛大开业,商场为了满足广大数码狂热爱好者的需求,开展商品分期付款活动.现计划某商品一次性付款的金额为a 元,以分期付款的形式等额分成n 次付清,每期期末所付款是x 元,每期利率为r ,则爱好者每期需要付款x =.变式9.(2024·辽宁锦州·渤海大学附属高级中学校考模拟预测)一件家用电器,现价2000元,实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为0.8%,并按复利计息,那么每期应付款元.(参考数据:111.008 1.092≈,121.008 1.100≈,111.08 2.332≈,121.08 2.518≈)变式10.(2024·全国·高三专题练习)在第七十五届联合国大会一般性辩论上,习近平主席表示,中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.某地2020年共发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,从2021年起,每年发放的电动型汽车牌照按前一年的50%增长,燃油型汽车牌照比前一年减少0.5万张,同时规定,若某年发放的汽车牌照超过15万张,以后每年发放的电动车牌照的数量维持在这一年的水平不变.那么从2021年至2030年这十年累计发放的汽车牌照数为万张.【解题方法总结】现实生活中涉及银行利率、企业股金、产品利润、人口增长、产品产量等问题,常常考虑用数列的知识去解决.(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点①根据题意,正确确定数列模型;②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.题型五:数列不等式的证明例13.(2024·河北张家口·统考三模)已知数列{}n a 满足3122323322222n n na a a a n ++++++= .(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,证明:12n S <.例14.(2024·全国·高三专题练习)证明不等式222111223(1)3n +++<+ .例15.(2024·全国·高三专题练习)已知13n n a ⎛⎫= ⎪⎝⎭,11111n n n c a a +=++-,{}n c 的前n 项和为n T ,证明:123n T n >-.变式11.(2024·全国·高三专题练习)已知每一项都是正数的数列{}n a 满足11a =,()*1112n n na a n a ++=∈N .(1)证明:2121n n a a +-<.(2)证明:116n a ≤≤.(3)记n S 为数列{}1n n a a +-的前n 项和,证明∶6n S <.变式12.(2024·全国·高三专题练习)证明:11112(1)12nk k k =<--∑.(注:121n k n k a a a a ==+++∑ .)变式13.(2024·全国·高三专题练习)已知数列{}n a ,n S 为数列{}n a 的前n 项和,且满足11a =,()32n n S n a =+.(1)求{}n a 的通项公式;(2)证明:2482111112n a a a a ++++< .变式14.(2024·全国·高三专题练习)已知各项为正的数列{}n a 满足112a =,2211233n n n a a a +=+,*n ∈N .证明:(1)11n n a a +<<;(2)1294n a a a n ++⋅⋅⋅+>-.变式15.(2024·全国·高三专题练习)设数列{}n a 满足1a a =,()2*11N n n n a a a n +-=∈.(1)若352a =,求实数a 的值;(2)设n b =1a =3(2)2n b n ≤<≥.变式16.(2024·全国·高三专题练习)已知函数{}n a 满足112a =,1πsin 2n n a a +⎛⎫= ⎪⎝⎭,*n ∈N .(1)证明:1112n n a a +≤<<.(2)设n S 是数列{}n a 的前n 项和,证明:32n S n >-.【解题方法总结】(1)构造辅助函数(数列)证明不等式(2)放缩法证明不等式在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.方法1:对n a 进行放缩,然后求和.当1nk k a =∑既不关于n 单调,也不可直接求和,右边又是常数时,就应考虑对n a 进行放缩,使目标变成可求和的情形,通常变为可裂项相消或压缩等比的数列.证明时要注意对照求证的结论,调整与控制放缩的度.方法2:添舍放缩方法3:对于一边是和或者积的数列不等式,可以把另外一边的含的式子看作是一个数列的前项的和或者积,求出该数列通项后再左、右两边一对一地比较大小,这种思路非常有效,还可以分析出放缩法证明的操作方法,易于掌握.需要指出的是,如果另外一边不是含有的式子,而是常数,则需要寻找目标不等式的加强不等式,再予以证明.方法4:单调放缩题型六:公共项问题例16.(2024·上海嘉定·上海市嘉定区第一中学校考三模)已知n ∈N ,1n ≥,将数列{}21n -与数列{}21n -的公共项从小到大排列得到新数列{}n a ,则10011n na ==∑.例17.(2024·湖南邵阳·邵阳市第二中学校考模拟预测)数列{}21n -和数列{}32n -的公共项从小到大构成一个新数列{}n a ,数列{}n b 满足:2nn na b =,则数列{}n b 的最大项等于.例18.(2024·全国·高三专题练习)已知n *∈N ,将数列{}21n -与数列{}21n -的公共项从小到大排列得到新数列{}n a ,则1210111a a a +++= .变式17.(2024·重庆沙坪坝·高三重庆八中校考阶段练习)将数列{}2n与{}32n -的公共项由小到大排列得到数列{}n a ,则数列{}n a 的前n 项的和为.变式18.(2024·全国·高三专题练习)数列{2}n 与{31}n -的所有公共项由小到大构成一个新的数列{}n a ,则10a =.变式19.(2024·安徽蚌埠·统考一模)有两个等差数列2610,,190⋯,,及2,8,14,,200,⋯由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为.题型七:插项问题例19.(2024·全国·高三对口高考)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令lg ,1n n a T n =≥.则数列{}n a 的通项公式为.例20.(2024·湖北襄阳·襄阳四中校考模拟预测)已知等差数列{}n a 中,264,16a a ==,若在数列{}n a 每相邻两项之间插入三个数,使得新数列也是一个等差数列,则新数列的第43项为.例21.(2024·福建福州·福建省福州第一中学校考模拟预测)已知数列{}n a 的首项145a =,1431nn n a a a +=+,*n ∈N .(1)设1nn na b a =-,求数列{}n b 的通项公式;(2)在k b 与1k b +(其中*k ∈N )之间插入2k 个3,使它们和原数列的项构成一个新的数列{}n c .记n S 为数列{}n c 的前n 项和,求36S .变式20.(2024·广东佛山·统考模拟预测)已知数列{}n a 满足()*122N 3333n n a a a n n +++=∈ .(1)求{}n a 的通项公式;(2)在{}n a 相邻两项中间插入这两项的等差中项,求所得新数列{}n b 的前2n 项和2n T .变式21.(2024·吉林通化·梅河口市第五中学校考模拟预测)n S 为数列{}n a 的前n 项和,已知2634n n n S a a =+-,且0n a >.(1)求数列{}n a 的通项公式n a ;(2)数列{}n b 依次为:23456789101234,3,,3,3,,3,3,3,,3,3,3,3a a a a ,规律是在k a 和1k a +中间插入()*N k k ∈项,所有插入的项构成以3为首项,3为公比的等比数列,求数列{}n b 的前100项的和.变式22.(2024·全国·高三专题练习)设等比数列{}n a 的首项为12a =,公比为q (q 为正整数),且满足33a 是18a 与5a 的等差中项;数列{}n b 满足()23202n n n t b n b -++=(t ∈R ,*n ∈N ).(1)求数列{}n a 的通项公式;(2)试确定t 的值,使得数列{}n b 为等差数列;(3)当{}n b 为等差数列时,对每个正整数k ,在k a 与1k a +之间插入k b 个2,得到一个新数列{}n c .设n T 是数列{}n c 的前n 项和,试求100T .变式23.(2024·安徽滁州·校考模拟预测)已知等比数列{}n a 的前n 项和为n S ,且()*12N .n n S a n +=-∈(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .题型八:蛛网图问题例22.(2024·全国·高三专题练习)已知数列{}n b 若113244n n t b b b -==+,(N n *∈且2R n t ≥∈,),若2n b ≤对任意N n *∈恒成立,则实数t 的取值范围是.例23.(2024•虹口区校级期中)已知数列{}n a 满足:10a =,*1(1)()n a n n a ln e a n N +=+-∈,前n 项和为n S ,则下列选项错误的是()(参考数据:20.693ln ≈,3 1.099)ln ≈A .21{}n a -是单调递增数列,2{}n a 是单调递减数列B .13n n a a ln ++C .2020670S <D .212n n a a -例24.(2024•浙江模拟)数列{}n a 满足10a >,311n nn a a a +=-+,*n N ∈,n S 表示数列1n a ⎧⎫⎨⎬⎩⎭前n 项和,则下列选项中错误的是()A .若1203a <<,则1n a <B .若1213a <<,则{}n a 递减C .若112a =,则114(2)n n S a +>-D .若12a =,则200023S >变式24.(2024•浙江模拟)已知数列{}n a 满足:10a =,1(1)(*)n a n n a ln e a n N +=+-∈,前n 项和为n S (参考数据:20.693ln ≈,3 1.099)ln ≈,则下列选项中错误的是()A .21{}n a -是单调递增数列,2{}n a 是单调递减数列B .13n n a a ln ++C .2020666S <D .212n na a -<变式25.(2024•下城区校级模拟)已知数列{}n a 满足:0n a >,且22*1132()n n n a a a n N ++=-∈,下列说法正确的是()A .若112a =,则1n n a a +>B .若12a =,则131()7n n a -+C .1532a a a +D .2113|||3n n n n a a a a +++--题型九:整数的存在性问题(不定方程)例25.(2024·全国·高三专题练习)已知数列{}n a 的前n 项和是n S ,且2n n S a n =-.(1)证明:{}1n a +为等比数列;(2)证明:21321 1111n na a a a a a ++++<--- (3)n T 为数列{}nb 的前n 项和,设()2log 1n n b a =+,是否存在正整数m ,k ,使21219k m b T +=+成立,若存在,求出m ,k ;若不存在,说明理由.例26.(2024·全国·高三专题练习)设1234,,,a a a a 是各项为正数且公差为()0d d ≠的等差数列(1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得231234,,,n n k n k n ka a a a +++依次成等比数列,并说明理由.例27.(2024·河北石家庄·高三石家庄二中校考阶段练习)数列{}n a 的前n 项和为12,2,4n S a a ==且当2n ≥时,113,2,2n n n n S S S -++成等差数列.(1)求数列{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项,,m k p d d d (其中,,m k p 成等差数列)成等比数列?若存在,求出这样的3项;若不存在,请说明理由.变式26.(2024·全国·高三专题练习)已知数列{}n a 的前n 项和为12,n S a =,对任意的正整数n ,点()1,n n a S +均在函数()f x x =图象上.(1)证明:数列{}n S 是等比数列;(2)问{}n a 中是否存在不同的三项能构成等差数列?说明理由.变式27.(2024·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且11a =,()*131N n n a S n +=+∈.(1)求{}n a 通项公式;(2)设1nn a b n =+,在数列{}n b 中是否存在三项,,m k p b b b (其中2k m p =+)成等比数列?若存在,求出这三项;若不存在,说明理由.变式28.(2024·全国·高三专题练习)在①12a =,()22*130,n n n a a a n +-=>∈N ,②()2*23n S n n n =-+∈N ,n S 为{}n a 的前n 项和,这两个条件中任选一个,补充在下面问题中,并解答下列问题.已知数列{}n a 满足______.(1)求数列{}n a 的通项公式;(2)对大于1的正整数n ,是否存在正整数m ,使得1a ,n a ,m a 成等比数列?若存在,求m 的最小值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.变式29.(2024·安徽六安·六安一中校考模拟预测)设正项等比数列{}n a 的前n 项和为n S ,若37S =,34a =.(1)求数列{}n a 的通项公式;(2)在数列{}n S 中是否存在不同的三项构成等差数列?请说明理由.题型十:数列与函数的交汇问题例73.(2022•龙泉驿区校级一模)已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列,若23a =,713a =,则1232015()()()()(f a f a f a f a +++⋯+=)A .2-B .3-C .2D .3例74.(2022•日照模拟)已知数列{}n a 的通项公式100n a n n=+,则122399100||||||(a a a a a a -+-+⋯+-=)A .150B .162C .180D .210例76.(2022秋•仁寿县月考)设等差数列{}n a 的前n 项和为n S ,已知344(1)2012(1)1a a -+-=,320092009(1)2012(1)1a a -+-=-,则下列结论中正确的是()A .20122012S =,20094a a <B .20122012S =,20094a a >C .20122011S =,20094a a <D .20122011S =,20094a a >题型十一:数列与导数的交汇问题例79.(2022•全国模拟)函数()(0)1a xf x x x+=>+,曲线()y f x =在点(1,f (1))处的切线在y 轴上的截距为112.(1)求a ;(2)讨论2()(())g x x f x =的单调性;(3)设11a =,1()n n a f a +=,证明:22|27|1n n lna ln --<.例80.(2022•枣庄期末)已知函数()(2)(0f x ln x a x =+>,0)a >,曲线()y f x =在点(1,f (1))处的切线在y 轴上的截距为233ln -.(1)求a ;(2)讨论函数()()2(0)g x f x x x =->和2()()(0)21xh x f x x x =->+的单调性;(3)设125a =,1()n n a f a +=,求证:152120(2)2n n nn a +-<-< .题型十二:数列与概率的交汇问题例28.(2024·湖南长沙·长沙市明德中学校考三模)甲、乙两选手进行一场体育竞技比赛,采用21n -局n 胜制()*N n ∈的比赛规则,即先赢下n 局比赛者最终获胜.已知每局比赛甲获胜的概率为p ,乙获胜的概率为1p -,比赛结束时,甲最终获胜的概率为()*N n P n ∈.(1)若1,22p n ==,结束比赛时,比赛的局数为X ,求X 的分布列与数学期望;(2)若采用5局3胜制比采用3局2胜制对甲更有利,即32P P >.(i)求p 的取值范围;(ii)证明数列{}n P 单调递增,并根据你的理解说明该结论的实际含义.例29.(2024·全国·高三专题练习)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第1n +次状态的概率分布只跟第n 次的状态有关,与第1,2,3,n n n ---⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行()*N n n ∈次操作后,记甲盒子中黑球个数为n X ,甲盒中恰有1个黑球的概率为n a ,恰有2个黑球的概率为n b .(1)求1X 的分布列;(2)求数列{}n a的通项公式;(3)求n X的期望.例30.(2024·全国·高三专题练习)雅礼中学是三湘名校,学校每年一届的社团节是雅礼很有特色的学生活动,几十个社团在一个月内先后开展丰富多彩的社团活动,充分体现了雅礼中学为学生终身发展奠基的育人理念.2022年雅礼文学社举办了诗词大会,在选拔赛阶段,共设两轮比赛.第一轮是诗词接龙,第二轮是飞花令.第一轮给每位选手提供5个诗词接龙的题目,选手从中抽取2个题目,主持人说出诗词的上句,若选手正确回答出下句可得10分,若不能正确回答出下可得0分.(1)已知某位选手会5个诗词接龙题目中的3个,求该选手在第一轮得分的数学期望;(2)已知恰有甲、乙、丙、丁四个团队参加飞花令环节的比赛,每一次由四个团队中的一个回答问题,无论答题对错,该团队回答后由其他团队抢答下一问题,且其他团体有相同的机会抢答下一问题.记第n次回答的是甲的概率是n P,若11P=.①求3P和4P;②证明:数列14nP⎧⎫-⎨⎬⎩⎭为等比数列,并比较第7次回答的是甲和第8次回答的是甲的可能性的大小.变式30.(2024·山西朔州·高三怀仁市第一中学校校考阶段练习)一对夫妻计划进行为期60天的自驾游.已知两人均能驾驶车辆,且约定:①在任意一天的旅途中,全天只由其中一人驾车,另一人休息;②若前一天由丈夫驾车,则下一天继续由丈夫驾车的概率为14,由妻子驾车的概率为34;③妻子不能连续两天驾车.已知第一天夫妻双方驾车的概率均为12.。

考点38数列中的综合问题(2种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)

考点38数列中的综合问题(2种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)

考点38数列中的综合问题(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等【核心题型】题型一 等差数列、等比数列的综合运算 数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.【例题1】(2023·湖北荆门·模拟预测)血药浓度检测可使给药方案个体化,从而达到临床用药的安全、有效、合理.某医学研究所研制的某种新药进入了临床试验阶段,经检测,当患者A 给药3小时的时候血药浓度达到峰值,此后每经过2小时检测一次,每次检测血药浓度降低到上一次检测血药浓度的40%,当血药浓度为峰值的1.024%时,给药时间为( )A .11小时B .13小时C .17小时D .19小时【变式1】(2023高三·全国·专题练习)已知集合{}*112|,A x x k k ==ÎN ,{}2*2|3,k B x x k ==ÎN ,将A B È中所有元素按从小到大的顺序排列构成数列{}n a ,设数列{}n a 的前n 项和为n S ,若27m a =,则m 的值等于,50S 的值为 .【变式2】(2024·四川绵阳·三模)已知首项为1的等差数列{}n a 满足:123,,1a a a +成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:121131n n n n a b a b a b -+++=-L ,求数列{}n b 的前n 项和n T .【变式3】(2023高三·全国·专题练习)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:1111()n n n n n n n S a b S b S b +++++=-;题型二 数列与其他知识的交汇问题(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形命题点1 数列与不等式的交汇【例题2】(2024·重庆·三模)数列{}n a 的前n 项和为n S ,234n n S a n =-+,若()3320n a n l +-+>对任意*n ÎN 恒成立,则实数l 的取值范围为( )A .1,2æö+¥ç÷èøB .()1,+¥C .5,4æö+¥ç÷èøD .()2,+¥【变式1】(2024·江苏苏州·三模)已知函数*(),N n f n a n =Î.①当2a =时,11()n b f n =+,记{}n b 前n 项积为n T ,若n m T >恒成立,整数m 的最小值是;②对所有n 都有33()1()11f n n f n n -³++成立,则a 的最小值是 .【变式2】(2024·湖南长沙·模拟预测)已知数列{}n a 满足()*321223n a a a a n n n++++=ÎN L .(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足12nn n a b +=.①求数列{}n b 的前n 项和n T ;②若不等式()12nn n n T l -<+对任意*n ÎN 恒成立,求实数l 的取值范围.【变式3】(2024·辽宁·二模)设等差数列{}n a 的前n 项和为n S ,公差为d ,且10a d ¹.若等差数列{}n b ,满足2nn nS b a =.(1)求数列{}n b 的通项公式;(2)若514d =,记数列{}n b 的前n 项和为n T ,且n n T S >,求n 的最大值.命题点2 数列与函数的交汇【例题3】(2024·福建莆田·三模)已知定义在(0,)+¥上的函数()f x 满足()()121f x f x +=+,且(1)1f =,则()100f =( )A .10021-B .10021+C .10121-D .10121+【变式1】(2024·广西来宾·模拟预测)函数()|1||2||3||15|f n n n n n =-+-+-++-L (n 为正整数)的最小值为 .【变式2】(2024·浙江绍兴·三模)已知函数()()cosπR f x x x x =+Î的所有正零点构成递增数列{}()N*n a n Î.(1)求函数()f x 的周期和最大值;(2)求数列{}n a 的通项公式n a 及前n 项和n S .【变式3】(2024·上海·模拟预测)已知()21122f x x x =+,数列{}n a 的前n 项和为n S ,点()()*,N n n S n Î均在函数()y f x =的图象上.(1)求数列{}n a 的通项公式;(2)若()442x x g x =+,令()*N 2025n n a b g n æö=Îç÷èø,求数列{}n b 的前2024项和2024T .【课后强化】【基础保分练】一、单选题1.(2024·山西阳泉·三模)已知等差数列{}n a 中,7a 是函数π()sin(2)6f x x =-的一个极大值点,则59)tan(a a +的值为( )ABC.D.2.(2020·辽宁辽阳·二模)已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令11n n n b a a +=,则数列{}n b 的前50项和50T =( )A .5051B .4950C .100101D .501013.(2024·山东·二模)欧拉函数()()*n n j ÎN 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数,例如()42j =.已知()123n n nb j +=,*n ÎN ,n T 是数列{}n b 的前n 项和,若n T M <恒成立,则M 的最小值为( )A .34B .1C .76D .24.(2024·福建泉州·二模)在等比数列{}n a 中,15,a a 是函数2()10ln(3)f x x x t x =-+的两个极值点,若2432a a =-,则t 的值为( )A .4-B .5-C .4D .5二、多选题5.(2024·云南·模拟预测)已知定义在R 上的函数()f x 满足:()()()()2f x y f x y f x f y ++-=,且()21f =-,则下列说法中正确的是( )A .()f x 是偶函数B .()f x 关于点()2,1-对称C .设数列{}n a 满足()n a f n =,则{}n a 的前2024项和为0D .103f æöç÷èø可以是126.(2024·湖北·模拟预测)对于正整数n ,()n j 是小于或等于n 的正整数中与n 互质的数的数目.函数()n j 以其首名研究者欧拉命名,称为欧拉函数,例如()96j =(1,2,4,5,7,8与9互质),则()A .若n 为质数,则()1n n j =-B .数列(){}n j 单调递增C .数列()2nn j ìüïïíýïïîþ的最大值为1D .数列(){}3nj 为等比数列三、填空题7.(2021·江西·模拟预测)已知公差不为0的等差数列{}n a 的部分项1k a ,2k a ,3k a ,……构成等比数列{}n a ,且11k =,22k =,35k =,则n k =.8.(2023·陕西宝鸡·模拟预测)已知实数a 、b 、c 、d 成等差数列,且函数()ln 2y x x =+-在x b =时取到极大值c ,则a d += .9.(2024·四川成都·模拟预测)已知数列{}n a 满足1ln 1n n a a +=+,函数()ln 1xf x x =+在0x x =处取得最大值,若()420ln 1a a x =+,则12a a += 四、解答题10.(2023·全国·模拟预测)已知等差数列{}n a 的前n 项和为n S ,124325a a a ++=,且32a +,4a ,52a -成等比数列.(1)求数列{}n a 的通项公式;(2)设n n b a ={}n b 的前n 项和n T .11.(2024·浙江·二模)欧拉函数()()*N n n j Î的函数值等于所有不超过正整数n 且与n 互素的正整数的个数,例如:()11j =,()42j =,()84j =,数列{}n a 满足()()*2N n n a n j =Î.(1)求1a ,2a ,3a ,并求数列{}n a 的通项公式;(2)记()222log 1nnn na b a =-,求数列{}n b 的前n 和n S .【综合提升练】一、单选题1.(2024·辽宁·二模)设等差数列{}n a 的前n 项和为n S ,点(,)(N )n n S n *Î在函数2()(,,)f x Ax Bx C A B C =++ÎR 的图象上,则( )A .01C =B .若0A =,则0N n *$Î,使n S 最大C .若0A >,则0N n *$Î,使n S 最大D .若0A <,则0N n *$Î,使n S 最大2.(2022高三·全国·专题练习)已知数列{}n a 为等差数列,且7π2a =.设函数()2sin22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前13项和为( )A .13π2B .7πC .7D .133.(23-24高三下·重庆·阶段练习)定义:满足(211:n n n na a q q a a +++= 为常数,*N n Î)的数列{}n a 称为二阶等比数列,q 为二阶公比.已知二阶等比数列}n a ∣的二阶公比为121,a a ==,则使得2024n a > 成立的最小正整数n 为( )A .7B .8C .9D .104.(2024·江苏徐州·一模)已知数列{}n a 的前n 项和为n S ,且321n n S a =+,*n ÎN .若2024k S ³,则正整数k 的最小值为( )A .11B .12C .13D .145.(23-24高三上·山西运城·期末)已知等差数列{}n a 中,97π12a =,设函数44()cos sin cos 1f x x x x x =---,记()n n y f a =,则数列{}n y 的前17项和为( )A .51-B .48-C .17-D .06.(2024·安徽池州·二模)对于数列{}n a ,若点(),n n a 都在函数x y cq =的图象上,其中0q >且1q ¹,则“1c q >”是“{}n a 为递增数列”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.(2024·上海奉贤·三模)若数列{}n a 的前n 项和为n S ,关于正整数n 的方程1n n S S a +×=记为F ,命题p :对于任意的R a Î,存在等差数列{}n a 使得F 有解;命题q :对于任意的R a Î,存在等比数列{}n b 使得F 有解;则下列说法中正确的是( )A .命题p 为真命题,命题q 为假命题;B .命题p 为假命题,命题q 为真命题;C .命题p 为假命题,命题q 为假命题;D .命题p 为真命题,命题q 为真命题;8.(2024·青海·模拟预测)已知定义在R 上的函数()f x 满足()()()()()226f x y f x f y f x f y +=--+,()14f =,则()()()1299f f f ++×××+=( )A .992198+B .992196+C .1002198+D .1002196+二、多选题9.(2024·贵州·三模)已知定义域为R 的函数()f x 满足()()()()22,f x y f x f y x y xy f x +=+¢++为()f x 的导函数,且()12f ¢=,则( )A .()00f =B .()f x 为奇函数C .()27f ¢-=D .设()()*n b f n n ¢=ÎN ,则2024202320252b =´+10.(2024·河南·三模)将函数()2πsin (0,0)3f x x x w w æö=->>ç÷èø的零点按照从小到大的顺序排列,得到数列{}n a ,且123a =,则( )A .2w =B .()f x 在()1,2上先增后减C .10313a =D .{}n a 的前n 项和为236n n +11.(2022·海南·模拟预测)对于无穷数列{}n a ,给出如下三个性质:①10a <;②*,n s "ÎN ,n s n s a a a +>+;③*n "ÎN ,*t $ÎN ,n t n a a +>,定义:同时满足性质①和②的数列{}n a 为“s 数列”,同时满足性质①和③的数列{}n a 为“t 数列”,则下列说法正确的是( )A .若23n a n =-,则{}n a 为“s 数列”B .若12n n a =-,则{}n a 为“t 数列”C .若{}n a 为“s 数列”,则{}n a 为“t 数列”D .若等比数列{}n a 为“t 数列”,则{}n a 为“s 数列”三、填空题12.(2024·浙江·模拟预测)已知数列{}n a 的前n 项和为n S,且n a ={}n b 的前n 项和为n T ,且()121n bn n S a +-=,则满足2n T ³的正整数n 的最小值为.13.(2023高三·全国·专题练习)函数()f x 满足()()()()*111,1N 12f n f n f n +==Î+.若不等式()()1f n f n M +-£对任意的n 恒成立,则M 的最小值是.14.(23-24高三上·河北邢台·开学考试)函数()2f x x x a =-+的最小值是12,数列{}n a 满足()1n n a f a +=,11a =,则数列{}n a 的通项公式是 .四、解答题15.(2024·上海虹口·二模)已知等差数列{}n a 满足25a =,9672a a +=.(1)求{}n a 的通项公式;(2)设数列{}n b 前n 项和为n S ,且221n n n b a a +=-,若432mS >,求正整数m 的最小值.16.(2024·江苏连云港·模拟预测)已知数列{}n a 的前n 项和为n S ,且12n n na S a =+.(1)证明:数列{}2n S 是等差数列;(2)数列{}n S 的每一项均为正数,11,11,2nn n n n S b n S S -ì=ïï=íï³ï+î,数列{}n b 的前n 项和为n T ,当21012n T ³时,求n 的最小值.17.(2024·四川成都·三模)已知数列{}n a 的前n 项和为,342n n n S S a =-.(1)证明:数列{}n a 是等比数列,并求出通项公式;(2)设函数()21ln 2f x x x æö=×-ç÷èø的导函数为()f x ¢,数列{}n b 满足()n n b f a =¢,求数列{}n b 的前n 项和n T .18.(23-24高三下·河北衡水·期中)已知数列{}n a 的前n 项和为n S ,且()21,1n n S a n =-³.(1)求数列{}n a 的通项公式;(2)求证:12311112nS S S S ++++<L .19.(2024·湖南衡阳·三模)已知正项数列{}n a 的前n 项和为n S ,首项11a =.(1)若2421n n n a S a =--,求数列{}n a 的通项公式;(2)若函数()2e x f x x =+,正项数列{}n a 满足:*1)()(n n a f a n +=ÎN .(i )证明:31nn S n ³--;(ii)证明:*2222234)1111(1)(1)(1)(1)2,5555nn n a a a a ++++<³ÎN L .【拓展冲刺练】一、单选题1.(2023·陕西安康·模拟预测)设函数()21f x x =+,数列{}n a ,{}n b 满足()(),n n a f n f b n ==,则2a =( )A .7b B .9b C .11b D .13b 2.(23-24高三上·广东揭阳·阶段练习)已知等差数列{}n a 中,73π8a =,设函数()24cos 2sin cos 222x f x x x æö=-++ç÷èø,记()n n y f a =,则数列{}n y 的前13项和为( )A .7B .13C .20D .263.(2022高三·全国·专题练习)已知数列{}n a 满足1145,31n n a a a +==-,则满足不等式10k k a a -×<的k 的值为( )A .4B .5C .6D .74.(23-24高三上·四川·阶段练习)已知数列{}n a 满足113a =-,且()112n n n a a ++=+-,若使不等式n a l £成立的n a 有且只有三项,则l 的取值范围为( )A .1135,33æùçúèûB .1335,33æùçúèûC .1135,33éö÷êëøD .1335,33éö÷êëø二、多选题5.(23-24高三下·河北·开学考试)欧拉函数()()*N n n j Î是数论中的一个基本概念,()n j 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数(只有公因数1的两个正整数互质,且1与所有正整数(包括1本身)互质),例如()84j =,因为1,3,5,7均与8互质,则( )A .()()()4610j j j ×=B .数列()2n j 单调递增C .()10040j =D .数列()()23nn j j ìüïïíýïïîþ的前n 项和小于326.(2022·浙江绍兴·模拟预测)已知正项数列{}n a ,对任意的正整数m 、n 都有222m n m n a a a +£+,则下列结论可能成立的是( )A .n mmn a a a m n+=B .m n m n na ma a ++=C .2m n mn a a a ++=D .2m n m na a a +×=三、填空题7.(2024·云南楚雄·一模)将函数()2sin f x x x =+(0x >)的所有极小值点按从小到大的顺序排列成数列{}n a ,则()2023tan a = .8.(23-24高三上·上海杨浦·阶段练习)设函数21()1f x x =-,122()ex f x --=,31()sin 2π3f x x =,99i ia =,0,12,,99i =L .()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-L ,1,2,3k =,试将1I 、2I 、3I 从小到大排列为 .9.(2024·全国·模拟预测)已知等比数列{}n a 的首项1012a =,且()23568a a a a +=+,记{}n a 的前n 项和为n S ,前n 项积为n T ,则当不等式0n n S T -<成立时,n 的最大值为 .四、解答题10.(23-24高三上·湖南衡阳·阶段练习)点(,)n A n a (N n *Î)在函数2()log (32)f x x =+图象上.数列{n b }满足2n a n b =.(1)证明:数列{n b }为等差数列.(2)数列{n c }满足231()2n b n c -=.求n T 为{n n b c }前n 项和及当274n T >,求n 的最小值.11.(23-24高三下·湖南·阶段练习)若数列{}n a 在某项之后的所有项均为一常数,则称{}n a 是“最终常数列”.已知对任意()*,n m m n ³ÎN ,函数()f x 和数列{}n a 满足{}()11min n i i na f a +££=.(1)当()f x x >时,证明:{}n a 是“最终常数列”;(2)设数列{}n b 满足11m b a +=,对任意正整数()1,n n n b f b +=.若方程()0fx x-=无实根,证明:{}n a 不是“最终常数列”的充要条件是:对任意正整数i ,i m i b a +=;(3)若(){}21,,n m f x x a ==不是“最终常数列”,求1a 的取值范围.。

高考数学一轮复习第五章数列5.5数列综合课件

高考数学一轮复习第五章数列5.5数列综合课件

【解】 (1)令 n=1 代入得 a1=2(负值舍去). (2)由 S2n-(n2+n-3)Sn-3(n2+n)=0,n∈N*得[Sn-(n2+n)](Sn+3)=0. 又已知各项均为正数,故 Sn=n2+n. 当 n≥2 时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n, 当 n=1 时,a1=2 也满足上式, 所以 an=2n,n∈N*.
【答案】 16
归纳升华
解答数列实际应用问题的步骤
1.确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等
比数列模型、简单的递推数列模型,基本特征见下表:
数列模型
基本特征
等差数列
均匀增加或者减少
等比数列
指数增长,常见的是增产率问题、存款复利问题
简单递推 指数增长的同时又均匀减少.如年收入增长率为 20%,每年年底要拿
【解析】 ∵函数 f(x)是奇函数, ∴f(-x)=-f(x)且 f(0)=0, 又∵f(3+x)=f(x), ∴f(x)是以 3 为周期的周期函数, ∴f(2)=f(-1)=-5, ∵a1=-1,且 Sn=2an+n, ∴a2=-3, ∴a3=-7,a4=-15, ∴a5=-31, ∴f(a4)+f(a5)=f(-15)+f(-31)=f(0)+f(-1)=0+f(2)=-5.
2.数列与不等式的交汇问题 (1)函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不 等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式. (2)放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到. (3)比较方法:作差或者作商比较.
编后语
有的同学听课时容易走神,常常听着听着心思就不知道溜到哪里去了;有的学生,虽然留心听讲,却常常“跟不上步伐”,思维落后在老师的讲解后。这两种情况都 不能达到理想的听课效果。听课最重要的是紧跟老师的思路,否则,教师讲得再好,新知识也无法接受。如何跟上老师饭思路呢?以下的听课方法值得同学们学习:

新高考数学总复习专题七7.1数列的概念及表示课件

新高考数学总复习专题七7.1数列的概念及表示课件

【注意】 利用公式an=Sn-Sn-1(n≥2)求an时,容易忽略对“n=1”的情形进 行检验而致错. 2.Sn与an关系问题的求解思路 根据所求结果的不同要求,将问题向不同的方向转化. 1)利用an=Sn-Sn-1(n≥2)转化为只含Sn、Sn-1的关系式,再求解. 2)利用Sn-Sn-1=an(n≥2)转化为只含an、an-1的关系式,再求解.
1)单调性——若an+1>an,则{an}为递增数列;若an+1<an,则{an}为递减数列. 2)周期性——若an+k=an(k∈N*),则{an}为周期数列,k为{an}的一个周期. 4.数列的通项公式和递推公式 1)通项公式:如果数列{an}的第n项an与序号n之间的关系可以用一个式子 an=f(n)来表示,那么这个式子叫做这个数列的通项公式. 2)递推公式:如果已知数列{an}的第一项(或前几项),且从第二项(或某一 项)开始,任何一项an与它的前一项an-1(n≥2)(或前几项)间的关系可以用一 个式子来表示,那么这个式子叫做数列{an}的递推公式. 5.数列{an}的前n项和及其与通项公式的关系 1)Sn=a1+a2+…+an.
an
是可求的,则可利用an=a1·a2 ·a3 ·…·an (an≠0,n≥2,n∈N*)求解.
a1 a2
an1
3.构造法:形如an+1=pan+q(其中p,q均为常数,pq(p-1)≠0)的递推关系式,把
ቤተ መጻሕፍቲ ባይዱ
原递推关系式转化为an+1-t=p(an-t),其中t= q ,然后构造 an1 t =p,即{an-t}
专题七 数列
7.1 数列的概念及表示
考点 数列的概念及表示 1.数列的概念:一般地,把按照确定的顺序排列的一列数称为数列,数列中 的每一个数叫做这个数列的项. 2.数列与函数的关系:数列{an}是从正整数集N*(或它的有限子集{1,2,3, …,n})到实数集R的函数,其自变量是序号n,对应的函数值是数列的第n项 an,记为an=f(n),即当自变量从1开始,按照从小到大的顺序依次取值时所对 应的一列函数值就是数列{an},另一方面,对于函数y=f(x),如果f(n)(n∈N*) 有意义,那么f(1), f(2),…, f(n),…构成一个数列{f(n)}. 3.数列的性质 由于数列可以看作一个关于n(n∈N*)的函数,因此它具备函数的某些性 质.

高考数学复习知识点讲解教案第38讲 数列的综合问题

高考数学复习知识点讲解教案第38讲 数列的综合问题
◆ 索引:数列实际问题的易错点为项数.
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .

高考数学二轮复习考点知识与题型专题讲解27---数列求和及其综合应用

高考数学二轮复习考点知识与题型专题讲解27---数列求和及其综合应用

高考数学二轮复习考点知识与题型专题讲解第27讲 数列求和及其综合应用[考情分析] 1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法.2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不等式相结合,考查最值、范围以及证明不等式等.3.主要以选择题、填空题及解答题的形式出现,难度中等.考点一 数列求和 核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是相邻项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ; 14n 2-1=12⎝⎛⎭⎫12n -1-12n +1. 2.错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列. 考向1 分组转化法例1(2022·德州联考)已知数列{}2n a 是公比为4的等比数列,且满足a 2,a 4,a 7成等比数列,S n为数列{b n }的前n 项和,且b n 是1和S n 的等差中项,若c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前2n -1项和. 解 因为数列{}2na 是公比为4的等比数列, 所以122n na a +=4, 所以a n +1-a n =2,所以数列{a n }是公差为2的等差数列,因为a 2,a 4,a 7成等比数列,所以a 24=a 2a 7,所以(a 1+6)2=(a 1+2)(a 1+12),解得a 1=6,所以a n =6+2(n -1)=2n +4,因为S n 为数列{b n }的前n 项和,且b n 是1和S n 的等差中项,所以S n +1=2b n ,当n ≥2时,有S n -1+1=2b n -1,两式相减得b n =2b n -2b n -1,即b n =2b n -1,当n =1时,有S 1+1=b 1+1=2b 1,所以b 1=1,所以数列{b n }是首项为1,公比为2的等比数列,所以b n =2n -1, 因为c n =⎩⎪⎨⎪⎧a n ,n =2k -1,b n ,n =2k ,k ∈N *. 所以数列{c n }的前2n -1项和为a 1+b 2+a 3+b 4+…+a 2n -1=(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n -2)=6n +n (n -1)2×4+2(1-4n -1)1-4 =2n 2+4n +23(4n -1-1). 考向2 裂项相消法例2(2022·宜宾模拟)在①S n =12(a n -1)(n +2);②S 2n -(n 2+2n -1)S n -(n 2+2n )=0,a n >0这两个条件中任选一个,补充在下面问题中,并给出解答.问题:已知数列{a n }的前n 项和为S n ,满足________.记数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n . (1)求{a n }的通项公式;(2)求T n .解 (1)选择①.由S n =12(a n -1)(n +2)得, 当n =1时,a 1=S 1=12(a 1-1)(1+2), 解得a 1=3,当n ≥2时,S n -1=12(a n -1-1)(n +1), 则a n =S n -S n -1=12(a n -1)(n +2) -12(a n -1-1)(n +1), 即na n =(n +1)a n -1+1,两边各项同除以n (n +1)得a n n +1-a n -1n =1n (n +1)=1n -1n +1(n ≥2), 当n ≥2时,a n n +1=⎝ ⎛⎭⎪⎫a n n +1-a n -1n +⎝ ⎛⎭⎪⎫a n -1n -a n -2n -1+⎝ ⎛⎭⎪⎫a n -2n -1-a n -3n -2+…+⎝⎛⎭⎫a 23-a 12+a 12 =⎝⎛⎭⎫1n -1n +1+⎝⎛⎭⎫1n -1-1n +⎝⎛⎭⎫1n -2-1n -1+…+⎝⎛⎭⎫12-13+32 =12+32-1n +1=2-1n +1=2n +1n +1, 所以a n =2n +1,经检验当n =1时,a 1=2×1+1=3也成立,故a n =2n +1.选择②.由S 2n -(n 2+2n -1)S n -(n 2+2n )=0得,[S n -(n 2+2n )](S n +1)=0,∴S n =n 2+2n 或S n =-1,∵a n >0,∴S n =-1舍去.∴S n =n 2+2n .当n =1时,a 1=S 1=12+2×1=3,当n ≥2时,a n =S n -S n -1=n 2+2n -(n -1)2-2(n -1)=2n +1,当n =1时,符合上式,∴a n =2n +1.(2)由(1)知S n =n 2+2n ,∴1S n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, ∴T n =1S 1+1S 2+…+1S n=12⎣⎡ ⎝⎛⎭⎫11-13+⎝⎛⎭⎫12-14+…+ ⎦⎤⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2 =12⎝⎛⎭⎫11+12-1n +1-1n +2 =34-12(n +1)-12(n +2), ∴T n =34-12(n +1)-12(n +2). 考向3 错位相减法例3(2022·菏泽检测)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +1.(1)求数列{a n }的通项公式;(2)在a n 与a n +1之间插入n 个数,使得包括a n 与a n +1在内的这n +2个数成等差数列,设其公差为d n ,求⎩⎨⎧⎭⎬⎫1d n 的前n 项和T n . 解 (1)因为a n +1=2S n +1,所以a n =2S n -1+1(n ≥2),两式相减可得a n +1-a n =2a n ,所以a n +1=3a n (n ≥2),令n =1,可得a 2=2S 1+1=2a 1+1=3,所以a 2a 1=3,所以数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1. (2)由题意,可得d n =3n -3n -1n +1=2×3n -1n +1, 所以1d n =n +12×3n -1, 所以T n =22×30+32×31+42×32+…+n +12×3n -1, 13T n =22×31+32×32+…+n 2×3n -1+n +12×3n, 两式相减可得23T n =1+12⎝⎛⎭⎫13+132+…+13n -1-n +12×3n=1+12×13-13n 1-13-n +12×3n =54-2n +54×3n, 所以T n =158-2n +58×3n -1. 规律方法 (1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和或差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)用错位相减法求和时,应注意:①等比数列的公比为负数的情形;②在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.跟踪演练1 (1)(2022·湛江模拟)已知数列{a n }是等比数列,且8a 3=a 6,a 2+a 5=36.①求数列{a n }的通项公式;②设b n =a n (a n +1)(a n +1+1),求数列{b n }的前n 项和T n ,并证明:T n <13. 解 ①设等比数列{a n }的公比是q ,首项是a 1.由8a 3=a 6,可得q =2.由a 2+a 5=36,可得a 1q (1+q 3)=36,所以a 1=2,所以a n =2n .②因为b n =a n (a n +1)(a n +1+1)=12n+1-12n +1+1, 所以T n =b 1+b 2+…+b n =⎝⎛⎭⎫121+1-122+1+⎝⎛⎭⎫122+1-123+1+…+⎝⎛⎭⎫12n +1-12n +1+1 =121+1-12n +1+1=13-12n +1+1. 又12n +1+1>0,所以T n <13. (2)(2022·南通调研)已知正项等比数列{a n }的前n 项和为S n ,满足a 2=2,a n +3-S n +2=a n +1-S n . ①求数列{a n }的通项公式;②记b n =2n -1a n ,数列{b n }的前n 项和为T n ,求使不等式T n <132-4n +72n 成立的n 的最小值. 解 ①设等比数列的公比为q (q >0),因为a 2=2,所以a 1q =2⇒a 1=2q, 由a n +3-S n +2=a n +1-S n⇒a n +3-a n +1=S n +2-S n⇒a n +3-a n +1=a n +2+a n +1⇒a n +3-a n +2-2a n +1=0⇒a n +1(q 2-q -2)=0,因为a n +1≠0,所以q 2-q -2=0,因为q >0,所以解得q =2,即a 1=2q=1, 所以数列{a n }的通项公式为a n =1×2n -1=2n -1.②由①可知a n =2n -1, 所以b n =2n -1a n =2n -12n -1, 所以T n =1+32+522+…+2n -12n -1,(*) 12T n =12+322+523+…+2n -12n ,(**) 由(*)-(**)得12T n = 1+2×⎝⎛⎭⎫12+122+123+…+12n -1-2n -12n =1+2×12⎝⎛⎭⎫1-12n -11-12-2n -12n =3-2n +32n , 所以T n =6-2n +32n -1, 代入T n <132-4n +72n 中, 得6-2n +32n -1<132-4n +72n ⇒2n >2⇒n >1,因为n ∈N *,所以n 的最小值为2.考点二 数列的综合问题 核心提炼数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n 项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.例4 (1)已知A (0,0),B (5,0),C (1,3),连接△ABC 的各边中点得到△A 1B 1C 1,连接△A 1B 1C 1的各边中点得到△A 2B 2C 2,如此无限继续下去,得到一系列三角形:△ABC ,△A 1B 1C 1,△A 2B 2C 2,…,则这一系列三角形的面积之和无限趋近于常数( )A.103B .5C .10D .15 答案 C解析 因为S △ABC =12×5×3=152, △A 1B 1C 1∽△ABC ,A 1B 1AB =12, 所以111A B C ABC S S △△=14, 所以S △ABC ,111222A B C A B C S S △△,,…成等比数列,其首项为152,公比为14, 所以这一系列三角形的面积之和为S n =152⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=10⎣⎡⎦⎤1-⎝⎛⎭⎫14n ,无限趋近于10. (2)在各项均为正数的数列{a n }中,a 1=1,a 2n +1-2a n +1a n -3a 2n =0,S n 是数列{a n }的前n 项和,若对n ∈N *,不等式a n (λ-2S n )≤27恒成立,则实数λ的取值范围为__________.答案 (-∞,17]解析 ∵a 2n +1-2a n +1a n -3a 2n =0,∴(a n +1+a n )(a n +1-3a n )=0,∵a n >0,∴a n +1=3a n ,又a 1=1,∴数列{a n }是首项为1,公比为3的等比数列,∴a n =3n -1,S n =1-3n 1-3=3n 2-12, ∴不等式a n (λ-2S n )≤27即λ≤2S n +27a n =3n +273n -1-1对n ∈N *恒成立, ∵3n +273n -1≥23n ×273n -1=18, 当且仅当3n =273n -1,即n =2时,⎝⎛⎭⎫3n +273n -1min =18, ∴λ≤17,∴实数λ的取值范围为(-∞,17].易错提醒 求解数列与函数交汇问题要注意两点(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意.(2)解题时准确构造函数,利用函数性质时注意限制条件.跟踪演练2 (1)我国古代数学著作《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为1 200尺,则需要几天时间才能打穿(结果取整数)( )A .12B .11C .10D .9答案 B解析 设大鼠和小鼠每天穿墙厚度分别构成数列{a n },{b n },由题意知它们都是等比数列,a 1=b 1=1,数列{a n }的公比为q 1=2,数列{b n }的公比为q 2=12,设需要n 天能打穿墙,则(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=1-2n1-2+1-⎝⎛⎭⎫12n 1-12=2n +1-12n -1, 当n =10时,2n +1-12n -1=1 025-129≈1 025<1 200, 当n =11时,2n +1-12n -1=2 049-1210≈2 049>1 200, 因此需要11天才能打穿.(2)(2022·潍坊检测)如图,在边长为a 的等边△ABC 中,圆D 1与△ABC 相切,圆D 2与圆D 1相切且与AB ,AC 相切,…,圆D n +1与圆D n 相切且与AB ,AC 相切,依次得到圆D 3,D 4,…,D n .设圆D 1,D 2,…,D n 的面积之和为X n (n ∈N *),则X n 等于()A.112πa 2⎝⎛⎭⎫19n -1 B.332πa 2⎣⎡⎦⎤1-⎝⎛⎭⎫19n C.18πa 2⎣⎡⎦⎤1-⎝⎛⎭⎫13n D.112πa 2⎣⎡⎦⎤⎝⎛⎭⎫19n -1-⎝⎛⎭⎫13n -1+1 答案 B解析 等边三角形内心、重心、外心、垂心四心合一.所以圆D 1的半径为13×32a =36a , 面积为a 212·π, 圆D 2的半径为13×36a ,面积为19·a 212·π, 圆D 3的半径为⎝⎛⎭⎫132×36a ,面积为⎝⎛⎭⎫192·a 212·π, 以此类推,圆D n 的面积为⎝⎛⎭⎫19n -1·a 212·π, 所以各圆的面积组成的数列是首项为a 212·π,公比为19的等比数列, 所以X n =a 212·π·⎝⎛⎭⎫1-19n 1-19=3a 232·π·⎝⎛⎭⎫1-19n=332πa 2⎣⎡⎦⎤1-⎝⎛⎭⎫19n . 专题强化练一、单项选择题1.数列{a n }满足2a n +1=a n +a n +2,且a 4,a 4 040是函数f (x )=x 2-8x +3的两个零点,则a 2 022的值为( )A .4B .-4C .4 040D .-4 040答案 A解析 因为a 4,a 4 040是函数f (x )=x 2-8x +3的两个零点,即a 4,a 4 040是方程x 2-8x +3=0的两个根,所以a 4+a 4 040=8.又2a n +1=a n +a n +2,所以数列{a n }是等差数列,所以a 4+a 4 040=2a 2 022=8,所以a 2 022=4.2.已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n )(n ∈N *),记数列{a n }的前n 项和为S n ,则S 2 022等于( ) A. 2 022+1 B. 2 023-1 C. 2 022-1 D. 2 023+1答案 B解析 函数f (x )=x a 的图象过点(4,2),则4a =2,解得a =12,得f (x )=x , a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,则S 2 022=(2-1)+(3-2)+…+( 2 023- 2 022)=-1+ 2 023.3.(2022·衡水模拟)已知数列{a n }的前n 项和为S n ,若a n +2=-a n ,且a 1=1,a 2=2,则S 2 023等于( )A .0B .1C .2D .3答案 C解析 由a n +2=-a n ,得a n +4=-a n +2=a n ,所以数列{a n }是周期为4的数列,所以由a 1=1,a 2=2得a 3=-1,a 4=-2,所以a 1+a 2+a 3+a 4=0,所以S 2 023=(a 1+a 2+a 3+a 4)×505+a 1+a 2+a 3=2.4.(2022·长沙质检)数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n +1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6 700 417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和,若32S n =63a n ,则n 等于( )A .5B .6C .7D .8答案 B解析 因为F n =22n +1(n =0,1,2,…),所以a n =log 4(F n -1)=24log 2n=2n -1, 所以{a n }是等比数列,首项为1,公比为2,所以S n =1×(1-2n )1-2=2n -1, 所以32×(2n -1)=63×2n -1,解得n =6. 5.(2022·西南四省名校大联考)数列{a n }的前n 项和为S n ,且a 1+3a 2+…+3n -1a n =n ·3n ,若对任意n ∈N *,S n ≥(-1)n nλ恒成立,则实数λ的取值范围为( )A .[-3,4]B .[-22,22]C .[-5,5]D .[-22-2,22+2]答案 A解析 当n ≥2时,3n -1a n =n ·3n -(n -1)3n -1 =(2n +1)3n -1, ∴a n =2n +1,当n =1时,a 1=3符合上式,∴a n =2n +1,∴S n =n (3+2n +1)2=n 2+2n . 当n 为奇数时,λ≥-S n n=-(n +2), 令g (n )=-(n +2),当n =1时,g (n )max =-3,∴λ≥-3,当n 为偶数时,λ≤S n n=n +2, 令h (n )=n +2,∴λ≤h (2)=4,∴-3≤λ≤4.6.“双减”政策极大缓解了教育的“内卷”现象,数学中的螺旋线可以形象的展示“内卷”这个词,螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD 的边长为4,取正方形ABCD 各边的四等分点E ,F ,G ,H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的四等分点M ,N ,P ,Q ,作第3个正方形MNPQ ,以此方法一直继续下去,就可以得到阴影部分的图案.设正方形ABCD 边长为a 1,后续各正方形边长依次为a 2,a 3,…,a n ,…;如图(2)阴影部分,设Rt △AEH 的面积为b 1,后续各直角三角形面积依次为b 2,b 3,…,b n ,….下列说法错误的是( )A .从正方形ABCD 开始,连续3个正方形的面积之和为1294B .a n =4×⎝⎛⎭⎫104n -1 C .使得不等式b n >12成立的n 的最大值为4 D .数列{b n }的前n 项和S n <4答案 C解析 由题可得a 1=4,a 2=⎝⎛⎭⎫14a 12+⎝⎛⎭⎫34a 12=104a 1, a 3=⎝⎛⎭⎫14a 22+⎝⎛⎭⎫34a 22=104a 2, …,a n =⎝⎛⎭⎫14a n -12+⎝⎛⎭⎫34a n -12=104a n -1, 则a n a n -1=104, 所以数列{a n }是以4为首项,104为公比的等比数列,则a n =4×⎝⎛⎭⎫104n -1,显然B 正确; 由题意可得,S △AEH =a 21-a 224, 即b 1=a 21-a 224,b 2=a 22-a 234,…,b n =a 2n -a 2n +14, 于是b n =16×⎝⎛⎭⎫1042n -2-16×⎝⎛⎭⎫1042n 4=32×⎝⎛⎭⎫58n -1,为等比数列, 对于A ,连续三个正方形的面积之和S =a 21+a 22+a 23=16+10+254=1294,A 正确; 对于C ,令b n =32×⎝⎛⎭⎫58n -1>12,则⎝⎛⎭⎫58n -1>13, 而⎝⎛⎭⎫584-1=125512<13,C 错误;对于D ,S n =32×1-⎝⎛⎭⎫58n 1-58=4×⎣⎡⎦⎤1-⎝⎛⎭⎫58n <4, D 正确.二、多项选择题7.已知F 是椭圆x 225+y 216=1的右焦点,椭圆上至少有21个不同的点P i (i =1,2,3,…),|FP 1|,|FP 2|,|FP 3|,…组成公差为d (d >0)的等差数列,则( )A .该椭圆的焦距为6B .|FP 1|的最小值为2C .d 的值可以为310D .d 的值可以为25答案 ABC解析 由椭圆的方程和定义知a =5,b =4,c =3,∴焦距为6,∴A 正确;又∵a -c ≤|FP i |≤a +c ,∴2≤|FP i |≤8,∴B 正确;令|FP 1|,|FP 2|,|FP 3|,…组成等差数列{a n },d >0,∴a 1=|FP 1|≥2,a n ≤|FP i |max =8,∴d =a n -a 1n -1≤8-2n -1=6n -1≤621-1=310,∴0<d ≤310,∴C 正确,D 错误. 8.如图,已知四边形ABCD 中,F n (n ∈N *)为边BC 上的一列点,连接AF n 交BD 于G n ,点G n (n ∈N *)满足G n F n ---→+2(1+a n )G n C ---→=a n +1G n B ---→,其中数列{a n }是首项为1的正项数列,S n 是数列{a n }的前n 项和,则下列结论正确的是( )A .a 3=13B .数列{3+a n }是等比数列C .a n =4n -3D .S n =2n +1-3n 答案 AB解析 由题意可知G n B ---→=1a n +1G n F n ---→+2(1+a n )a n +1G n C ---→, 因为B ,F n ,C 三点共线,所以1a n +1+2(1+a n )a n +1=1, 即1+2+2a n =a n +1,即a n +1=3+2a n ,a n +1+3=2(a n +3),所以数列{a n +3}是以a 1+3=4为首项,2为公比的等比数列,于是a n +3=4×2n -1=2n +1, 所以a n =2n +1-3, 所以a 3=24-3=13,所以A ,B 选项正确,C 选项不正确.又S 2=a 1+a 2=1+5=6,而22+1-3×2=2,所以D 选项不正确.三、填空题9.在数列{a n }中,a 1=3,对任意m ,n ∈N *,都有a m +n =a m +a n ,若a 1+a 2+a 3+…+a k =135,则k =________.答案 9解析 令m =1,由a m +n =a m +a n 可得,a n +1=a 1+a n ,所以a n +1-a n =3,所以{a n }是首项为3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k=k (a 1+a k )2=k (3+3k )2=135, 整理可得k 2+k -90=0,解得k =9或k =-10(舍去).10.已知数列{a n }满足a n =n 2+λn ,n ∈N *,若数列{a n }是单调递增数列,则λ的取值范围是______. 答案 (-3,+∞)解析 ∵{a n }是单调递增数列,∴当n ≥1时,a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ>0恒成立,即λ>-2n -1,∵n ≥1,∴(-2n -1)max =-3,∴λ>-3.11.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 8=________. 答案 8解析 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+a 7=-(3+7+11+15)=-36.当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,则a 2+a 4+a 6+a 8=5+9+13+17=44,所以a 1+a 2+a 3+…+a 8=-36+44=8.12.(2022·聊城质检)某数学兴趣小组模仿“杨辉三角”构造了类似的数阵,将一行数列中相邻两项的乘积插入这两项之间,形成下一行数列,以此类推不断得到新的数列.如图,第一行构造数列1,2;第二行得到数列1,2,2;第三行得到数列1,2,2,4,2,…,则第5行从左数起第6个数的值为________.用A n 表示第n 行所有项的乘积,若数列{B n }满足B n =log 2A n ,则数列{B n }的通项公式为________.答案 8 B n =3n -1+12 解析 根据题意,第5行的数列依次为1,2,2,4,2,8,4,8,2,16,8,32,4,32,8,16,2,从左数起第6个数的值为8.A 1=21,213222A +==, 015133322A ++==,012141333422A +++==, 01234113333522A ++++==, 故有0123211131311333+1323322=2,n n n n A ---+-==-+++++…+则B n =log 2A n =11312213log 2.2n n -+-+=四、解答题13.(2022·烟台模拟)已知等差数列{a n }的前n 项和为S n ,a 4=9,S 3=15.(1)求{a n }的通项公式;(2)保持数列{a n }中各项先后顺序不变,在a k 与a k +1(k =1,2,…)之间插入2k 个1,使它们和原数列的项构成一个新的数列{b n },记{b n }的前n 项和为T n ,求T 100的值. 解 (1)设{a n }的公差为d ,由已知a 1+3d =9,3a 1+3d =15.解得a 1=3,d =2.所以a n =2n +1.(2)因为在a k 与a k +1(k =1,2,…)之间插入2k 个1,所以a k 在{b n }中对应的项数为n =k +21+22+23+…+2k -1 =k +2-2k1-2=2k +k -2, 当k =6时,2k +k -2=68,当k =7时,2k +k -2=133,所以a 6=b 68,a 7=b 133,且b 69=b 70=…=b 100=1.因此T 100=S 6+(2×1+22×1+23×1+…+25×1)+32×1=62×(3+13)+2-261-2+32=142. 14.(2022·长沙质检)已知{a n }是公差不为0的等差数列,其前n 项和为S n ,a 1=2,且a 2,a 4,a 8成等比数列.(1)求a n 和S n ;(2)若b n =n a +1S n ,数列{b n }的前n 项和为T n ,且T n ≥m n +1对任意的n ∈N *恒成立,求实数m 的取值范围.解 (1)设数列{a n }的公差为d , 由已知得a 24=a 2a 8,即(2+3d )2=(2+d )(2+7d ), 整理得d 2-2d =0,又d ≠0,∴d =2,∴a n =2+2(n -1)=2n ,∴S n =n (2+2n )2=n 2+n .(2)由题意知,b n =()22n +1n 2+n =2n +1n (n +1)=2n +1n -1n +1,∴T n =(21+22+…+2n )+⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=2(1-2n )1-2+1-1n +1=2n +1-1-1n +1,∵T n ≥m n +1,∴(n +1)2n +1-(n +2)≥m , 令f (n )=(n +1)2n +1-(n +2),则f (n +1)-f (n )=(n +3)2n +1-1>0, 即f (n +1)>f (n )对任意的n ∈N *恒成立, ∴{f (n )}是单调递增数列,∴[f (n )]min =f (1)=5,∴m ≤5,∴实数m 的取值范围是(-∞,5].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲 数列综合★★★高考在考什么 【考题回放】1.(宁夏)已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B )A.3 B.2 C.1 D.2-2.(江西)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.73.(辽宁卷) 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于A .122n +- B.3n C. 2n D.31n -【解析】因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C 。

4.(湖南)设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( B )A .10B .11C .12D .135.(陕西卷) 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n .解析:解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3.又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时,a 3=12, a 15=72, 有a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.6.(广东卷)已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9,无穷等比数列{}2na 各项的和为815. (I)求数列{}n a 的首项1a 和公比q ; (II)对给定的(1,2,3,,)k k n =,设()k T 是首项为k a ,公差为21k a -的等差数列,求(2)T 的前10项之和;解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a q a q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫⎝⎛⨯=n n a ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155.★★★高考要考什么本章主要涉及等差(比)数列的定义、通项公式、前n 项和及其性质,数列的极限、无穷等比数列的各项和.同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则.高考对本专题考查比较全面、深刻,每年都不遗漏.其中小题主要考查1()a d q 、、n n n a S 、、间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论.高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在 一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型:(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力.(2)给出S n 与a n 的关系,求通项等,考查等价转化的数学思想与解决问题能力.(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力. 理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列.★ ★★ 突 破 重 难 点【范例1】已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式; (II )求数列{}n a 的通项公式及前n 项和公式n S .解:(I)由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥) 易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+.(II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则11(2)2n n d d n -=≥.易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为112n n d -=. 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得 1122n n a n =++, 求和得21122n n n S n =-+++.【变式】(文)在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+,(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记(0)n an n b a p p =>,求数列{}n b 的前n 项和n T 。

解:(Ⅰ)设等差数列{}n a 的公差为d ,由2421n n S n S n +=+得:1213a a a +=,所以22a =,即211d a a =-=,又1211122()42212n n n n n n a nd a n S a nd a n a a n S a a n ++⨯+++===+++⨯=2(1)1n n a n a +++,所以n a n =。

(Ⅱ)由n an n b a p =,得n n b np =。

所以23123(1)n n n T p p p n p np -=++++-+,当1p =时,12n n T +=; 当1p ≠时,234123(1)n n n pT p p p n p np +=++++-+,23111(1)(1)1n n n n n n p p P T p p p pp npnp p-++--=+++++-=--即11,12(1),11n nn n p T p p np p p++⎧=⎪⎪=⎨-⎪-≠⎪-⎩。

(理)已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。

(Ⅰ)、求数列{}n a 的通项公式;(Ⅱ)、设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n mT <对所有n N *∈都成立的最小正整数m ;解:(Ⅰ)设这二次函数f(x)=ax 2+bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得a=3 , b=-2, 所以 f(x)=3x 2-2x.又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以n S =3n 2-2n.当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n (=6n -5. 当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5 (n N *∈)(Ⅱ)由(Ⅰ)得知13+=n n n a a b =[]5)1(6)56(3---n n =)161561(21+--n n ,故T n =∑=ni ib1=21⎥⎦⎤⎢⎣⎡+--++-+-)161561(...)13171()711(n n =21(1-161+n ). 因此,要使21(1-161+n )<20m (n N *∈)成立的m,必须且仅须满足21≤20m ,即m ≥10,所以满足要求的最小正整数m 为10.【范例2】已知函数2()1f x x x =+-,,αβ是方程f (x)=0的两个根()αβ>,'()f x 是f (x)的导数;设11a =,1()'()n n n n f a a a f a +=-(n=1,2,……) (1)求,αβ的值;(2)证明:对任意的正整数n ,都有n a >a ; (3)记lnn n n a b a aβ-=-(n=1,2,……),求数列{b n }的前n 项和S n 。

解析:(1)∵2()1f x x x =+-,,αβ是方程f (x)=0的两个根()αβ>,∴αβ=; (2)'()21f x x =+,21115(21)(21)12442121n n n nn n n n n n a a a a a a a a a a ++++-+-=-=-++ =5114(21)4212n n a a ++-+,∵11a =,∴有基本不等式可知20a >(当且仅当1a时取等号),∴20a >同,样3a >,……,n a α>=(n=1,2,……),(3)1()()(1)2121n n n n n n n n a a a a a a a a αββββα+----=--=++++,而1αβ+=-,即1αβ+=-,21()21n n n a a a ββ+--=+,同理21()21n n n a a a αα+--=+,12n n b b +=,又113l n l n l n1b βα-===-2(2n n S =-【文】已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是的导数设11a =,1()()n n n n f a a a f a +=-',(1,2,)n =. (1)求α、β的值;(2)已知对任意的正整数n 有n a α>,记ln n n n a b a βα-=-,(1,2,)n =.求数列{n b }的前n 项和n S .解、(1) 由 210x x +-=得x =α∴=β= (2) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+=-=++(22221111n n n n n n n n n a a a a a a a a ββαα+++⎛⎫++++ ⎪⎛⎫--==== ⎪--⎝⎭∴ 12n n b b += 又1111ln4ln2a b a βα-===- ∴数列{}n b 是一个首项为,公比为2的等比数列; ∴)()12242112n n n S -==-- 【变式】对任意函数f (x ),x ∈D ,可按图示3—2构造一个数列发生器,其工作原理如下:①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0);②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去. 现定义f (x )=124+-x x . (Ⅰ)若输入x 0=6549,则由数列发生器产生数列{x n }.请写出数列{x n }的所有项; (Ⅱ)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值;(Ⅲ)(理)若输入x 0时,产生的无穷数列{x n }满足:对任意正整数n ,均有x n <x n +1,求x 0的取值范围.解:(Ⅰ)∵f (x )的定义域D =(-∞1)∪(-1,+∞) ∴数列{x n }只有三项x 1=1911,x 2=51,x 3=-1(Ⅱ)∵f (x )=124+-x x =x 即x 2-3x +2=0,∴x =1或x =2 即x 0=1或2时,x n +1=124+-n n x x =x n ,故当x 0=1时,x 0=1;当x 0=2时,x n =2(n ∈N )(Ⅲ)解不等式x <124+-x x ,得x <-1或1<x <2,要使x 1<x 2,则x 2<-1或1<x 1<2对于函数f (x )=164124+-=+-x x x 。

相关文档
最新文档