二项分布与超几何分布比较
超几何分布和二项分布
超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。
它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。
本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。
一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。
具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。
其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。
超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。
2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。
3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。
超几何分布在实际应用中有着广泛的应用。
例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。
二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。
具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。
其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。
二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。
2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。
二项分布与超几何分布的区别
(1)从中每次取出1个球然后放回,连续抽取三次,求取到红球 次数X的分布列和数学期望。 3k k k 解:由已知X~B(3,0.4), PX k C3 0.4 1 0.4 , (k 0,1,2,3)
X 所以,X的分布列为: p
0
1
2
3
27 54 36 8 E X 3 0.4 1.2 125 125 125 125
k n- k P(X=k)=Ck p (1 - p ) ,k=0,1,2,…,n. n
则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 中恰有 X 件次品,则事件{X=k}发生的概率为
E X 3 0.6 1.8
0
1
2
3
8 36 54 27 125 125 125 125
变式:(3)把(2)改为:若随机在样本不赞成高考改革的家长中 抽取3个,记这3个家长中是城镇户口的人数为Y,试求Y的分布列 及数学期望E(Y). k 3 k C15 C10 解:由已知Y服从超几何分布, PY k , (k 0,1,2,3) 3 C25 所以,Y的分布列为: Y
2018届南宁市摸底考试18题
摸底考试18题第(1)问
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家 长中抽取3个,记这3个家长中是城镇户口的人数为X,试求X的分 布列及数学期望E(X). 用样本的频率估计概率应怎样理解? 概率定义:对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为 事件A的概率。 在样本中,不赞成高考改革的家长中是城镇户口的频率为0.6,因 此,估计全省从不赞成高考改革的家长中随机抽取1个,他是城镇 户口的概率为0.6,抽取3个,即进行3次独立重复试验,所以, X~(n,p)
超几何分布与二项分布的区别联系
件的概率: ⑴3 台都没有报警; (2)恰好有一台报警; (3)恰好有两台报警;
分析: 1.一个警报器对另一个警报器有干扰吗?
2.每一个警报器报警的概率一样吗?
3.属于几次独立重复实验?
返回
1.一个警报器对另一个警报器有干扰吗? 2.每一个警报器报警的概率一样吗? 3.属于几次独立重复实验?
(2)如以该次检查的结果作为该批次每件产品大肠菌群超标的概率,如 从该批次产品中任取2件,设随机变量η为大肠菌群超标的产品数量,求P(η =1)的值及随机变量η的数学期望.
规律总结:当提问中涉及'‘用样本数据来估计总体数
据”字样或有此意思表示的时候,就是二项分布,否则就不是。
返回
跟踪训练 1
1.(广东高考 17) 某食品厂为了检查一条自动包装流水线的生产情 况,随机抽取该流水线上的 40 件产品作为样本称出它们的重量(单 位:克),重量的分组区间为(490,495],(495,500],……,(510,515], 由此得到样本的频率分布直方图,如图 4 所示。 (1)根据频率分布直方图,求重量超过 505 克的产品数量。 (2)在上述抽取的 40 件产品中任取 2 件,设 Y 为重量超过 505 克 的产品数量, 求 Y 的分布列。 (3)从流水线上任取 5 件产品, 求恰有 2 件产品合格的重量超过 505 克的概率。
(1).C30 0.90 (0.1)3 0.001 (2).C31(0.9)1(0.1)2 0.027 (3).C32 (0.9)2 (0.1)1 0.243
返回
返回
探究一 某地工商局从某肉制品公司的一批数量较大的火腿肠产品中
抽取10件产品,检验发现其中有3件产品的大肠菌群超标. (1)如果在上述抽取的10件产品中任取2件,设随机变量ξ为
超几何分布与二项分布的联系与区别
在苏教版《数学选修2-3》的课本中,第二章《概率》的2。
2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper—geometric distribution)与二项分布(binomial distribution)。
通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。
然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布,学生对这两模型的定义不能很好的理解,一遇到含“取"或“摸"的题型,就认为是超几何分布,不加分析,随便滥用公式。
事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别.课本对于超几何分布的定义是这样的:一般的,若一个随机变量X的分布列为,其中,则称X服从超几何分布,记为.其概率分布表为:对于二项分布的定义是这样的:若随机变量X的分布列为,其中则称X服从参数为n,p的二项分布,记为。
其概率分布表为:超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0连续变化到l,对应概率和N,n,l三个值密切相关……可见两种分布之间有着密切的联系。
课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的.而对二项分布则使用比较容易理解的射击问题来建立模型。
若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。
在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有"改为“无”,就可以实现两种分布之间的转化。
“返回”和“不返回"就是两种分布转换的关键.如在2。
二项分布与超几何分布的区别
二项分布与超几何分布
的区别
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
二项分布与超几何分布的区别:
定义:若有N 件产品,其中M 件是废品,无返回...
地任意抽取n 件,则其中恰有的废品件数X 是服从超几何分布的。
概率为()k n K M N M n N
C C P X k C --==. 若有N 件产品,其中M 件是废品,有.返回..
地任意抽取n 件,则其中恰有的废品件数X 是服从二项分布的。
概率为()()1n k k k n P X k C p p -==-,其中M p N
=. 区别:(1)二项分布是做相同的n 次试验(n 次独立重复试验),
(2)当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布。
在废品为确定数M 的足够多的产品中,任意抽取n 个(由于产品个数N 无限多,无返回与有返回无区别,故可看作n 次独立重复试验)中含有k 个废品的概率当然服从二项分布。
在这里,超几何分布转化为二项分布的条件是①产品个数应无限多,否则无返回地抽取n 件产品是不能看作n 次独立试验的.②在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。
(3)实际上,在以样本估计总体时,从样本中无返回地任意抽取n 件,当然废品件数X 服从超几何分布的;而从总体中无返回地任意抽取n 件,理想认为....
废品件数X 服从二项分布的。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别开滦一中张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3 从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处!一、两者的定义是不同的教材中的定义:(一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)= C kMCC nNnN- k- M ,k 0 ,1, 2,, m,其中m=min{M,n}, 且n≤N,M ≤N,n,M,N ∈N,称随机变量X服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n次独立重复试验,其中A(i=1,2,⋯,n)是第ⅰ次试验结果,则P(A1A2A3⋯An)=P(A 1)P(A2)P(A3) ⋯P(An)2)二项分布在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为P,则P(X=k)= C k k np (1p )k并称P为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)第1页共7 页= C kMCC nNnN- k- M ,k 0 ,1, 2,, m,二项分布:在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为P,则P(X=k)= C k k np (1 p )k温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别如何计算恰好有1件次品的概率?这道题目可以用超几何分布和二项分布两种方法来解决。
首先,我们可以使用超几何分布,因为这是一个不放回抽样问题。
根据题目条件,我们可以得到M=0.02n,N=n,n=3,k=1.代入超几何分布的公式,可以得到P(X=1)=0.111.其次,我们也可以使用二项分布,因为这是一个独立重复试验问题。
根据题目条件,我们可以得到n=3,p=0.02,k=1.代入二项分布的公式,可以得到P(X=1)=0.057.因此,两种方法得到的结果略有不同,但可以看出它们之间是有联系的。
二项分布可以看作是超几何分布的一种近似,当样本容量n很大时,二项分布的计算结果可以逼近超几何分布的计算结果。
在进行放回或不放回的方式抽取时,当产品总数分别为500、5000和时,恰好抽到1件次品的概率分别是多少?根据此问题,你对超几何分布与二项分布的关系有何认识?解析:在不放回的方式抽取中,每次抽取时都是从这n件产品中抽取,从而抽到次品的概率都为。
次品数X服从二项分布,恰好抽到1件次品的概率为1P(X=1)=C3×(1-2%)^2×(2%)^1≈0.057.在不放回的方式抽取中,抽到的次品数X是随机变量,X服从超几何分布,X的分布与产品的总数n有关,所以需要分3种情况分别计算。
①当n=500时,产品的总数为500件,其中次品的件数为500×2%=10,合格品的件数为490.从500件产品中抽出3件,其中恰好抽到1件次品的概率为P(X=1)=12C10×C×490×489÷3500×499×498≈0..②当n=5000时,产品的总数为5000件,其中次品的件数为5000×2%=100,合格品的件数为4900.从5000件产品中抽出3件,其中恰好抽到1件次品的概率为P(X=1)=12C100×Cxxxxxxx×4900×4899÷×4999×4998≈0.xxxxxx x。
超几何分布与二项分布的辨别
超几何分布与二项分布[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k M N M n NC C P X k C --==(0,1,2,,k m = )进行处理就可以了. 二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p -.1、某人参加一次英语考试,已知在备选题的10道试题中能答出其中的4道题,规定每次考试从备选题中随机抽取3题进行测试,求答对题数ξ的分布列?2、甲乙两人玩秒表游戏,按开始键,然后随机按暂停键,观察秒表最后一位数,若出现0,1,2,3则甲赢,若最后一位出现6,7,8,9则乙赢,若最后一位出现4,5是平局.玩三次,记甲赢的次数为变量X ,求X 的分布列3、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ) 随机选取3件产品,其中一等品的件数记为X,求X的分布列;(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.4、在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是23.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?5、一个袋中装有10个大小相同的小球,其中标号为7的球2个,标号为8的球3个,标号为9的球3个,标号为10的球2个.从盒中任取两球记较大的一个球的标号为ξ,求ξ的分布列?现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.求ξ的分布列?7、二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ.8、盒子中装有大小相同的10只小球,其中2只红球,4只黑球,4只白球.规定:一次摸出3只球,如果这3只球是同色的,就奖励10元,否则罚款2元.(Ⅰ)若某人摸一次球,求他获奖励的概率;(Ⅱ)若有10人参加摸球游戏,每人摸一次,摸后放回,记随机变量ξ为获奖励的人数,(i)求(1)Pξ>(ii)求这10人所得钱数的期望.(结果用分数表示,参考数据:10141152⎛⎫≈⎪⎝⎭)(ppm)罗非鱼的汞含量01321598732 112354。
【数学】超几何分布与二项分布的区别与联系
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。
一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。
其分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。
此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。
二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。
超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。
实质上,超几何分布是古典概型的一种特例。
二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。
这就是二者之间的区别。
本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。
解:(1)是不放回地抽取,X 服从超几何分布。
从10个球中任取2球的结果数为C 102,从10个球中任取2个,其中恰有k 个黑球的结果数为C 4k C 62-k,那么从10个球中任取2个,其中恰有k 个黑球的概率为P (X=k )=C 4k C 62-kC 102,k=0,1,2。
超几何分布与二项分布
二项分布与超几何分布的区别与联系1.定义:(1)超几何分布:设有总数为N件的两类..物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为()m n mM N MnNC CP X mC --== (0≤m≤l,l为n和M中较小的一个),则称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.(2)二项分布:若将事件A发生的次数设为X,发生的概率为p,不发生的概率q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n) ,于是得到X的分布列(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n n p n q0各对应项的值,称这样的离散型随机变量X服从参数为n,p的二项分布,记做X~B(n,p).2.本质区别:(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题,也就是说二项分布中每个事件之间是相互独立的,而超几何分布不是;(2)超几何分布中的概率计算实质上是古典概型问题,二项分布中的概率计算实质上是相互独立事件的概率问题.温馨提示:(1)超几何分布需要知道总体的容量,也就是总体个数有限;而二项分布不需要知道总体容量,但需要知道“成功率”.(2)当题目中出现“用样本数据估计×××的总体数据”是均为二项分布;(3)二项分布与超几何分布两者之间存在着联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.概率论中的二项分布与超几何分布都是古典概型。
【典例】某批n 件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当500,5000,50000n =时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【解】(1)在放回的方式抽取中,每次抽取时都从这n 件产品中抽取,从而抽到品的概率都为0.02.可以把3次抽取看成是3次独立重复试验,这样抽到的次品数X ~(3,0.02)B ,恰好抽到1件次品的概率为1223(1)0.02(10.02)30.020.980057624=.P X C ==⨯⨯-⨯⨯≈在不放回的方式抽取中,抽到的次品数X 是随机变量,X 服从超几何分布,X 的分布与产品的总数n 有关,所以需要分3种情况计算:①500n =时,产品的总数为500件,其中次品的件数为500⨯2%=10,合格品的件数为490件。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别开滦一中 张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的答复就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk-n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1〕独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。
(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=n Nk-n M -N k M C C C , ,2,1,0k =, m,二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn k p p --)1(C k n(k=0,1,2,…,n), 温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。
《二项分布与超几何分布》 讲义
《二项分布与超几何分布》讲义一、引言在概率统计的学习中,二项分布和超几何分布是两个非常重要的概念。
它们在实际生活中的应用广泛,例如质量检测、抽样调查、生物遗传等领域。
理解这两种分布的特点和区别,对于正确解决概率问题至关重要。
二、二项分布(一)定义二项分布是一种离散概率分布,用于描述在 n 次独立重复的伯努利试验中,成功的次数 X 的概率分布。
(二)特点1、每次试验只有两种可能的结果:成功或失败。
2、每次试验的成功概率 p 保持不变。
3、各次试验相互独立。
(三)概率计算公式如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),那么 X = k 的概率为:P(X = k) = C(n, k) p^k (1 p)^(n k) (其中 C(n, k) 表示从 n 个元素中选取 k 个元素的组合数)(四)期望与方差期望 E(X) = np方差 D(X) = np(1 p)(五)应用举例假设某射手每次射击命中目标的概率为 08,进行 5 次射击,求命中目标 3 次的概率。
解:这里 n = 5,p = 08,要求 P(X = 3)。
P(X = 3) = C(5, 3) 08^3 (1 08)^(5 3)= 10 0512 004= 02048三、超几何分布(一)定义超几何分布是统计学上一种离散概率分布,描述了从有限 N 个物件(其中包含 M 个指定种类的物件)中抽出 n 个物件,成功抽出指定种类的物件的次数 X 的概率分布。
(二)特点1、总体分为两类。
2、抽取的样本数量 n 小于总体数量 N。
3、抽样方式为不放回抽样。
(三)概率计算公式如果随机变量 X 服从参数为 N、M 和 n 的超几何分布,记为 X ~H(N, M, n),那么 X = k 的概率为:P(X = k) = C(M, k) C(N M, n k) / C(N, n)(四)期望与方差期望 E(X) = n M / N方差 D(X) = n M / N (1 M / N) (N n) /(N 1)(五)应用举例一批产品共有 100 件,其中次品有 10 件,从中随机抽取 5 件,求抽到次品数 X 的概率分布。
超几何分布与二项分布的区别课件
THANKS
超几何分布应用场景
有限总体、不放回抽样、成功与失败 事件
例如:从50件产品中随机抽取10件, 其中合格品3件,不合格品47件,求 抽取的10件产品中合格品的数量。
超几何分布特点
01
02
03
有限总体
超几何分布适用于从有限 总体中抽样的情况。
不放回抽样
超几何分布描述的是不放 回的抽样方式。
成功与失败事件
超几何分布适用于描述具 有成功与失败事件的情况, 其中成功事件的概率是已 知的。
ห้องสมุดไป่ตู้
03 二项分布介绍
二项分布定义
二项分布是一种离散概率分布,描述了在n次独立重复的伯努 利试验中成功的次数。
公式表示为B(n, p),其中n是试验次数,p是单次试验成功的 概率。
二项分布应用场景
例如,投掷硬币正面朝上的概率是p=0.5,那么投掷n次硬币出现正面的次数就 服从二项分布。
概率计算复杂度
超几何分布的概率计算相对复杂, 需要使用递归或模拟的方法;而二 项分布的概率计算相对简单,可以 直接使用公式计算。
应用场景上的区别
01
应用场景
超几何分布在有限总体且总体数量较大时使用,例如彩票中奖概率分析;
二项分布在无限总体或总体数量较小时使用,例如抛硬币试验。
02 03
适用范围
超几何分布在处理具有限制条件的数据时适用,例如在一定数量的商品 中随机抽取若干件;二项分布在处理具有独立重复试验特点的数据时适 用,例如多次抛硬币的结果。
课程目标
二项分布和超几何分布,五分钟让你再也不迷糊!
二项分布和超几何分布,五分钟让你再也不迷糊!有一次被学生问到:老师您给我讲讲二项分布和超几何分布的区别吧。
我想,二项分布和超几何分布的区别大着呀,没道理会把它们弄混。
但是既然学生提出来了,就说明这样的疑惑的确存在,我们今天就来捋一捋,让疑者不疑,不疑者更明。
发生条件的不同二项分布:描述n次独立重复试验,而且该随机试验只有两种可能结果:发生或者不发生(也常说试验成功或失败)。
“独立”强调的是各次试验互相不干扰,“重复”强调的是每次试验中事件发生与否的概率保持不变。
超几何分布:描述由N个物件(其中有M个指定物件)中抽出n 个物件。
随机变量的不同二项分布的随机变量ξ是n次独立重复试验中试验成功的次数k。
超几何分布的随机变量ξ是抽出的n个物件中抽到指定种类的物件的个数m。
概率:在二项分布中,P(ξ=k)= C(n, k) * p^k * (1-p)^(n-k).在超几何分布中,P(ξ=m)= C(M, m) * C(N-M, n-m) / C(N,n).用一个“抽取合格品/次品”(换成双色小球也是一样)模型来对比上述两种分布:现有N件产品,其中M件合格品,N-M件次品。
1.从中抽取一件产品,为合格品的概率是?p=M/N2.每次抽取一件产品,抽完放回,抽n次(这里的n与N无关),共抽到k次合格品的概率是?C(n, k) * p^k * (1-p)^(n-k),其中p为第1问里的p.3.每次抽取一件产品,抽完不放回,抽n次(这里的不大于N),共抽到m次合格品的概率是?C(M, m) * C(N-M, n-m) / C(N,n)对于第3问中的情况,和1次性抽出n件产品,其中有m件合格品的概率是一样的。
能不能像第2问一样,用分步做乘法的方法来写概率呢?也可以的,不过因为不放回,产品总数在递减,每次抽到合格品的概率受之前抽到合格品还是次品的结果影响,所以不是独立重复实验了!为了帮助大家进一步看清楚,我举一个数目较小的具体例子来演示,3件产品,其中2件合格品,1件次品。
二项分布与超几何分布的区别与联系ppt
-
1.独立重复试验与二项分布 (1)一般地,在相同条件下,重复做的 n 次试验称为 n 次独立重复试验.各次试验的结果不受其它试验的影响. (2)一般地,在 n 次独立重复试验中,设事件 A 发生的 次数为 X,在每次试验中事件 A 发生的概率都为 p,那么在 n 次独立重复试验中,事件 A 恰好发生 k 次的概率为 P(X=k)=Cknpk(1-p)n-k,k=0,1,2,…,n. 则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
-
[2010·天津理]某射手每次射击击中目标的概率是23, 且各次射击的结果互不影响.
(1)假设这名射手射击 5 次,求恰有 2 次击中目标的 概率;
(2)假设这名射手射击 5 次,求有 3 次连续击中目标, 另外 2 次未击中目标的概率;
-
解析:(1)设 X 为射手在 5 次射击中击中目标的次数, 则 X~B5,23.在 5 次射击中,恰有 2 次击中目标的概率
(含90分)的人数记为 ,求 的数学期望。
-
[2010 广东理 17 题部分] 某食品厂为了检查一条自动包 装流水线的生产情况,随机抽取该流水线上的 40 件产品 作为样本称出它们的重量(单位:克),发现当中有 12 件重量超过 505 克。
(1)在上述抽取的 40 件产品中任取 2 件,设 Y 为重量 超过 505 克的产品数量, 求 Y 的分布列。 (2)从流水线上任取 5 件产品,求恰有 2 件产品合格的 重量超过 505 克的概率。
-
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其
中恰有 X 件次品,则事件{X=k}发生的概率为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布与超几何分布
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,理解并区分两个概率模型是至关重要的。
下面举例进行对比辨析。
1.有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型。
2.不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样。
所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在n次独立重复试验的3个条件成立时应用的)。
超几何分布和二项分布的区别:
(1)超几何分布需要知道总体的容量,而二项分布不需要;
(2)超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复)。
练习题:
1. 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球。
求:
(1)有放回抽样时,取到黑球的个数X的分布列;
(2)不放回抽样时,取到黑球的个数Y的分布列。
2. 今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以扰此计算出自己每天的碳排放量。
例如:家居用电的碳排放量(千克)=耗电度数×.785,汽车的碳排放量(千克)=油耗公升数×0.785等。
某班同学利用寒假在两个小区逐户进行了一次生活习惯进否符合低碳观念的调查。
若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。
这二族人数占各自小区总人数的比例P数据如下:
(I)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(II)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列。
如果2周
E
后随机地从A小区中任选25个人,记ξ表示25个人中低碳族人数,求.ξ
3. 在“自选模块”考试中,某试场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.
(Ⅰ)求选出的4 人均为选《矩阵变换和坐标系与参数方程》的概率;
(Ⅱ)设ξ为选出的4个人中选《数学史与不等式选讲》的人数,求ξ的分布列和数学期望.
4. (2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A类、B类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.
(1)求在一次抽检后,设备不需要调整的概率;
(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.
5.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数ξ的概率分布;
(2)求甲、乙两人至少有一人入选的概率.
6.
7.。