第五章补体系统
第五章补体系统

第五章补体系统补体(complement)系统包括30余种组分,广泛存在于血清、组织液和细胞膜表面,是一个具有精密调控机制的蛋白质反应系统。
一般情况下,血浆中多数补体成分仅在被激活后才具有生物学功能。
多种微生物成分、抗原-抗体复合物以及其他外源性或内源性物质可循三条既独立又交叉的途径,通过启动一系列丝氨酸蛋白酶的级联酶解反应而激活补体,所形成的活化产物具有调理吞噬、溶解细胞、介导炎症、调节免疫应答和清除免疫复合物等生物学功能。
补体不仅是机体固有免疫防御体系的重要组分,也是抗体发挥免疫效应的重要机制之一,并在不同环节参与适应性免疫应答及其调节。
补体缺陷、功能障碍或过度活化与多种疾病的发生和发展过程密切相关。
第一节补体概述(一)补体系统的组成构成补体系统的30余种组分按其生物学功能可以分为三类。
1.补体固有成分是指存在于血浆及体液中、参与补体激活的蛋白质,包括:①经典途径的C1q、C1r、C1s、C2、C4;②旁路途径的B因子、D因子和备解素;③凝集素途径(MBL途径)的MBL、MBL相关丝氨酸蛋白酶;④补体活化的共同组分C3、C5、C6、C7、C8、C9。
2.补体调节蛋白是指存在于血浆中和细胞膜表面、通过调节补体激活途径中关键酶而控制补体活化程度和范围的蛋白分子。
3.补体受体是指存在于不同细胞膜表面、能与补体激活后所形成的活性片段相结合、介导多种生物效应的受体分子。
补体系统的命名原则为:参与补体激活经典途径的固有成分按其被发现的先后分别命名为C1(q、r、s)C2、……C9;补体系统的其他成分以英文大写字母表示,如B因子、D因子、P因子、H因子;补体调节蛋白多以其功能命名,如C1抑制物、C4结合蛋白、衰变加速因子等;补体活化后的裂解片段以该成分的符号后面附加小写英文字母表示,如C3a、C3b等;灭活的补体片段在其符号前加英文字母i表示,如Ic3b。
(二)补体的理化性质补体系统各成分均为糖蛋白,但有不同的肽链结构。
补 体 系 统

3.补体受体(CR):CR1-CR5、C3aR、C5aR、等
补体成分命名:
固有成分:用C后加阿拉伯数字表示, 如:C1,C4,C2等; 其他成分:用英文大写字母表示, 如:B因子、D因子、P因子、 H因子等; 补体调节蛋白:多以功能命名,如C1抑制物 酶活性成分:符号上划一横线,如: C3bBb。 裂解片段:小片段用a表示 --- 如:C3a; 大片段用b表示 --- 如:C3b。 灭活补体片段:符号前加 i 表示,如:iC3b。
实际意义:抗感染。
2. 免疫复合物清除作用
Ag-Ab复合物 C3b或C4b 与血细胞(如红细胞、血小板)CR结合 在肝中被吞噬清除。 实际意义: a. 清除免疫复合物,如抗病毒感染; b. 引起免疫性疾病,如免疫复合物沉 积,引起肾小球肾炎。
3. 炎症介质作用
A. 过敏毒素作用: 过敏毒素(anaphylatoxin): C5a、C3a和C4a C5a、C3a 肥大细胞和嗜碱性粒 细胞(C5aR、C3aR) 释放活性介 质(如;组胺、白三烯及前列腺素等) 过敏反应性病理变化。
A. C3b 促吞噬细胞;
B. C3b 与B细胞表面CR1结合 促系统包括30余种可溶性和膜蛋白,是体内重要 效应系统和效应放大系统; 补体各固有成分可分别经经典、旁路、MBL途径活 化,通过共同的末端途径,最终形成MAC参与特异 性和非特异性免疫; 补体活化过程中还产生多种活性片段,发挥广泛的 生物学作用; 可溶性蛋白和膜蛋白调控补体的活化; 补体活化也可导致病理性免疫损伤。
MBL途径
旁路途径
LPS, 葡聚糖,凝聚的IgA C3,C5~C9,B因子, D因子, P因子
Ag-Ab复合物 MBL,CRP C1~C9 C2~C9
第五章_补体系统

一、概述
补体:是存在于正常人和动物血清中的一组与免 疫相关并具有酶活性的蛋白质 补体系统是由存在于人或脊椎动物血清与组织液 中的一组可溶性蛋白及存在于血细胞与其它细胞 表面的一组膜结合蛋白和补体受体所组成。
补体的组成
补体的固有成分:参与经典激活途径的成 分(C1-C4);参与旁路激活途径的成分 (D、B因子);参与MBL途径的成分(MBL, 丝氨酸蛋白酶);末端通路成分(C5-C9) 参与调节的成分(C1抑制物、I因子、P因 子、H因子、C4结合蛋白、MCP、DAF等) 补体受体:CR1-5、C3aR、C2aR、C4aR
C4b
C3b
末端通路的成分
C7 C6
C 9
Lytic pathway
C5-activation
b C4b
C3b
Lytic pathway
assembly of the lytic complex
C6 b
C7
Lytic pathway:
insertion of lytic complex into cell membrane
C3b
b
C3 b
C3-activation
the amplification loop
C3 b
b
C3b
C3b
C3-activation
the amplification loop
C3 b
b
C3b
C3b
C3b
经典和旁路途径的主要区别
比较项目
激活物 补体固有成份 所需离子 C3转化酶 C5转化酶 生物学作用
CR1(CD35):C3b、C4b的受体,分布于血 细胞—调理作用
医学免疫学第五章补体系统

与其它酶系统 联系
病理生理学意 义
参与适应性免 疫
第五节 补体与疾病
01 补体的遗传性缺陷 02 补体与传染病 03 补体与其他炎症 04 补体与异种器官移植
DAF转基因猪(猪-狒狒心脏移植),阻断超急性排斥反应。
BACK
遗传性血管神经性水肿 Hereditary angioedema
阵发性夜间血红蛋白尿Paroxymal Nocturnal Hemoglobinuria (PNH)
病因:编码GPI的基因翻译后修饰缺 陷,使DAF/CD55和MIRL/CD59不 能锚定在细胞膜上。失去抑制作用。
机理:补体介导的溶血
3
2.5
Days with
paroxysms
2
per patient
per month 1.5
1
0.5
0 Before treatment
During 12 weeks treatment
第四节 补体的生物学意义
补体的生物学功能 调理作用
细胞毒作用:溶解细 菌等
免疫黏附
1. 炎症介质(图)
抗感染临床表现:慢性溶血来自贫血、全血细 胞减少、静脉血栓,晨尿中出现血红 蛋白。渐进性骨髓衰竭。平均寿命 10-15岁。
治疗: gene therapy? Somatic mutation ,多细胞受累 No!
C5的人源化单抗-Eculizumab Yes!
Treatment of PNH pathents with Eculizumab relieves hemoglobinuria. Hillmen, P., et al. New England Journal of Medicine 2004;350:6,552-559
第五章 补体系统

5、膜辅助蛋白(MCP):可促进I因子 裂解C3b 的作用。 6、I因子:可将C3b 裂解为C3c与C3dg, 从而抑制 C4b2b活性或阻断C4b2b形成。
二、调控旁路途径C3转化酶与C5转化
酶 I因子:可裂解C3b; H因子:可直接作用于C5转化酶或间接辅
助I因子的作用; CR1: 可与C3b牢固结合; MCP:可促进I因子裂解C3b的作用; P因子:可与C3bBb牢固结合而形成稳定 的C3bBbP,从而加强C3bBb裂解C3的作用。
二、补体的命名
1.补体经典激活途径和终末成分按其发现先 后依次命名为C1、C2……C9; 2.补体旁路途径成分以大写英文字母表示, 如B因子、D因子、P因子; 3.具有酶活性的补体分子在其上加一横线表 示,如C1、C4b2b ; 4.补体在活化过程中被裂解为若干片段,分 别以该补体成分后附加小写英文字母表示,如 C3a、C3b、C5a; 5.补体调节蛋白根据其功能命名,如C1抑制 物、C4结合蛋白、衰 变加速因子等。
一、补体的生物功能 补体活化的共同终末效应是在细胞膜上组 装MAC所介导细胞溶解效应;同时,补体 活化过程中产生多种裂解片段,通过与细 胞膜表面相应受体结合而介导多种生物学 功能。
Hale Waihona Puke 1、溶菌、溶解病毒和细胞的细胞毒
作用
补体激活后,可在靶细胞表面形成攻膜 复合体,使细胞膜表面出现许多小孔, 最终导致靶细胞溶解。 MAC的生物学效应是:溶解红细胞、血小 板和有核细胞;参与宿主抗细菌和抗病 毒防御机制。
三条途径的区别
比较项目 经典途径 替代途径 激活物 抗原-抗体(IgM, 聚合的Ig, IgG1,2,3)复合物 脂多糖等 参与成分 C1~C9 参与离子 Ca2+,Mg2+ C3转化酶 C4b2b C3,C5~C9, BF,PF,DF等 Mg2+ C3bBb
5第五章补体系统

补体受体(complement receptor, CR)
概念:是表达于细胞表面能与某些补体成分或 补体片断特异性结合的糖蛋白分子。
补体系统活化后产生的一系列生物学效应多是 通过CR介导的对补体的活化可产生调节作用:
分 I型、II型、III型
★ 第四节 补体的生物学作用
(一)补体的生物功能
C1 complex
C5
C2
C3
C6、C7
C8、C9
激活条件:
a. 抗原抗体结合,Ig的 Fc段空间构型改变, 易与补体C1q结合。
b. C1与IgM的CH3区或 IgG( IgG 1/ IgG 2 /IgG 3)的CH2区结合。
c. 1个C1分子同时与两 个或以上Fc段结合。
IgG分子结合抗原前后的构象变化
有不同的生物学效应,广泛参与机体的免疫调节 与炎症反应。
补体激活的三条途径
(一) 经典激活途径(classical pathway)
参与的补体成分 C1(q、r、s)、C4、C2、C3。
经典激活途径的激活物 特异性抗体与抗原形成免疫复合物(immune complex,IC),以C1q结合于免疫复合物而启 动激活的途径。
补体固有成份 C1~C9
C3转化酶
C4b2a
C2~C9/ C3、C5~C9
C4b2a/C3bBb
C3、B、D、P因子 和C5~C9
C3bBb(P)
C5转化酶
C4b2a3b
C4b2a3b/C3bnBb C3bnBb(P)
生物学作用
在特异性体液 免疫的效应阶
段起作用
对经典途径和旁路途 参与非特异性免
径有交叉促进作用, 疫,在感染早期
C4b2a3b is C5 convertase; it leads into the Membrane
医学免疫学第五章 补体系统

42
二、旁路(替代)途径
激活物:细菌、其它成分(LPS、肽聚糖、酵 母多糖等)和凝聚的IgA和IgG4等物质。 参与成分: C3、C5~C9 、B、 D、 P因子 参与非特异性免疫,在进化和发挥抗感染作 用的过程中,旁路途径是最先出现和发挥作用
的,有早期抗感染作用。
二、旁路(替代)途径
早期抗感染的原因有三个
基本概念
一般理化性质:
主要产生细胞为肝细胞和巨噬细胞; 糖蛋白,且多属ß球蛋白; 血清中各成分含量不等,C3含量最多; 加热56℃,30min 失活; 正常生理情况下,以非活化形式存在.
第二节 补体激活途径
在激活物作用下,在特定的固相表面,补 体可被激活,这是一个级联放大反应,最终导 致溶细胞效应。依据补体的激活物、起始顺序 不同可分3条途径:
旁路途径是补体系统重要的放大机制
二、旁路(替代)途径
三、MBL途径(甘露糖结合凝集素途径)
激活物: MBL/纤维胶原素FCN与病原体结合物
MBL: mannan-binding lecMtiAnSP1 C3 MASP:MBL-associated seMriAnSePp2roteasCe4、C2
经典途径 旁路途径 MBL途径
激活物是什么? 参与的成分是什么? 最终导致的结果是否相同? 补体激活的本质和意义是什么?
膜攻击复合物
补体系统激活的三条途径
经典途径
抗原抗体复合物
MBL途径
病原体甘露糖残基
旁路途径
病原体固相表面
前端效应
C1q C4,C2
末短通路
MBL-MASP
C4,C2
C3
C5
C6 C7 C8 C9
• 既参与免疫生理,也参与免疫病理,是免疫系统重 要的效应和效应放大系统。
第五章 补体

1 膜辅因子蛋白 (Membrane Cofactor Protein, MCP, CD46) I 因子的辅助因子,促进C3b,C4b灭活, 抑制补体活化,比H因子强50倍。
MCP
图5-17 MCP辅助I因子裂解C3b的机理
2、I 型补体受体(CR1、C3b/C4b) CR1 (CD35)单链
C3b受体,结合C3b,C4b
3. 膜攻击阶段 --- 膜攻击复合体
(membrane attack complex,MAC) (C5b6789n)形成 C5a C4b2b3b C5 C5b + C6 + C7 C5b67+C8 C5b678 + C9 C5b6789n (膜攻击复合体)细胞裂解
形成MAC的过程:
1、C1抑制物(C1inhibitor,C1INH) 抑制C1rC1s,使C2a,C4b无法形成。 2、C4结合蛋白(C4 binding protein, C4bp) 、膜辅蛋白(membrane cofactor protein, MCP, CD46 )、I 型 补体受体(CR1、C3b/C4b受体,又 称CD35)结合C4b,使C2a无法与C4b 结合,并促进I因子对C4b的降解。
covalent association
with pathogen surface
3 H因子的作用 (factor H)
能与C3b结合,抑制旁路途径C3转化酶(C3bBb)
作为I因子的辅助因子(Cofactor)水解C3b为iC3b和C3f 1、为Ⅰ因子的辅助因子,可 增加C3b对Ⅰ因子的敏感性。 2、加速C3转化酶的衰变:H 因子能将已同C3b结合的B因 子或Bb从C3酶中逐出,而使 之失去酶活性。
Protein
第五章补体系统精品PPT课件

二、补体成分的理化特性
1.化学组成均为糖蛋白,多数为β球蛋白, 少数几种为α或γ球蛋白。
2.含量约占血清球蛋白总量的10%,各成分 中以C3含量最高1300μg/ml,D因子含量最 低2μg/ml。
3.补体系统各固有成分均分别由肝细胞、巨 噬细胞、小肠上皮细胞及脾细胞等产生。
三条激活途径的汇合点,起枢纽作用
C3为血清中含量最高的补体成分
C3
C3a
C3b
过敏毒素 C3结构图
参与C3和C5转化 酶的形成
factorI
factorI CR1
proteases
C3结构以及活化和降解
(四)B因子及其功能
B因子为存在于血清的单链糖蛋白。
N
C
Ba(234aa)
Bb(505aa)
C3、C5—C9;B、D
2.补体调节蛋白:C1抑制物、P因子、I因子、H因
子等可溶性蛋白和膜结合蛋白
3.补体的受体分子:CR1—CR5、C3aR、C5aR等
(二) 命名
1. 参与经典激活途径的固有成分(包括膜攻 击复合物组分)
以“C”表示,如“C1,C2,┄C9”。
2. 替代激活途径的固有成分 以因子命名,用
第一节 概 述
补体(complement,C)是存在于人或脊椎动物血清 与组织液中的一组具有酶活性的蛋白质。
因其是抗体发挥溶细胞作用的必要补充条件,故被称 为补体。
又因其是由近40种可溶性蛋白质和膜结合蛋白组成的 多分子系统,故称为补体系统。
一、 补体系统的组成和命名
(一) 组成 1.补体系统的固有成分: C1q C1r C1s、C4、 C2、
4.固有成份间的分子量差异较大,其中C1q 最大、D因子最小。 5.某些补体成分性质极不稳定,许多理化因
(完整版)第五章补体系统

第五章补体系统第一节补体概述补体(complement,C)系统包括30余种组分,其广泛存在于血清、组织液和细胞膜表面,是一个具有精密调控机制的蛋白质反应系统.血浆中补体成分在被激活前无生物学功能.多种微生物成分、抗原—抗体复合物以及其他外源性或内源性物质可循三条既独立又交叉的途径,通过启动一系列丝氨酸蛋白酶的级联酶解反应而激活补体,所形成的活化产物具有调理吞噬、溶解细胞、介导炎症、调节免疫应答和清除免疫复合物等生物学功能。
补体不仅是机体固有免疫防御的重要部分,也是抗体发挥免疫效应的主要机制之一,并对免疫系统的功能具有调节作用。
补体缺陷、功能障碍或过度活化与多种疾病的发生和发展过程密切相关。
(一)补体系统的组成补体系统由补体固有成分、补体受体、血浆及细胞膜补体调节蛋白等蛋白组成。
1.补体固有成分补体固有成分是指存在于血浆及体液中、构成补体基本组成的蛋白质,包括:①经典激活途径的C1q、C1r、C1s、C2、C4;②旁路激活途径的B因子、D因子和备解素(properdin,P因子); ③甘露糖结合凝集素激活途径(MBL途径)的MBL、MBL相关丝氨酸蛋白酶(MASP);④补体活化的共同组分C3、C5、C6、C7、C8、C9。
2.补体调节蛋白(complement regulatory protein)指存在于血浆中和细胞膜表面,通过调节补体激活途径中关键酶而控制补体活化强度和范围的蛋白分子,包括血浆中H因子、I因子、C1INH、C4bp、S蛋白、Sp40/40、羧肽酶N(过敏毒素灭活因子)、H因子样蛋白(FHL)、H 因子相关蛋白(FHR);存在于细胞膜表面的衰变加速因子(DAF)、膜辅助蛋白(MCP)、CD59等。
3.补体受体(complement receptor,CR)指存在于不同细胞膜表面、能与补体激活过程所形成的活性片段相结合、介导多种生物效应的受体分子.目前已发现CR1、CR2、CR3、CR4、CR5及C3aR、C4aR、C5aR、C1qR、C3eR、H因子受体(HR)等.(二)补体的命名补体经典激活途径和终末成分按照其发现先后,依次命名为C1、C2、C3~C9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补体系统激活 (二)旁路激活途径 1、激活物:细菌脂多糖、酵母多糖、凝集的IgG4、IgA 2、激活过程: 激活物+ B、D 、P C3 →C3bBbP→C5→C6→C7→C8→C9 (三)MBL途径 MBL+细菌甘露糖残基+丝氨酸蛋白酶 MASP C4、C2 →C3→C5→C6→C7→C8→C9 比较三条途径??
①防止或限制补体在液相中自发激活的抑制剂; ②抑制或增强补体对底物正常作用的调节剂; ③保护机体组织细胞免遭补体破坏作用的抑制剂。
(1)体液调节因子 ①C1酯酶抑制因子(C1-iNH) ②I因子和H因子协同作用破坏游离的或细胞膜上的C3b。 ③S蛋白又称攻膜复合体抑制因子
(2)细胞膜上的调节因子 ①补体受体CR1 ②膜辅助蛋白(MCP,CD46) ③促衰变因子(DAF) ④同源限制因子(HRF)又称C8结合蛋白(C8-bp ⑤膜反应性溶解抑制物(MIRL,CD59)
四、补体与其他酶系统的相互作用
第三节 补体的生物学作用
一、 细胞溶解作用:C1~9 通过三大途径 二、调理作用: C3b、C4b、iC3b 三、免疫粘附作用与清除免疫复合物 C3b 四、炎症介质作用 1、 激肽样作用:C2a、C4a 2、 过敏毒素作用:C3a、C5a、C4a 3、 趋化作用:C3a、C5a 五、免疫调节作用: C3、C3b、CR1、CR2
第一节
概述Leabharlann 一、定义:补体(complement,C): 是存在于人和脊椎动物血清、组织液和细胞膜表面的一组经 活化后具有酶活性的蛋白质。 可发挥免疫防御和免疫调节作用,也参与免疫病理作用
二、组成与命名 补体有9种11个成份:C1(C1q、C1r、C1s)、C2、C3、C4、C5、 C6、C7、C8、C9 (按发现先后命名)
三、低补体血症
①补体成份消耗增多:当患免疫复合物疾病时,如血清病、链球菌感染肾 小球肾炎、系统性红斑狼疮(SLE)以及恶性类风湿关节炎等,可使补体消耗 增多,出现低补体血症。 ②补体成份大量丧失:此情况见于大面积烧伤的病人,由于血清蛋白大量 丢失,引起补体成份减少。 ③补体合成不足:主要见于各种肝病患者,如肝硬化、慢性活动性肝炎及
第二节 补体系统的激活
补体系统的激活有三条途径: ①由抗原-抗体复合物结合C1q启动的激活途径,最先 被人们所认识,故称经典途径(classical pathway); ②由甘露糖结合凝集素(mannose-binding protein, MBL)结合至细菌启动的激活途径,称MBL途径; ③由病原微生物等提供接触表面,而从C3开始的激 活途径,称旁路途径(alternative pathway)。 上述三条激活途径具有共同的末端通路(terminal pathway),最终形成膜攻击复合物(membrane attack complex,MAC)。
护理本科医学免疫学
第五章学习目标
掌握: 补体、补体系统的概念;补体的生物学活性; 补体经典和旁路途径的活化过程及两条途径的比 较。 熟悉: 补体系统的组成和理化性质,补体活化的 MBL途径和补体的调节 了解: 补体系统的命名;补体系统的调控。
补体系统
李某,男,26岁,工人。因工作不慎,导致硫酸大面积烧伤急诊入院。 住院期间,病人持续高热,皮肤表面伴有脓汁。血常规检查,WBC为 16.6×109/L,补体含量:C3为46.6mg/dl,C4为6.8mg/dl,C反应蛋白为 2.3mg/dl。病人虽经积极治疗,终因继发感染而死亡。 讨论: 1.烧伤病人血清补体含量为什么降低? 2.血清补体含量对机体有何影响?
一、补体系统的激活 (一)经典激活途径 激活物: 抗原抗体复合物(IC) 激活过程: IC→C1→C4C2
→C3→C5
→C6→C7→C8→C9
(1)识别阶段
(2)活化阶段
C1分子结构与功能图
(3)膜攻击阶段
补体系统激活
补体活化的经典途径途径
补体系统激活
补体的膜攻击复合物 (MAC)——C5b6789
补体系统
补体其它成份:如B因子、D因子、P因子 补体调节蛋白: C1抑制物、I因子、H因子等 补体受体: CR1、CR2 补体以酶原形式存在,激活后在数字上加一横即为酶
补体大多成份在肝脏和巨噬细胞合成 三、理化性质
含量:最多C3,其次C4,C2最低; 临床以测C3、C4 或总补体作为补体检测指标 补体成份:糖蛋白不稳定。加热56℃30ˊ灭活
补体活化的旁路途径
补体活化的MBL途径
补体系统
补体系统
第三节 补体活化的调控(自学)
一、补体的自身调控
二、补体调节因子的作用
第四 补体的生物学作用
一、参与宿主早期抗感染免疫
1、溶解细胞细菌和病毒 2、调理作用 3、引起炎症反应 二、维护机体内环境稳定
1、清除IC
2、清除凋亡细胞 三、参与适应性免疫 参与IR的诱导、参与免疫细胞的增殖分化、参与IR的效应阶 段、参与免疫记忆;
补体系统是构成机体免疫系统的重要的组成部分,受激活因 子作用后可通过生物级联反应体系(Biologicol cascade)使整个 补体系统活化。补体系统一方面参与机体的自身防御功能,维持 机体的生理平衡;另一方面,参与超敏反应和自身免疫性疾病的 组织损伤。所以,补体系统既有生理功能,又有病理作用。
补体成分
功 能
C1~C9
C3b、C4b
溶菌、杀菌、溶细胞作用
调理作用、免疫粘附作用
C2a
C3a、C4a、C5a
补体激肽
过敏毒素作用 介导炎症反应
C3a、C5a、C567
C3、C4、CR1 C3、C3b、CR1
趋化作用
溶解、清除免疫复合物 免疫调节作用
补体系统的调节机制
1、补体的自身调控 2、补体调节因子的作用 可溶性或膜结合性补体调节蛋白有十余种,按其作用特点可分为 三类:
第四节
一、
补体系统异常与疾病
补体的遗传缺陷与疾病
C1、C2、C4缺陷易发生系统性红斑狼疮 C1抑制物缺陷引起遗传性血管神经性水肿 I 因子缺陷引起反复感染
二、高补体血症
在许多炎症、传染病及恶性肿瘤时可见补体代偿性增高,但在急性感染及病情 危重时补体总量往往下降,这是由于补体成份大量消耗所致;此外,甲状腺 炎、阻塞性黄疸、糖尿病、痛风、雷诺氏综合症、溃疡性结肠炎等,也可使补 体含量升高。