简单的线性规划1
3.3.3简单的线性规划问题(1)
我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。
教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。
(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。
我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。
例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。
3.3.2简单的线性规划1
今需要A、 、 三种规格的成品分别为 三种规格的成品分别为15、 、 今需要 、B、C三种规格的成品分别为 、18、27 块,用数学关系式和图形表示上述要求,如何使所 用数学关系式和图形表示上述要求, 用钢板张数最少? 用钢板张数最少?
例6:一个化肥厂生产甲、乙两种混合肥料,生产 车皮甲种 :一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种 肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥 肥料的主要原料是磷酸盐 、硝酸盐 ;生产 车皮乙种肥 料需要的主要原料是磷酸盐1t、硝酸盐15t。 料需要的主要原料是磷酸盐 、硝酸盐 。现库存磷酸盐 10t、硝酸盐 ,在此基础上生产这两种混合肥料。列出满 、硝酸盐66t,在此基础上生产这两种混合肥料。 足生产条件的数学关系式,并画出相应的平面区域。 足生产条件的数学关系式,并画出相应的平面区域。若生产 一车皮甲种肥料,产生的利润为10000元;生产一车皮乙肥 一车皮甲种肥料,产生的利润为 元 产生的利润为5000元,那么非别生产甲乙肥料各多好车 料,产生的利润为 元 能够产生最大利润? 皮,能够产生最大利润?
分析: 分析:将已知数据列成表格
食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg
A B
0.105 0.105
0.07 0.14
0.14 0.07
三种规格, 例5: 要将两种大小不同的钢板截成 、B、C三种规格, : 要将两种大小不同的钢板截成A、 、 三种规格 每张钢板可同时截得三种规格的小钢板的块数如下表示: 每张钢板可同时截得三种规格的小钢板的块数如下表示: 规格 钢型 第一种钢板 第二种钢板 A规格 规格 2 1 B规格 规格 1 2 C规格 规格 1 3
• 通过不等式(组)的平面区域,我们可以 知道不等式的可能取值范围。那么在不等 式平面区域中,那个值是最有意义的取值 呢,比如对于资源的利用,人力调配,生 产安排等等,都需要我们有一个最优的处 理办法
简单的线性规划问题(第1课时)课件2
x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
3.3.2简单线性规划(1_2)--上课用
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
高中数学 同步教学 简单的线性规划问题
x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
3.3.2简单的线性规划问题(1).ppt1
y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
【湖南师大内部资料】高中数学精美可编辑课件:高一数学(简单的线性规划问题(1))
x+2y=8
2 3 x
经过对应的平面区域,并平行移动.
探究新知
6.从图形来看,当直线l运动到什么位 置时,它在y轴上的截距取最大值?
y
经过点M(4,2) M
O y=3 x x+2y=8
x=4
探究新知
7. 工厂应采用哪种生产安排才能使 利润最大?其最大利润为多少? y
y=3
M(4,2)
x
O x=4
课堂小结
2.对于直线l:z=Ax+By,若B>0, 则当直线l在y轴上的截距最大(小)时, z取最大(小)值;若B<0,则当直线l 在y轴上的截距最大(小)时,z取最小 (大)值.
布置作业
P91练习:1,2.
(4)作答。
典例讲评
例2
求z=2x+y的最大值.
ìy £ x ï ï ï ï ïx + y 已知x、y满足:í ï ï ï y ? 3x ï ï î
y 2x+y=0
2 6
y=x
M
最优解(3,3), 最大值9.
O
x
x+y=2
y=3x-6
课堂小结
1.在线性约束条件下求目标函数的最 大值或最小值,是一种数形结合的数 学思想,它将目标函数的最值问题转 化为动直线在y轴上的截距的最值问 题来解决.
探究新知
1.设每天分别生产甲、乙两种产品x、 y件,则该厂所有可能的日生产安排 应满足的基本条件是什么?
x 2y 8 4 x 16 4 y 12 x 0 y 0
x 2y 8 即 0 x 4 0 y 3
探究新知
采用哪种生产安排利润最大?
探究新知
4.将z=2x+3y看作是直线l 的方程, 那么z有什么几何意义? 直线l在y轴上的截距的三倍.
人教版高中数学课件:简单的线性规划1
y ≥0
分 析 问 题:
原 每吨产品消耗的原材料 原 材料限 额 材 甲产品(t) xt 乙产品(t) yt 料 1.本问题给定了哪些原材料(资源)? 300 A种矿石 10 4
B种矿石 煤 利润 5 4 600 4
2.该工厂生产哪些产品? 200
3.各种产品对原材料(资源)有怎样的要求? 9 360 4.该工厂对原材料(资源)有何限定条件? 1000 5.每种产品的利润是多少?利润总额如何计算?
解:设生产甲、乙两种产品.分别为x 10x+4y≤300 5x+4y≤200 4x+9y≤360 x≥0 y ≥0 z=600x+1000y.
t、yt,利润总额为z元,那么 y
75
50 40
画出以上不等式组所表示的可行域 作出直线L 600x+1000y=0. 把直线L向右上方平移
经过可行域上的点M时,目标函数 在y轴上截距最大. 此时z=600x+1000y取得最大值. 由 0
例3.gsp图形
2。调查你的亲朋所在公司的某项目,并运 用你所学的线性规划知识帮助公司获得更多 的利润。
想一想(问题):
已知实数x,y满足下列条件: 5x+4y ≤ 20 2x+3y ≤12 x ≥0
线性约束 条件
y
Z的最大值为44
6. 最优解 . 5 12 20 4. M ( , ) 7 可行域 7 3. 2. 9x+10y=0 1 . .. .. . .. 1 2 3 4 5 6 2x+3y=12 5x+4y=20 x
消耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润
是600元,每1t乙种产品的利润是1000元.工厂在生产这两
3.3.2简单的线性规划(1)
结 论 : 形 如2 x y t ( t 0) 的直线与 2 x y 0平 行.
y
C
5
A:(5.00, 2.00) B: (1.00, 1.00) C:(1.00, 4.40) x-4y+3=0
A
2.作出下列不 等式组所表示 的平面区域
B
O
1 5
3x+5y-25=0
x=1
x
线性规划
线性规划:求线性目标函数在线性约束条件下的 最大值或最小值的问题,统称为线性规划问题. 可行解 :满足线性 约束条件的解(x,y) 叫可行解; 可行域 :由所有可行 解组成的集合叫做可 行域; 最优解:使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
(1,1)
2x+y=3
2x+y=12
x
3x+5y-25=0
直线L越往右平移,t 随之增大. 以经过点A(5,2)的直 线所对应的t值最大; 经过点B(1,1)的直线 所对应的t值最小.
2x y 0
Z max 2 5 2 12, Z min 2 1 1 3
线性 Z=2x+y称为目标函数,(因这 里目标函数为关于x,y的一 规划 次式,又称为线性目标函数 问题:
达到最小值。 可使 l 0平移过A点时, l 1
A
达到最大值。 解方程组可求得A(5,2) 22 C (1, ) 5
3x+5y-25=0
-1 O
3
4
5
6
7
x
-1 注意:直线取最大截距 l 0 l2 时,等价于 1 z 2 取得最大值,则z取 22 39 z 1 2 得最小值 min
高中数学:简单线性规划(1)-可行域上的最优解
14
解线性规划应用问题的一般步骤:
1)理清题意,列出表格:
2)设好变元并列出不等式组和目标函数
3)由二元一次不等式表示的平面区域作出可行域;
画出线性约束条件所表示的可行域,画图力保准确;
4)在可行域内求目标函数的最优解 法1:移-在线性目标函数所表示的一组平行线中,利用平移的方 法找出与可行域有公共点且纵截距最大或最小的直线; 法2:算-线性目标函数的最大(小)值一般在可行域的顶点处 取得,也可能在边界处取得(当两顶点的目标函数值相等时最优解 落在一条边界线段上)。此法可弥补作图不准的局限。 5)还原成实际问题 (准确作图,准确计算)
x 1
时,求z的最大值和最小值.
3
思考:还可以运用怎样的方法得到目标函数
的最大、最小值?
点的可目以y标通函过数比值较大可小行得域到边。界顶
x 4 y 3 1.先作出3x 5 y 25
x 1
A: (5.00, 2.00) B: (1.00, 1.00)
C C: (1.00, 4.40)
5
x-4y+3=0
所 表 示 的 区 域. 2.作直线l0 : 2x y 0
3.作 一 组 与 直 线l 0 平 行 的 直线l : 2x y t, t R
A B
直线L越往右平移,t 随之增大.
O1
x 以经过点A(5,2)的
5
3x+5y-25=0
直线所对应的t值
x=1
最大;经过点B(1,1)
2x+y=300
A 125
O
300x+900y=112500
C x+2y=250
150 B 250
答案:当x=0,y=0时,z=300x+900y有最小值0.
25-简单的线性规划问题(1)
3.3.2简单的线性规划问题(1)教材分析本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。
通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.教学目标重点:会用图解法解决简单的线性规划问题;难点:准确求得线性规划问题的最优解;知识点:了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;能力点:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力,并培养学生运用数形结合思想解题的能力和化归的能力;教育点:让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣;自主探究点:分单元组探究利用图解法求线性目标函数的最优解;考试点:求得线性规划问题的最优解;易错点:找最优解;教法:启发式、单元组合作讨论式:通过问题激发学生求知欲,使学生主动参与活动,以独立思考和单元组交流的形式,在教师的指导下发现问题、分析问题和解决问题.教具准备:多媒体课件,投影仪.课堂模式:学案导学教学过程一、创设情景在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题,怎样达到省时、省力、高效是我们要研究的问题,下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h 计算,该厂所有可能的日生产安排是什么?【设计意图】数学是现实世界的反映,通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。
二、探究新知学生活动单元组合作探讨,并选代表发言。
简单线性规划(1)
2012-12-26
练习1:
画出下列不等式表示的平面区域:
(1)2x+3y-6>0 (2)2x+5y≥10 (3)4x-3y≤12
Y Y Y
2
O
3
X
2
O
X
5
O
3 -4
Hale Waihona Puke X(1)(2)
(3)
例2:画出不等式组
Y
x y 5 0 x y 0 x 3
表示的平面区域
x+y=0
Y
3
O
2
3
X
2.由三直线x-y=0;x+2y-4=0及y+2=0所 围成的平面区域如下图:
则用不等式可表示为:
y x x 2 y 4 y 2
应该注意的几个问题:
1、若不等式中不含0,则边界应 画成虚线,否则应画成实线。 2、画图时应非常准确,否则将得 不到正确结果。 3、熟记“直线定界、特殊点定域” 方法的内涵。
第一节
二元一次不等式表示平面区域
提出问题—引入新课 解决问题—得出结论 典型例题分析与练习 课堂小结与课外作业
y
o
x
点 的集合{(x,y)|x-y+1=0}表示 什么图形? 点的集合{(x,y)|x-y+1>0} 表示什么图形?
想 一 想 ? 在平面直角坐标系中,
猜一猜:
(1)对直线L右下方的点(x,y), x-y+1>0 成立. (2)对直线L左上方的点(x,y), x+y-1<0 成立.
求不等式|x-2|+|y-2|≤2所表 示的平面区域的面积.
(3)注意所求区域是否包括边界直 线.
简单的线性规划最新课件
几个结论:
1、线性目标函数的最大(小)值一般 在可行域的顶点处取得,也可能在边界 处取得。
2、求线性目标函数的最优解,要注意 分析线性目标函数所表示的几何意义 ——在y轴上的截距或其相反数。
简单的线性规划最新课件
在关数据列表如下:
A种原料 B种原料
甲种产品
4
12
乙种产品
1
9
现有库存 10
60
利润 2 1
x
-
5y
3
5x 3y 15
求z=3x+5y的最大值和最小值。
简单的线性规划最新课件
5x+3y=15 y
5
y=x+1
B(3/2,5/2)
1
O1
5
-1
A(-2,-1)
X-5y=3 x
Zma x1;7 Zmi简 n 单的 线1 性规划最1新课件
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共 点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。
x 4 y 3
设z=2x+y,求满足
3
x
5
y
25
最优解
x 1
任何一个满足
时,求z的最大值和最小值.
不等式组的 (x,y)
线性规 划问题
可行域 所有的 可行解
简单的线性规划最新课件
有关概念
由x,y 的不等式(或方程)组成的不等式组称为x, y 的约束条件。关于x,y 的一次不等式或方程组 成的不等式组称为x,y 的线性约束条件。欲达到
1,求由三直线x-y=0;x+2y-4=0及y+2=0 所围成的平面区域所表示的不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
3
x
2x列不等式表示的平面区域:
Y
(1)2x+3y-6>0 (2)2x+5y≥10 Y (3)4x-3y≤12
3
X
Y
2
O
2
O
X
5
O
3 -4
X
(1)
(2)
(3)
例2:画出不等式组
Y
x y 5 0 x y 0 x 3
同理,对于直线左下方的任意一点(x,y),都有x-y+1<0
第一节
二元一次不等式 表示平面区域
例1:画出不等式
2x+y-6<0
表示的平面区域。
y
6
解:先画直线2x+y-6=0
取原点(0,0),代入2x+y-6=0,
因为 2×0+0-6=-6 <0, 2x+y-6<0 所以,原点在2x+y-6<0表示的 平面区域内,不等式 2x+y-6<0 表示的区域如图所示。
简单的线性规划
(一)
证一证:
y
M(x,y)
如图,在直线x-y+1=0上取 y=y0 P(x0,y0) 1 一点P(x0,y0),过点 p做平 行于x轴的直线y=y0 ,在此 x 1 o 直线上点p右侧的任意一点 (x,y)都有: x-y+1=0 故 , x-y> x0-y0 X>x0 且y=y0 有: x-y+1> x0-y0+1=0 即 x-y+1>0 因为点p为直线x-y+1=0上任意一点,故对于直线 x-y+1=0右下方的任意点(x,y),都有x-y+1>0
表示的平面区域
x+y=0
O
X
x-y+5=0
x=3
注:不等式组表示的平面区域是各不
等式所表示平面区域的公共部分。
练习2:
画出下列不等式组表示的平面区域: y x
Y
x 2 y 4 y 2
o
(1)4
-2
x
Y
x 3 2 y x 3 x 2 y 6 3 y x 9
小结
(1)二元一次不等式Ax+By+C>0在平面直角坐标系 中表示什么图形?
(2)怎样画二元一次不等式(组)所表示的平面区域? 应注意哪些事项? (3)熟记“直线定界,特殊点定域”方法。
点 的集合{(x,y)|x-y+1=0}表示 什么图形?
想 一 想 ? 在平面直角坐标系中,
3
(2)
O 2 3 X
思考
1、由三条直线x-y=0;x+2y-4=0及y+2=0 所围成的平面区域如下图: Y
则用不等式可 如何表示?
o
-2
4
x
思考
2、某电脑用户计划使用不超过500元的资金购 买单价为60元、70元单片软件和盒装磁盘,根 据需要,软件至少买3片,磁盘至少买2盒,则 不同的选购方式共有多少种?