高一函数的奇偶性ppt
合集下载
函数的奇偶性(精辟讲解)精品PPT课件
![函数的奇偶性(精辟讲解)精品PPT课件](https://img.taocdn.com/s3/m/6c2f21e5f111f18582d05a6d.png)
f(x)=-f(-x). (2)可用定义法,也可以用特殊值代入,如 f(1)=f(-1), 再验证. (3)可考虑 f(x)在[-2,2]上的单调性.
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10
或
1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10
或
1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1
函数的奇偶性课件PPT(共20张PPT)
![函数的奇偶性课件PPT(共20张PPT)](https://img.taocdn.com/s3/m/d925ecada1116c175f0e7cd184254b35effd1a4e.png)
已知f(x),g(x)是定义域为R的函数,
并且f(x)是偶函数,g(x)是奇函数,试将下
图补充完整。
y
y
o
x
f(x)
o
x
g(x)
欣赏下面的图片,你在生活中发现有什么地方用 到了今天的知识吗?
欣赏下面的图片,你在生活中发现有什么地方 用到了今天的知识吗?
欣赏下面的图片,你在生活中发现有什么地方用到 了今天的知识吗?
3、什么是轴对称图形和中心对称图形。
y
y=x
2
9 从图象上你能发 如果定义域关于原点对称,且对定义域内的任意一个x
2、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括力。
8 如果定义域关于原点对称,且对定义域内的任意一个x
从图象上你能发现什么吗?
现什么吗?
已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
f(-1)=1 =f(1) 已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
-3 -2 -1 0 1 2 3 已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
观察图象,你能发现它们的共同特征吗?
6 4
y
y=x
2
6y 4
y=
1 x
2
42 -2 -4 -6
246 x
42 -2 -4 -6
246 x
f(-3)=3 =-f(3) f(-2)=2 =-f(2)
f(-1)=1 =-f(1)
f(-3)=- 13=-f(3) f(-2)=- 12=-f(2)
人教版高中数学必修1《奇偶性》PPT课件
![人教版高中数学必修1《奇偶性》PPT课件](https://img.taocdn.com/s3/m/be6503db846a561252d380eb6294dd88d0d23d24.png)
• (二)基本知能小试
• 1.判断正误:
•(1)f(x)是定义在R上的函数,若f(-1)=f(1),则f(x)一定是
偶函数.
()
•(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数
y=f(x)一定是奇函数.
()
•(3)若函数的定义域关于原点对称,则这个函数不是奇函 数就是偶函数.( )
()
•A.-1
B.0
•C.1
D.无法确定
• 解析:∵奇函数的定义域关于原点对称,∴a-1=0,即a =1.
•答案:C
• 4.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=-x+1, 则当x<0时,f(x)=________.
• 解析:当x<0时,-x>0,则f(-x)=-(-x)+1=x+1=- f(x),所以f(x)=-x
又 f(0)=0,所以 f(x)=x-1x+x-x,1,x≥x0<,0.
• 3.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x, 求函数f(x),g(x)的解析式.
• 解:∵f(x)是偶函数,g(x)是奇函数,
• ∴f(-x)=f(x),g(-x)=-g(x),
• 由f(x)+g(x)=2x+x2,
• [方法技巧]
• 比较大小的求解策略
• (1)若自变量在同一单调区间上,直接利用函数的单调性 比较大小.
• 3.2.2 奇偶性
明确目标
发展素养
1.理解奇函数、偶函数的定义,了解 1.借助奇(偶)函数的特征,培养直
奇函数、偶函数图象的特征.
观想象素养.
2.掌握判断函数奇偶性的方法,会根 2.借助函数奇偶性的判断方法,
高中数学人教A版 必修1《3.2.2函数的奇偶性》课件(16张PPT)
![高中数学人教A版 必修1《3.2.2函数的奇偶性》课件(16张PPT)](https://img.taocdn.com/s3/m/01f30fa00875f46527d3240c844769eae009a3e2.png)
一看
二找
三判断
看定义域 是否关于 原点对称
找 f x与
f x的
下结
关系
论
函数奇偶性的判断
变式训练1 判断下列函数的奇偶性:——定义法
(1)f x 4 x2 (2)f x x2x 1
x 1
(3)f x 0
按照奇偶性将函数分类为:
①奇函数 ②偶函数 ③非奇非偶函数 ④既奇又偶函数
函数奇偶性的判断 ——图象直观感知
利用奇、偶函数的和、差、积、商的奇偶性,以 及复合函数的奇偶性判断.
f x
偶
偶
奇
奇
gx
偶
奇
奇
偶
f x gx
f x gx
f x gx
f g(x)
研究题 借助几何画板绘制大量函数图象并归纳函数的单调
性与函数的奇偶性的关系。来自f(-x)=f(x)f(-x)=-f(x)
不同点
图象关于y轴对称 图象关于原点对称
补充:奇偶性是函数在其定义域上的整体性质
函数奇偶性的判断
例6 判断下列函数的奇偶性: ——定义法
(1)f x x4
偶函数 (2) f x x5 奇函数
(3)f x x 1
x
奇函数
(4)
f
x
1 x2
偶函数
归纳: 根据定义判断函数的奇偶性的步骤:
f x x2
…
9
4
1
0
14
…
9
gx 2 | x | … -1
0
1
2
1
0
…
-1
f 3 9 f 3 f 2 4 f 2 f 1 1 f 1
几何画板
当自变量取一对相反数时, 相应的两个函数值相等
高中数学必修一北师大版本《2.4.1 函数的奇偶性》教学课件
![高中数学必修一北师大版本《2.4.1 函数的奇偶性》教学课件](https://img.taocdn.com/s3/m/c456b88edb38376baf1ffc4ffe4733687e21fc28.png)
)
A.-1 B.1
C.-32
3 D.2
解析:(2)由题意 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0, ∴a=-32.此时 f(x)=x2+x 8为奇函数.
答案:(2)C
状元随笔 由函数的奇偶性求参数应注意两点
(1)函数奇偶性的定义既是判断函数的奇偶性的一种方法,也是 在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义 的正用和逆用.
综上,函数 f(x)的解析式为 f(x)=0x,x-x=10,,x>0, -xx+1,x<0.
xx-1,x>0, 答案:(2)f(x)=0,x=0,
-xx+1,x<0.
方法归纳
利用奇偶性求函数解析式的方法 已知函数的奇偶性及其在某区间上的解析式,求该函数在整个 定义域上的解析式的方法是:先设出未知解析式的定义区间上的自 变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到 已知的区间上,代入已知的解析式,然后利用函数的奇偶性求解即 可.具体如下:(1)求哪个区间上的解析式,x 就设在哪个区间上; (2)将-x 代入已知区间上的解析式;(3)利用 f(x)的奇偶性把 f(-x) 写成-f(x)或 f(x),从而解出对应区间上的 f(x).
4.1 函数的奇偶性
最新 课标
结合具体函数,了解奇偶性的概念和几何意义.
[教材要点]
要点 偶函数与奇函数 1.奇函数的概念 一般地,设函数 f(x)的定义域为 D,如果∀x∈D,都有-x∈D, 且 f(-x)=-f(x),那么称函数 f(x)为奇函数. 2.偶函数的概念 一般地,设函数 f(x)的定义域是 D,如果∀x∈D,都有-x ∈D,且 f(-x)=f(x),那么称函数 f(x)为偶函数.
函数的奇偶性对称性周期性课件共19张PPT
![函数的奇偶性对称性周期性课件共19张PPT](https://img.taocdn.com/s3/m/6b99a8d7cd22bcd126fff705cc17552707225e9a.png)
(2)已知 f (x) 是奇函数,且当 x 0 时,f (x) eax .若 f (ln 2) 8 ,则a ___-_3______.
(3)(2020·海南 8)若定义在 R 的奇函数 f(x)在(, 0) 单调递减,且 f(2)=0,则满足
xf (x 1) 0 的 x 的取值范围是( D )
A.13
B. 2
C.
13 2
D.123
专题三:函数的周期性
变式 5:(1)设定义在 R 上的函数 f x 满足 f x 2 f x ,若 f 1 2 ,则 f 99 _-_2__.
(2)(2022·湖北模拟)定义在 R 上的函数 f x 满足 f x 1 f x 2 ,则下列是周期函数的是 ( D )A. y f x x B. y f x x C. y f x 2x D. y f x 2x
叫做偶函数 一般地,设函数f(x)的定义域为I,如果∀x∈I, 奇函数 都有-x∈I,且_f_(-__x_)_=__-__f_(x_)_,那么函数f(x) 关于_原__点__对称 就叫做奇函数
复习回顾 2.周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且_f_(_x+__T__)=__f_(x_)_,那么函数y=f(x) 就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最_小___的正数, 那么这个_最__小__正__数__就叫做f(x)的最小正周期.
课堂小结
函数的性质
奇偶性
判断 求解析 求参数
对称性
轴对称: 中心对称:
周期性
求值 求解析 比较大小
祝同学们前程似锦!
人教版函数的奇偶性-高中数学(共41张PPT)教育课件
![人教版函数的奇偶性-高中数学(共41张PPT)教育课件](https://img.taocdn.com/s3/m/b704e90849649b6649d7475c.png)
f(-x)= f(x) 函数f(x)叫作偶函数
图象关于 y轴 对称
f(-x)= -f(x) 函数f(x)叫作奇函数 图象关于 原点 对 称
3
知识点聚焦:
• 二、奇偶性
定义
如果函数f(x)是奇函数或是偶函数,那么就说函数 f(x)具有 奇偶性
图象特征 奇(偶)函数 图象关于原点或y轴对称
4
探究一 函数奇偶性的判断
∵f(x)是奇函数,
•
∴f(x)=-f(-x)=-[(-x)(1+x)]=x(1+x).
• 【答案】B
37
随堂训练
• 5.已知函数f(x)是定义域为R的奇函数且f(1)=-2,那么f(-1)+f(0)=( )
•
A.-2
B.0
C.1
D.2
38
解析:
• 【解析】函数f(x)是定义域为R的奇函数且f(1)=-2,
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
《奇函数偶函数》课件
![《奇函数偶函数》课件](https://img.taocdn.com/s3/m/ca47b35c6ad97f192279168884868762caaebbc7.png)
偶函数在其定义域内可导 或不可导,但偶函数在y轴 两侧的导数符号相反。
奇函数和偶函数的性质
01
奇偶性是函数的固有属 性,不随函数图像的平 移、伸缩或翻转而改变 。
02
奇函数和偶函数的定义 域必须关于原点对称。
03
奇函数和偶函数的定义 域可以是全体实数、正 实数、非负实数等。
04
奇函数APTER 02
奇函数和偶函数的图像
奇函数的图像
奇函数的图像关于原点对称,即对于 任意点$P(x, y)$在奇函数上,关于原 点对称的点$P'(-x, -y)$也在该奇函数 上。
奇函数的图像在坐标轴上的交点数量 是偶数。
奇函数的图像可能出现在第一、三、 五或七象限,但不可能出现在第二、 四象限。
奇函数的图像
奇函数的图像关于原点对 称。
奇函数的性质
奇函数在其定义域内可导 或不可导,但奇函数在原 点的导数一定为0。
偶函数的定义
偶函数的定义
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
偶函数的图像
偶函数的图像关于y轴对称 。
偶函数的性质
数的性质和应用
06
思考题
总结词:拓展思维
总结词:培养创新能力
总结词:思考奇偶函数在 实际生活中的应用
总结词:激发探索精神
总结词:探究奇偶函数与 其他数学知识的联系
总结词:尝试设计一些有 趣的奇偶函数问题
THANKS FOR WATCHING
感谢您的观看
偶函数的图像
偶函数的图像关于y轴对称,即 对于任意点$P(x, y)$在偶函数上 ,关于y轴对称的点$P'( - x, y)$
奇函数和偶函数的性质
01
奇偶性是函数的固有属 性,不随函数图像的平 移、伸缩或翻转而改变 。
02
奇函数和偶函数的定义 域必须关于原点对称。
03
奇函数和偶函数的定义 域可以是全体实数、正 实数、非负实数等。
04
奇函数APTER 02
奇函数和偶函数的图像
奇函数的图像
奇函数的图像关于原点对称,即对于 任意点$P(x, y)$在奇函数上,关于原 点对称的点$P'(-x, -y)$也在该奇函数 上。
奇函数的图像在坐标轴上的交点数量 是偶数。
奇函数的图像可能出现在第一、三、 五或七象限,但不可能出现在第二、 四象限。
奇函数的图像
奇函数的图像关于原点对 称。
奇函数的性质
奇函数在其定义域内可导 或不可导,但奇函数在原 点的导数一定为0。
偶函数的定义
偶函数的定义
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
偶函数的图像
偶函数的图像关于y轴对称 。
偶函数的性质
数的性质和应用
06
思考题
总结词:拓展思维
总结词:培养创新能力
总结词:思考奇偶函数在 实际生活中的应用
总结词:激发探索精神
总结词:探究奇偶函数与 其他数学知识的联系
总结词:尝试设计一些有 趣的奇偶函数问题
THANKS FOR WATCHING
感谢您的观看
偶函数的图像
偶函数的图像关于y轴对称,即 对于任意点$P(x, y)$在偶函数上 ,关于y轴对称的点$P'( - x, y)$
1 第1课时 函数奇偶性的概念(共45张PPT)
![1 第1课时 函数奇偶性的概念(共45张PPT)](https://img.taocdn.com/s3/m/ed23171a3d1ec5da50e2524de518964bcf84d224.png)
【解】 (1)因为 x∈R, 所以-x∈R, 又因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-(|x+1|-|x-1|) =-f(x), 所以 f(x)为奇函数. (2)因为函数 f(x)的定义域为{-1,1}, 关于原点对称,且 f(x)=0, 所以 f(-x)=-f(x),f(-x)=f(x), 所以 f(x)既是奇函数又是偶函数.
解:(1)由题意作出函数图象如图所示:
(2)由图可知,单调递增区间为(-1,1). (3)由图可知,使 f(x)<0 的 x 的取值集合为(-2,0)∪(2,+∞).
巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性. (2)作出函数在[0,+∞)(或(-∞,0])上对应的图象. (3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的 函数图象. [注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称 点为(-x0,-y0),关于 y 轴的对称点为(-x0,y0).
C.坐标原点对称
D.直线 y=x 对称
解析:选 C.函数 f(x)=1x-x 是奇函数,其图象关于坐标原点对称.
3.(2020·武汉高一检测)函数 f(x)=x+x22+a+8 3为奇函数,则实数 a=
(
)
A.-1
B.1
C.-32
D.32
解析:选 C.由题得 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0,所以 a=
探究点 2 奇、偶函数的图象 已知函数 y=f(x)是定义在 R 上的偶函数,且当 x≤0 时,f(x)=x2+2x.
现已画出函数 f(x)在 y 轴左侧的图象,如图所示.
(1)请补出完整函数 y=f(x)的图象; (2)根据图象写出函数 y=f(x)的递增区间; (3)根据图象写出使 f(x)<0 的 x 的取值集合.
函数的奇偶性说课稿ppt
![函数的奇偶性说课稿ppt](https://img.taocdn.com/s3/m/5f2f6552c4da50e2524de518964bcf84b9d52d94.png)
偶函数的定义与性质
偶函数的定义:如果对于函数$f(x)$的定 义域内任意$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
3. 若偶函数在$x=0$处有定义,则一定 有$f(0)=0$。
2. 偶函数在y轴两侧是对称的。
偶函数的性质 1. 偶函数的图像关于y轴对称。
奇偶性的判断方法
在数学分析中,奇函数和偶函数具有不同的性质。奇函数 图像关于原点对称,而偶函数图像关于y轴对称。这些性 质在解决一些数学问题时非常有用,例如求函数的积分、 求解微分方程等。
在微积分中的应用
在微积分中,奇偶性也是研究函数的重要工具之一。奇偶性可以帮助我们简化函 数的积分和微分计算。例如,对于一些具有对称性的函数,我们可以通过奇偶性 来简化计算过程,提高计算效率。
奇函数的定义与性质
95% 85% 75% 50% 45%
0 10 20 30 40 5
奇函数的定义:如果对于函数$f(x)$的定义域内任意$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。 奇函数的性质
1. 奇函数的图像关于原点对称。
2. 奇函数在原点有定义则一定过原点。
3. 若奇函数在$x=0$处有定义,则$f(0)=0$。
在微积分中,奇偶性还与一些重要的数学概念相关联,例如周期性和傅里叶分析 。奇偶性可以帮助我们更好地理解这些概念,并进一步研究函数的性质和行为。
在实际生活中的应用
奇偶性在实际生活中也有广泛的应用。例如,在物理学中,一些物理量(如质量、电荷等)是具有奇 偶性的,它们的性质和行为可以用奇偶性来描述和预测。
05
总结与展望
总结
回顾函数的奇偶性的定义和性质,包括奇函数、偶 函数、既奇又偶函数和非奇非偶函数。
函数的奇偶性(数学教学课件)课件
![函数的奇偶性(数学教学课件)课件](https://img.taocdn.com/s3/m/192a763f8f9951e79b89680203d8ce2f006665f3.png)
例如
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
人教版高中数学函数的奇偶性(共15张PPT)教育课件
![人教版高中数学函数的奇偶性(共15张PPT)教育课件](https://img.taocdn.com/s3/m/f7b759caa216147916112864.png)
:
那
你
的
第
一
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
但
是
当
我
拍
完
但
是
我
年
轻
时
有
一
个
想
法
就
是
如
果
我
告
诉
你
怎
么
弄
■
电
:
“
口
罗
部
爬
一
,
1
戏
有
上
来
的
我
个
5
分
钟
后
你
还
色
其
没
清
镜
没
有
楚 弄
有 怎
完 情
么
头
我
就
胆
怯
,
像
运
作
这
个
东
西
(
,
下
不
耐
烦
像
如
果
我
自
己
弄
费
电
影
一
五
分
钟
男
女
实
里
拍
个
就
弄
尼
摄
)
所
镜
完
所
以
最
是
拍 以
后
通
不
第
一
为
人
的
一
生
说
白
了
,
也
就
是
三
万
3.2.2函数的奇偶性(课件)高一数学(湘教版2019必修第一册)
![3.2.2函数的奇偶性(课件)高一数学(湘教版2019必修第一册)](https://img.taocdn.com/s3/m/37ee96d3a1116c175f0e7cd184254b35eefd1ac3.png)
1
. ( , + ∞)
2
答案:.
1
. (−∞, )
2
).
1
. ( ,2)
2
1
. [−2, )
2
课堂小结&作业
小结:
1.偶函数、奇函数的定义及其几何意义;
2.判断奇偶函数的思路;
3.各题型的注意事项.
作业:
1.课本P83的1、2、3题;
2.课本P84的习题3.2的4、5、6、7、11、12、13题.
2
3
. (2) < (− ) < (−1)
2
3
. (2) < (−1) < (− )
2
3
. (−1) < (− ) < (2)
2
解:据题意得: () 为偶函数,且在区间 ( − ∞, − 1] 上是增函数.
∴(2) = (−2) .
3
又∵−2 < − < −1
2
∴(−2) <
∵()为上的偶函数
∴当 > 0时,() = (−) = ( + 1).
练习
方法技巧:
利用函数奇偶性求分段函数的解析式
(1)定义域:根据已知定义域(正或负)的解析式,写出另一边的解析式.
(2)写成分段函数的形式,通常不会出现 = 0,如果出现也需要特殊说明.
练习
变3.已知函数()是上的奇函数,且当 ∈ (0, + ∞)时,() =
同理可证:奇函数就是满足条件(−) = −()的函数.
上面的讨论概括如下:
(1)如果对一切使 () 有定义的 , (−) 也有定义,并且 (−) = ()成立,
则称()为偶函数;
. ( , + ∞)
2
答案:.
1
. (−∞, )
2
).
1
. ( ,2)
2
1
. [−2, )
2
课堂小结&作业
小结:
1.偶函数、奇函数的定义及其几何意义;
2.判断奇偶函数的思路;
3.各题型的注意事项.
作业:
1.课本P83的1、2、3题;
2.课本P84的习题3.2的4、5、6、7、11、12、13题.
2
3
. (2) < (− ) < (−1)
2
3
. (2) < (−1) < (− )
2
3
. (−1) < (− ) < (2)
2
解:据题意得: () 为偶函数,且在区间 ( − ∞, − 1] 上是增函数.
∴(2) = (−2) .
3
又∵−2 < − < −1
2
∴(−2) <
∵()为上的偶函数
∴当 > 0时,() = (−) = ( + 1).
练习
方法技巧:
利用函数奇偶性求分段函数的解析式
(1)定义域:根据已知定义域(正或负)的解析式,写出另一边的解析式.
(2)写成分段函数的形式,通常不会出现 = 0,如果出现也需要特殊说明.
练习
变3.已知函数()是上的奇函数,且当 ∈ (0, + ∞)时,() =
同理可证:奇函数就是满足条件(−) = −()的函数.
上面的讨论概括如下:
(1)如果对一切使 () 有定义的 , (−) 也有定义,并且 (−) = ()成立,
则称()为偶函数;
函数的的奇偶性PPT教学课件
![函数的的奇偶性PPT教学课件](https://img.taocdn.com/s3/m/5ffc911c770bf78a642954c5.png)
又∵f(x)在(-1,1)上为减函数, ∴
1-a>a2-1 -1<1-a<1 -1<a2-1<1,解得0<a<1.
(2)因为函数g(x)在[-2,2]上是偶函数,则由g(1-m)<g(m),可得g(|1m|)<g(|m|),
又当x≥0时,g(x)为减函数,得到
|1-m|≤2 |m|≤2
1 解之得-1≤m< 2
(4)f(x)= 1 x2 x2 1
.
x
11
(1)x x 定1 1
(x)2 1 x2 x2
义 域 为
x1 x
得x2 1
(
3 )
函
数
的
定
义
域
为
A
=
{
学点二 由奇偶性求函数解析式 设f(x)是定义在R上的奇函数,当x>0时,f(x)= x2 +x+1,求 函数解析式. 【分析】由奇函数的图象关于原点对称,找x≥0和x<0时解析 式间的联系.
(2)如果一个函数的定义域关于原点不对称,那么这个 函数既不是奇函数,也不是偶函数.
(3)定义域关于原点对称,满足f(-x)=-f(x)=f(x)的函数, 既是奇函数,又是偶函数,如f(x)=0,x∈R.
判断下列函数的奇偶性:
1
1
(1)f(x)=x+ (3)f(x)=x+
xx
;
1
;
(2)f(x)=x2+ x2 ;
|1-m|>|m|,.
1.在函数的奇偶性中应注意什么问题?
(1)对于函数奇偶性的理解
①函数的奇偶性与单调性的差异:函数的奇偶性是相对于函数 的整个定义域来说的,这一点与函数的单调性不同.从这个意 义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是 函数的“整体”性质,只有对函数定义域内的每一个值x,都 有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇(或偶)函数.
高一数学人教版必修一函数的奇偶性 PPT课件 图文
![高一数学人教版必修一函数的奇偶性 PPT课件 图文](https://img.taocdn.com/s3/m/561a8bc271fe910ef12df8b6.png)
猜想: f(x)f(x)
x ..3.2 1 0 1 2 3..
... f (x) x2
941
0
14
9..
偶函数的定义
一般地,如果对函数 f (x) 的定义域内任意一个 x, 都有f (x) f (x), 那么函数 f (x)就叫偶函数 .
类比&探究
f(1)f(1) f(2)f(2) f(3)f(3)
1.3.2函数的奇偶性
必修1(人教版)
故宫
女子跳水10米跳台决赛,正反跳映衬对称美
数学&生活
生活中的对称美引入我们的数学领 域中,它又是怎样的情况呢?
请同学们观察下列函数图形,说出 他们各有怎样的对称性?
问题与思考
以上函数图像有什么共同特征呢? 哈哈,我来回答
以上函数图像都关于y轴对称
把图像关于y轴对称函数称为偶函数
问题与思考
以上函数图像有什么共同特征 呢?
以上函数图像都关于原点对称
把图像关于原点对称函数称为奇函数
根据下列函数图象,判断其奇偶性.
y
y
o
奇函数
x
o
x 偶函数
y
b
oLeabharlann x 偶函数yo
x 奇函数
观察 & 发现
f(1)1f(1)
f(2)4f(2)
f( 3)9f(3) ……
2.两个性质:
一个函数为奇函数 它的图象关于原点对称。 一个函数为偶函数 它的图象关于y 轴对称。
3. 判断函数奇偶性的方法和步骤
我来总结
判断函数的奇偶性,注意定 义域优先
1.
课堂小结
f ( x )是 函数f (x)的图像 对函数 f (x)的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
y=x2+2x
3 2 1
1
-2 -1 0 -1 1 2 3 x
-2 -1 0 -1 -2 -3
1
2
3 x
-2
-3
即是奇函数又是偶函数的函数
如:
y 3 2
1
-2 -1 0 -1 -2 -3 1
y=0
2 3 x
2、奇、偶函数定义的逆命题也成立,即 若f(x)为奇函数,则f(-x)=-f(x)有成立. 若f(x)为偶函数,则f(-x)=f(x)有成立.
(2)解:定义域为R f(-x)=(-x)5=- x5 =-f(x) 即f(-x)=-f(x)
∴f(x)偶函数 ∴f(x)奇函数 (3)解:定义域为{x|x≠0} (4)解:定义域为{x|x≠0} ∵ f(-x)=-x+1/(-x)=-f(x) ∵ f(-x)=1/(-x)2=f(x) 即f(-x)=-f(x) 即f(-x)=f(x)
……
-x
x
f(-x) = -f(x)
f(x)=x
y x
-3 -2 -1 0 1 2 3 1
1 2
3 2 1
1 1 1 f ( x) -1 x 3 2
表(4)
1 3
-2 -1 0
-1 -2 -3
1
2
3 x
f(-1)= -1 =-f(1)
1 f(-3)= =-f(3) 3 ……
1 2
∴f(x)奇函数
∴f(x)偶函数
在日常生活中,我们可以观察到 许多对称现象,如:美丽的蝴蝶,盛 开的花朵,六角形的雪花晶体,以及 建筑物和它在水中的倒影.....
四川曹家大院一景
水镜台
曹家多子院大门
二道门
晋祠硕亭
曹家大院某院
太谷民居门墩石狮子
晋祠鼓楼
y
f (x)=x2
x … -2 -1 0 1 2 …
y … 4 1 0 1 4 …
3、奇、偶函数性质:
偶函数的
定义域关于原点对称
图象关于y轴对称
奇函数的定义域关于Fra bibliotek点对称图象关于原点对称。
偶函数的图像特征
如果一个函数是偶 函数,则它的图象 关于y轴对称。
y=x2
反过来, 如果一个函数的图 象关于y轴对称, 则这个函数为偶函 数。
性质:偶函数的定义域关于原点对称
问题: f
解:
y 6 5 4 3 2 1 -3 -2 -1 0 1 2 3 x
O
x
f (x)=|x|
y
问题: 1、对定义域中的每一个x, -x是否也在定义域内? 2、f(x)与f(-x)的值有什么 关系?
x … -2 -1 0 1 2 …
O x
y … 2 1 0 1 2 …
函数y=f(x)的图象 关于y轴对称
1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(x)=f(-x)
y=x3
0
性质:奇函数在关于原点对称的区间上单调性一致.
六、应用:
例1 判断下列函数的奇偶性 1.y=-2x2+1,x∈R; 是偶函数 是奇函数 2.f(x)=-x|x|; 3.y=-3x+1; 不是奇函数也不是偶函数 4.f(x)=x2,x∈{-3,-2,-1,0,1,2}; 非奇非偶函数 5.y=0,x∈[-1,1]; 既是奇函数也是偶函数
f(-x) = -f(x)
1 f ( x) x
函数y=f(x)的图象 关于原点对称
1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(-x)=-f(x)
如果对于函数f(x)的定义域为A。 如果对任意一个x∈A,都有 f(-x)=- f(x), 那么称函数f(x)是奇函数 。
如果一个函数f(x)是奇函数或偶函 数,那么我们就说函数f(x)具有奇偶 性.
( x) x x 1,2
,
2
是偶函数吗?
不是。
例:
y=x2
性质:偶函数在关于原点对称的区间上单调性相反。
性质:奇函数的定义域关于原点对称。
问题: f ( x) x, x 1, 是奇函数吗? 解:
y 3 2 1 -3 -2 -1 0 -1 1
不是。
2
3 x
-2
-3
例:
1 x 6. f ( x ) ( x 1) 1 x
非奇非偶函数 亦奇亦偶函数
7.f ( x) x 1 1 x
2
2
x2 x 例2、证明函数f ( x ) 2 x x 是奇函数
例3 如图是奇函数y=f(x)图象 的一部分,试画出函数在y轴 左边的图象。
( x 0) ( x 0)
3
2 1 -2 -1 0 1 2 3 x
-1
-2 -3
f(x)=x
1 f ( x) x
y
x
-3 -2 -1
表(3)
0 1 2 3
2 3
-2
3 2 1 -1 0 -1 -2 -3 1 2 3 x
f(x)=x
-3 -2 -1 0 1
f(-1)= -1=-f(1) -f(2) f(-3)= -3 =-f(3)
y
x 0
例4 已知y=f(x)是R上的奇函数,当x>0时, f(x)=x2 +2x-1 ,求函数的表达式。
练习:判断下列函数的奇偶性:
(1) f ( x) x 4 1 (3) f ( x ) x x ( 2) f ( x) x 5 1 ( 4) f ( x ) 2 x
(1)解:定义域为R ∵ f(-x)=(-x)4=f(x) 即f(-x)=f(x)
。
(A)
y x 4 2 | x | 1, x [2,3]
(B)
x 1 x 0 1 y , x R且x 0 y x x 1 x 0
(C) (D)
观察下面两个函数填写表格
y 3 2 1 -3 -2 -1 0 -1 -2 -3 1 2 3 x y
如果对于函数f(x)的定义域为A。 如果对任意的x∈A,都有 f(-x)= f(x), 那么称函数y=f(x)是偶函数。
(1)下列说法是否正确,为什么?
(1)若f (-2) = f (2),则函数 f (x)是偶函数.
(2)若f (-2) ≠ f (2),则函数 f (x)不是偶函数.
(2)下列函数是否为偶函数,为什么?
判定函数奇偶性基本方法: ∈ ①定义法: 先看定义域是否关于原点对称, 再看f(-x)与f(x)的关系. ②图象法: 看图象是否关于原点或y轴对称.
说明: 1、根据函数的奇偶性
函数可划分为四类:
奇函数 偶函数 既奇又偶函数 f(x)=0 x∈R 非奇非偶函数
非奇非偶函数
如:
y y 3
y=3x+1
y=x2+2x
3 2 1
1
-2 -1 0 -1 1 2 3 x
-2 -1 0 -1 -2 -3
1
2
3 x
-2
-3
即是奇函数又是偶函数的函数
如:
y 3 2
1
-2 -1 0 -1 -2 -3 1
y=0
2 3 x
2、奇、偶函数定义的逆命题也成立,即 若f(x)为奇函数,则f(-x)=-f(x)有成立. 若f(x)为偶函数,则f(-x)=f(x)有成立.
(2)解:定义域为R f(-x)=(-x)5=- x5 =-f(x) 即f(-x)=-f(x)
∴f(x)偶函数 ∴f(x)奇函数 (3)解:定义域为{x|x≠0} (4)解:定义域为{x|x≠0} ∵ f(-x)=-x+1/(-x)=-f(x) ∵ f(-x)=1/(-x)2=f(x) 即f(-x)=-f(x) 即f(-x)=f(x)
……
-x
x
f(-x) = -f(x)
f(x)=x
y x
-3 -2 -1 0 1 2 3 1
1 2
3 2 1
1 1 1 f ( x) -1 x 3 2
表(4)
1 3
-2 -1 0
-1 -2 -3
1
2
3 x
f(-1)= -1 =-f(1)
1 f(-3)= =-f(3) 3 ……
1 2
∴f(x)奇函数
∴f(x)偶函数
在日常生活中,我们可以观察到 许多对称现象,如:美丽的蝴蝶,盛 开的花朵,六角形的雪花晶体,以及 建筑物和它在水中的倒影.....
四川曹家大院一景
水镜台
曹家多子院大门
二道门
晋祠硕亭
曹家大院某院
太谷民居门墩石狮子
晋祠鼓楼
y
f (x)=x2
x … -2 -1 0 1 2 …
y … 4 1 0 1 4 …
3、奇、偶函数性质:
偶函数的
定义域关于原点对称
图象关于y轴对称
奇函数的定义域关于Fra bibliotek点对称图象关于原点对称。
偶函数的图像特征
如果一个函数是偶 函数,则它的图象 关于y轴对称。
y=x2
反过来, 如果一个函数的图 象关于y轴对称, 则这个函数为偶函 数。
性质:偶函数的定义域关于原点对称
问题: f
解:
y 6 5 4 3 2 1 -3 -2 -1 0 1 2 3 x
O
x
f (x)=|x|
y
问题: 1、对定义域中的每一个x, -x是否也在定义域内? 2、f(x)与f(-x)的值有什么 关系?
x … -2 -1 0 1 2 …
O x
y … 2 1 0 1 2 …
函数y=f(x)的图象 关于y轴对称
1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(x)=f(-x)
y=x3
0
性质:奇函数在关于原点对称的区间上单调性一致.
六、应用:
例1 判断下列函数的奇偶性 1.y=-2x2+1,x∈R; 是偶函数 是奇函数 2.f(x)=-x|x|; 3.y=-3x+1; 不是奇函数也不是偶函数 4.f(x)=x2,x∈{-3,-2,-1,0,1,2}; 非奇非偶函数 5.y=0,x∈[-1,1]; 既是奇函数也是偶函数
f(-x) = -f(x)
1 f ( x) x
函数y=f(x)的图象 关于原点对称
1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(-x)=-f(x)
如果对于函数f(x)的定义域为A。 如果对任意一个x∈A,都有 f(-x)=- f(x), 那么称函数f(x)是奇函数 。
如果一个函数f(x)是奇函数或偶函 数,那么我们就说函数f(x)具有奇偶 性.
( x) x x 1,2
,
2
是偶函数吗?
不是。
例:
y=x2
性质:偶函数在关于原点对称的区间上单调性相反。
性质:奇函数的定义域关于原点对称。
问题: f ( x) x, x 1, 是奇函数吗? 解:
y 3 2 1 -3 -2 -1 0 -1 1
不是。
2
3 x
-2
-3
例:
1 x 6. f ( x ) ( x 1) 1 x
非奇非偶函数 亦奇亦偶函数
7.f ( x) x 1 1 x
2
2
x2 x 例2、证明函数f ( x ) 2 x x 是奇函数
例3 如图是奇函数y=f(x)图象 的一部分,试画出函数在y轴 左边的图象。
( x 0) ( x 0)
3
2 1 -2 -1 0 1 2 3 x
-1
-2 -3
f(x)=x
1 f ( x) x
y
x
-3 -2 -1
表(3)
0 1 2 3
2 3
-2
3 2 1 -1 0 -1 -2 -3 1 2 3 x
f(x)=x
-3 -2 -1 0 1
f(-1)= -1=-f(1) -f(2) f(-3)= -3 =-f(3)
y
x 0
例4 已知y=f(x)是R上的奇函数,当x>0时, f(x)=x2 +2x-1 ,求函数的表达式。
练习:判断下列函数的奇偶性:
(1) f ( x) x 4 1 (3) f ( x ) x x ( 2) f ( x) x 5 1 ( 4) f ( x ) 2 x
(1)解:定义域为R ∵ f(-x)=(-x)4=f(x) 即f(-x)=f(x)
。
(A)
y x 4 2 | x | 1, x [2,3]
(B)
x 1 x 0 1 y , x R且x 0 y x x 1 x 0
(C) (D)
观察下面两个函数填写表格
y 3 2 1 -3 -2 -1 0 -1 -2 -3 1 2 3 x y
如果对于函数f(x)的定义域为A。 如果对任意的x∈A,都有 f(-x)= f(x), 那么称函数y=f(x)是偶函数。
(1)下列说法是否正确,为什么?
(1)若f (-2) = f (2),则函数 f (x)是偶函数.
(2)若f (-2) ≠ f (2),则函数 f (x)不是偶函数.
(2)下列函数是否为偶函数,为什么?
判定函数奇偶性基本方法: ∈ ①定义法: 先看定义域是否关于原点对称, 再看f(-x)与f(x)的关系. ②图象法: 看图象是否关于原点或y轴对称.
说明: 1、根据函数的奇偶性
函数可划分为四类:
奇函数 偶函数 既奇又偶函数 f(x)=0 x∈R 非奇非偶函数
非奇非偶函数
如:
y y 3
y=3x+1