3、风荷载取值
最新风荷载标准值
风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。
脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。
脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。
平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。
阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。
平均风相当于静力,不引起振动。
阵风相当于动力,引起振动但是引起的是一种随机振动。
也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
横风向,既有周期性振动又有随机振动。
换句话说就是既有周期性风力又有脉动风。
反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。
由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。
2020年常用荷载取值
2020年常⽤荷载取值作者:⾮成败作品编号:92032155GZ5702241547853215475102时间:2020.12.131.1 风荷载:1.2 正常使⽤活荷载标准值(KN/m2):(1)住宅、宿舍取2.0;其⾛廊、楼梯、门厅取2.0;(2)办公、教室取2.0;其⾛廊、楼梯、门厅取2.5;(3)⾷堂、餐厅取2.5;其⾛廊、楼梯、门厅取2.5;(4)⼀般阳台取2.5;(5)⼈流可能密集的⾛廊/楼梯/门厅/阳台、⾼层住宅群间连廊/平台取3.5;(6)卫⽣间取2.0~2.5(按荷载规范);设浴缸、座厕的卫⽣间取4.0;(7)住宅厨房取2.0,中⼩型厨房取4.0,⼤型厨房取8.0(超重设备另⾏计算);(8)多功能厅、阶梯教室有固定坐位取3.0;⽆固定坐位取3.5;(9)商店、展览厅、娱乐室取3.5;其⾛廊、楼梯、门厅取3.5;(10)⼤型餐厅、宴会厅、酒吧、舞厅、健⾝房、舞台取4.0;(11)礼堂、剧场、影院、有固定坐位的看台、公共洗⾐房取3.0;(12)⼩汽车通道及停车库取4.0;(13)消防车通道:单向板取35.0;双向板楼盖、⽆梁楼盖取20.0;注:消防车超过300KN时,应按结构等效原则,换算为等效均布荷载。
结构荷载输⼊:⽆覆⼟的双向板(板跨≥2.7m):板、次梁取28,主梁取20;覆⼟厚度≥0.5m 的双向板(板跨≥2.7m):板取≤28, 梁参考院部《消防车等效荷载取值计算表》;(14)书库、档案库取5.0;(15)密集柜书库取12.0;(16)⼤型宾馆洗⾐房取7.5;(17)微机房取3.0;⼤中型电⼦计算机房取≥5.0,或按实际;(18)电梯机房、通风机房取7.0;通风机平台取6(≤5号风机)或8(8号风机);(19)制冷机房、宾馆储藏室、布草间、公共卫⽣间(包括填料隔墙)取8.0;(20)⽔泵房、变配电房、发电机房、银⾏⾦库及票据仓库取10.0;(21)管道转换层取4.0;(22)电梯井道下有⼈到达房间的顶板取5.0。
欧标风荷载计算及参数取值
欧标风荷载计算及参数取值1.地区参数:欧标根据不同地区的风速特点进行分类,并给出相应的地区参数。
地区参数的取值可以根据地理位置、地形和气象观测数据等因素来确定。
2.风速:风速是计算风荷载的基本参数。
欧标规定了不同地区不同高度上的基本风速值,并考虑了地形因素和风速的频率分布。
根据具体的地区和高度,可以在欧洲标准中查找相应的基本风速值。
3.大气条件:欧标对于不同海拔高度、不同季节和不同年份的大气条件进行了规定。
这些参数包括大气密度、大气压力和大气湿度等。
根据这些参数的不同取值,可以计算出风荷载所需的空气动力系数。
4.建筑物高度和尺寸:建筑物的高度和尺寸是计算风荷载的关键参数。
在欧标中,对不同高度范围内的建筑物给出了相应的折减系数。
这些折减系数可以根据建筑物的实际尺寸和高度计算得出。
5.结构类型:不同类型的建筑物对风荷载的敏感程度不同。
欧标将建筑物分为多个类别,并给出了相应的风荷载系数。
例如,对于单个住宅建筑物,风荷载系数通常比大型工业建筑物低。
6.建筑物方位:建筑物的方位也是计算风荷载的重要参数之一、欧标规定了不同方向和角度的风荷载系数,并考虑了建筑物周围的地形和感应效应等因素。
欧洲标准风荷载计算方法通常使用风荷载方案,通过将建筑物划分为不同的风荷载区域,计算每个区域的风荷载,并将其组合得到最终的风荷载。
根据具体的建筑物和地区情况,通过选择适当的参数值和风荷载系数,可以得到准确的风荷载计算结果。
除了以上参数之外,欧标还考虑了其他因素如结构的动力特性、土壤和地基的影响等。
综合考虑这些因素,可以得到更加准确和可靠的风荷载计算结果,为建筑物的设计和施工提供科学依据。
风荷载体型系数取值表
风荷载体型系数取值表1. 引言风荷载是指风对建筑物、结构和设备产生的力和力矩。
在工程设计中,为了保证结构的稳定和安全,需要对风荷载进行合理的计算和评估。
风荷载计算的一个重要参数就是风荷载体型系数。
本文将对风荷载体型系数进行详细的探讨,包括其定义、计算方法和常用取值范围等内容。
同时,还将对常用的结构体型进行分类,并给出相应的风荷载体型系数取值表。
2. 风荷载体型系数的定义风荷载体型系数是指结构所受风荷载与理想平板所受风荷载的比值。
可以用于描述结构对风荷载的敏感程度,是进行风荷载计算的重要参数之一。
风荷载体型系数一般用C表示,计算公式如下:C=F q⋅A其中,C为风荷载体型系数,F为结构所受风荷载,q为单位面积上的风压,A为结构的参考面积。
3. 风荷载体型系数的计算方法风荷载体型系数的计算方法主要取决于结构的形状和结构的风向。
根据结构的形状不同,可以将结构分为不同的体型,并为每种体型给出相应的风荷载体型系数。
常见的结构体型有平面结构、楼板结构、柱、框架结构等。
下面将分别介绍各种体型结构的风荷载体型系数计算方法。
3.1 平面结构平面结构是指在一个平面上分布的结构,如墙体、屋顶等。
对于平面结构,可以根据其高宽比和结构的阻力系数来确定风荷载体型系数。
•当高宽比小于1时,风荷载体型系数为1.2。
•当高宽比大于1时,风荷载体型系数为1.0。
3.2 楼板结构楼板结构是指承载楼板荷载的结构,如楼板、天花板等。
对于楼板结构,风荷载体型系数的计算与楼板所在的楼层高度有关。
•当楼层高度小于10m时,风荷载体型系数为0.8。
•当楼层高度大于10m时,风荷载体型系数为1.0。
3.3 柱柱是指承受竖向载荷的结构,如柱子、支撑柱等。
对于柱的风荷载体型系数的计算,主要取决于柱的高宽比和截面形状。
•当柱的高宽比小于5时,风荷载体型系数为1.0。
•当柱的高宽比大于5时,风荷载体型系数为0.8。
3.4 框架结构框架结构是指由柱和梁组成的结构,如钢结构、混凝土框架等。
风荷载取值
3、1、3 风荷载建筑物受到得风荷载作用大小,与建筑物所处得地理位置、建筑物得形状与高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上得风荷载标准值W K ,按照公式(3、1-2)计算:βz ——高度Z 处得风振系数,主要就是考虑风作用得不规则性,按照《荷载规范》7、4要求取值。
多层建筑,建筑物高度<30m,风振系数近似取1。
(1)风荷载体型系数µS风荷载体型系数,不但与建筑物得平面外形、高宽比、风向与受风墙面所成得角度有关,而且还与建筑物得立面处理、周围建筑物得密集程度与高低等因素有关,一般按照《荷载规表3、1、10 建筑物体型系数取值表注1:当计算重要且复杂得建筑物、及需要更细致地进行风荷载作用计算得建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集得建筑物相互间距离较近时,宜考虑风力相互干扰得群体作用效应。
一般可将单体建筑得体型系数乘以相互干扰增大系数,该系数可参考类似条件得试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2、0。
注4:验算表面围护结构及其连接得强度时,应按照《荷载规范》7、3、3规定,采用局部W W z s z k μμβ=)21.3(-风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要就是考虑建筑物随着高度得增加风荷载得增大作用。
对于位于平坦或稍有起伏地形上得建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7、2要求选用,表3、1、11中列出了常用风压高度变化系数得取值要求。
表3、1、11 风压高度变化系数A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏得乡镇与城市郊区;C类:有密集建筑群得城市市区;D类:有密集建筑群与且房屋较高得城市市区。
建筑围护结构风荷载的计算与取值
摘
要: 风荷 载 为建 筑 中受力 结构 和 围护结 构的 主要 可 变荷载 , 现行 建 筑结 构荷载规 范分别 列 出 了
受力结构和 围护结构风荷载 Wk 的计算公式, 但依据不 同规范计算所得结果差别较 大. 这里通过采 用不 同规 范 , 对风 荷 载值进 行计 算 分析 比较 , 提 出建 筑设 计 中 Wk 计 算 公 式 的选 用及 相 关建议 , 供
于 主要受 力结 构 的 风荷 载 标 准 值 , 甚 至 相 差 4倍 左 右. 檩 条 和墙 梁构 件 涉 及 面 大 , 用钢量多 , 但 依 据 现
定主要受力结构 的风荷载标准值为
k= 卢 zBiblioteka / 1 s z WO 围护结 构 的风荷 载标 准值 为 Wk= s 1 Z O O ( 2 )
第3 7卷 第 4期
北
京
交
通
大
学
学
报
V0 1 . 3 7 No . 4
文章编 号 : 1 6 7 3 — 0 2 9 1 ( 2 0 1 3 } 0 4 — 0 1 1 9 — 0 4
建 筑 围护 结构 风 荷载 的计 算 与取 值
冯 东, 朱 莎, 汪一骏
( 北京交通大 学 土木建筑 工程 学院 , 北京 1 0 0 0 4 4 )
2 ) 《 钢结构设计规范》 G B 5 0 0 1 7 [ 2 ] 规定墙架 中 墙梁的风荷载标准值为 Wk= / l 1 / z W0
( 3 )
钢结构技术规范 ( 送审稿) 》 , 重点论述建筑设计 中风 荷 载标 准值 Wk 计算 公 式 的选用 , 并提 出相关 建 议 , 供设 计人 员参 考 .
s t r u c t u r e s o f bu i l di ng s F E NG Do n g, Z HU S h a, WANG Y i j u n
风荷载标准值49738
For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。
脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。
脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。
平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。
阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。
平均风相当于静力,不引起振动。
阵风相当于动力,引起振动但是引起的是一种随机振动。
也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
横风向,既有周期性振动又有随机振动。
换句话说就是既有周期性风力又有脉动风。
反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。
常用荷载取值
常用荷载取值集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-1.1风荷载:1.2正常使用活荷载标准值(K N/m2):(1)住宅、宿舍取2.0;其走廊、楼梯、门厅取2.0;(2)办公、教室取2.0;其走廊、楼梯、门厅取2.5;(3)食堂、餐厅取2.5;其走廊、楼梯、门厅取2.5;(4)一般阳台取2.5;(5)人流可能密集的走廊/楼梯/门厅/阳台、群间连廊/平台取3.5;(6)卫生间取 2.0~2.5(按荷载规范);设浴缸、座厕的卫生间取4.0;(7)住宅厨房取 2.0,中小型厨房取 4.0,大型厨房取8.0(超重设备另行计算);(8)多功能厅、有固定坐位取3.0;无固定坐位取3.5;(9)商店、展览厅、娱乐室取3.5;其走廊、楼梯、门厅取3.5;(10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取4.0;(11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取3.0;(12)小汽车通道及停车库取4.0;(13)消防车通道:取35.0;双向板楼盖、无梁楼盖取20.0;注:消防车超过300K N时,应按等效原则,换算为等效均布荷载。
结构荷载输入:无覆土的双向板(板跨≥2.7m):板、次梁取28,主梁取20;覆土厚度≥0.5m的双向板(板跨≥2.7m):板取≤28,梁参考院部《消防车等效荷载取值计算表》;(14)书库、档案库取5.0;(15)密集柜书库取12.0;(16)大型宾馆洗衣房取7.5;(17)微机房取3.0;大中型电子计算机房取≥5.0,或按实际;(18)电梯机房、通风机房取7.0;通风机平台取6(≤5号风机)或8(8号风机);(19)?机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取8.0;(20)水泵房、变配电房、发电机房、银行金库及票据仓库取10.0;(21)管道转换层取4.0;(22)电梯井道下有人到达房间的顶板取5.0。
1.3屋面活荷载标准值(K N/m2):(1)上人屋面取2.0;(2)不上人屋面取0.5;(3)?取3.0(不包括花圃土石材料);注:或维修荷载较大时,屋面活荷载应按实际情况采用;因不畅、堵塞等,应加强构造措施或按积水深度采用。
风荷载设计值与标准值
风荷载设计值与标准值风荷载是指由风对建筑物或结构物施加的压力,是建筑设计中必须考虑的重要因素之一。
在设计建筑物或结构物时,需要对风荷载进行合理的计算和评估,以确保建筑物或结构物在风力作用下具有足够的稳定性和安全性。
而风荷载设计值与标准值是在进行风荷载计算和评估时必须了解和确定的重要参数。
风荷载设计值是指根据设计要求和规范规定,经过计算和评估后确定的用于建筑物或结构物设计的风荷载数值。
它是根据建筑物或结构物的特定设计要求和使用环境条件而确定的,具有一定的针对性和个性化特点。
风荷载设计值的确定需要考虑建筑物或结构物的高度、形状、结构类型、使用功能、地理位置等因素,以及设计规范和标准的要求。
通过合理的计算和评估,可以确定建筑物或结构物在设计使用寿命内所需的风荷载设计值,为设计提供重要的依据和参考。
而风荷载标准值则是指根据相关的建筑设计规范和标准规定,针对不同地区和不同建筑物或结构物的使用要求,所确定的一组标准化的风荷载数值。
它是根据统计分析和实测数据,结合地理气象条件和风力特性,综合考虑建筑物或结构物的安全性和经济性而确定的。
风荷载标准值是在一定的统计概率水平下确定的,具有普遍适用性和一般性特点,可以作为建筑物或结构物设计的基本参考数值。
在实际的建筑设计中,风荷载设计值和标准值的确定是相互关联和相互影响的。
风荷载设计值需要参考和遵循相应的风荷载标准值,同时也需要根据具体的设计要求和使用条件进行合理的调整和确定。
在设计过程中,需要充分考虑建筑物或结构物的安全性、稳定性和经济性,合理确定风荷载设计值,保证其与风荷载标准值的一致性和合理性。
总之,风荷载设计值与标准值是建筑设计中重要的参数,对于建筑物或结构物的安全性和稳定性具有重要的影响。
在设计过程中,需要充分考虑建筑物或结构物的特点和使用要求,合理确定风荷载设计值,并参考和遵循相应的风荷载标准值,以确保建筑物或结构物在风力作用下具有足够的安全性和稳定性。
重型吊车工业厂房门式轻钢结构的设计
点, 工业厂房已经广泛采用这种结构体 系。 根据《 门式 刚架轻型房屋结构技术规程} E S 0 : 21 . ( C 2 0 )0 C 1 2 .2条
中要 求 : 房 内 吊车 起重 量 ≯2 但 是根据 工 艺 的需 厂 0t ;
设计计算时, 首先梁柱翼缘和腹板的构造要求应适 当 保守些 , 应按《 钢结构设计规范》 中要求进行控制。
1 门式 刚架 间距 宜 为 6m 9m。 2m,
况, 刚架柱顶位移设计值的限值为 h 0 ; 钢结构 / 0而《 4
中要求 吊车水平荷载作用下的柱顶位移的 那么当厂房 内吊车吨位 > 0 时( 面称为重型 设计手册》 2 后 t 限值为 h 20 这 时应按 《 / 5, 1 钢结构设计 手册》 从严 控 吊车 )如何仍然采用门式刚架体系呢? , 制。
3 重型 吊车 门式 刚架 轻钢结构 的设计方法
( ) 间支撑 : 有重 型 位 吊车 门式 刚 架轻 钢 结 5柱 设
故应该 用 角钢组 重型 吊车 门式刚架轻钢结构 的设计 , 由于其吊车 构承 受 的 吊车纵 向 吊车刹 车力较 大 ,
并假设其仅承受( 下转 13页) 0 吨位较大 , 已经超出门刚规程 的部分要求 , 故设计时 成十字交叉柱 间支撑 ,
风荷载取值电子版本
风荷载取值3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。
多层建筑,建筑物高度<30m ,风振系数近似取1。
(1)风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表W W z s z k μμβ=)21.3(-范》7.3要求取值,表3.1.10中列出了常用体型建筑物的体型系数。
注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A采用、或由风洞试验确定。
注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。
一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。
注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。
对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。
表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B 类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C 类:有密集建筑群的城市市区;D 类:有密集建筑群和且房屋较高的城市市区。
风荷载标准值
风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计计算的重要因素。
脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。
脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。
平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。
阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。
平均风相当于静力,不引起振动。
阵风相当于动力,引起振动但是引起的是一种随机振动。
也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
横风向,既有周期性振动又有随机振动。
换句话说就是既有周期性风力又有脉动风。
反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。
由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。
荷载规范取值个人总结大全
2.1 风荷载:【荷载规范GB 50009-2001(2006版)附表D.4强条】2.2 正常使用活荷载标准值(KN/m2):【荷载规范-4.1.1强条、技术措施-荷载篇】(1)住宅、宿舍取2.0;其走廊、楼梯、门厅取2.0;(2)办公、教室取2.0;其走廊、楼梯、门厅取2.5;(3)食堂、餐厅取2.5;其走廊、楼梯、门厅取2.5;(4)一般阳台取2.5;(5)人流可能密集的走廊/楼梯/门厅/阳台、高层住宅群间连廊/平台取3.5;(6)卫生间取2.0~2.5(按荷载规范);设浴缸、座厕的卫生间取4.0;(7)住宅厨房取2.0,中小型厨房取4.0,大型厨房取8.0(超重设备另行计算);(8)多功能厅、阶梯教室有固定坐位取3.0;无固定坐位取3.5;(9)商店、展览厅、娱乐室取3.5;其走廊、楼梯、门厅取3.5;(10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取4.0;(11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取3.0;(12)小汽车通道及停车库取4.0;(13)消防车通道:单向板取35.0;双向板楼盖、无梁楼盖取20.0;注:消防车超过300KN时,应按结构等效原则,换算为等效均布荷载。
结构荷载输入:无覆土的双向板(板跨≥2.7m):板、次梁取28,主梁取20;覆土厚度≥0.5m 的双向板(板跨≥2.7m):板取≤28, 梁参考院部《消防车等效荷载取值计算表》;(14)书库、档案库取5.0;(15)密集柜书库取12.0;(16)大型宾馆洗衣房取7.5;(17)微机房取3.0;大中型电子计算机房取≥5.0,或按实际;(18)电梯机房、通风机房取7.0;通风机平台取6(≤5号风机)或8(8号风机);(19)制冷机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取8.0;(20)水泵房、变配电房、发电机房、银行金库及票据仓库取10.0;(21)管道转换层取4.0;(22)电梯井道下有人到达房间的顶板取5.0。
风荷载计算解析及例题
3.风荷载(wind load)1)《规范》规定的一般情况垂直于建筑物表面上的风荷载标准值:Wx=βHsHzWg其中,w,——风荷载标准值,单位为kN/m²。
w,——基本风压,单位为kN/m²。
β,——高度z处的风振系数。
μ——风荷载体型系数。
μz——风压高度变化系数,由教材表10—4查得。
表7.2.1 风压高度变化系数料高地面或海平面高度(m)地面租粉度类别A B C ()5 10 15 20 30 40 50 60 70 S) 90 100 150 200 250 300 350 400 2450 1.171.381.521.631.801.922.032.122.202.272.342.482.642.832.993.123.123.123.121.001.001.141.251.421.561.671.771.801.952.022.092.382.612.80)2.973.123.123.120.740.740.740.841.001.131.251.351.451.541.621.702.032.34)2.542.752.943.123.120.620.620.620.620.620.7300.840.931.021.111.191.271.611.922.192.452.6%2.913.12表7.3.1风荷载体型系数项次类别体型及体型系数p.1封闭式落地双坡屋面α0°30°≥60°中间值按插入法计算2封闭式双坡屋面≤15°30°≥60°Hs-0.6+0.8中间值按插入法计算2)单层厂房的风荷载(1)不考虑风振系数,取β。
=1(2)屋盖顶面斜坡部分的风荷载计算,要将垂直屋面表面的荷载投影到水平面上。
(3)均按檐口、柱顶离室外地面距离作为计算高度z 3 ) 排架中风荷载的计算(1)排架上的风荷载类型A.柱顶以下墙面:按均布风荷载考虑kN/mB.柱顶至屋脊间屋盖部分:仍取为均布的,其对排架的作用则按作用在柱顶的水平集中风荷载W 考虑严0.58-0.75.-山工8.0+A。
风荷载标准值
风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一;结构抗风分析包括荷载;内力;位移;加速度等是高层建筑设计计算的重要因素..脉动风和稳定风风荷载在建筑物表面是不均匀的;它具有静力作用长周期哦部分和动力作用短周期部分的双重特点;静力作用成为稳定风;动力部分就是我们经常接触的脉动风..脉动风的作用就是引起高层建筑的振动简称风振..以顺风向这一单一角度来分析风载;我们又常常称静力稳定风为平均风;称动力脉动风为阵风..平均风对结构的作用相当于静力;只要知道平均风的数值;就可以按结构力学的方法来计算构件内力..阵风对结构的作用是动力的;结构在脉动风的作用下将产生风振..注意:不管在何种风向下;只要是在结构计算风荷载的理论当中;脉动风一定是一种随机荷载;所以分析脉动风对结构的动力作用;不能采用一般确定性的结构动力分析方法;而应以随机振动理论和概率统计法为依据..从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风..平均风相当于静力;不引起振动..阵风相当于动力;引起振动但是引起的是一种随机振动..也就是说顺风向风力除了静风就是脉动风;根本就没有周期性风力会引起周期性风振;绝对没有;起码从结构计算风载的理论上顺风向的风力不存在周期性风力..横风向;既有周期性振动又有随机振动..换句话说就是既有周期性风力又有脉动风..反映在荷载上;它可能是周期性荷载;也可能是随机性荷载;随着雷诺数的大小而定..有的计算方法根据现有的研究成果;风对结构作用的计算;分为以下三个不同的方面:1对于顺风向的平均风;采用静力计算方法2对于顺风向的脉动风;或横风向脉动风;则应按随机振动理论计算3对于横风向的周期性风力;或引起扭转振动的外扭矩;通常作为稳定性荷载;对结构进行动力计算风荷载标准值的表达可有两种形式;其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数..由于在结构的风振计算中;一般往往是第1振型起主要作用;因而我国与大多数国家相同;采用后一种表达形式;即采用风振系数βz;它综合考虑了结构在风荷载作用下的动力响应;其中包括风速随时间、空间的变异性和结构的阻尼特性等因素..W K=βzμsμZ W0W0基本风压WK 风荷载标准值βz z高度处的风振系数μs 风荷载体型系数μZ 风压高度变化系数基本风压值与风速大小有关..基本风压W0确定的标准条件务必记牢:空旷平坦平面;离地10m高;统计所得重现期为50年一遇和10min的平均最大风速V 为标准;并以W0=V2/1600来确定的..新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇且不得小于0.3kN/m2;新高规 3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑;应按100年一遇的风压值采用..μZ 风压高度变化系数很明显在μZ表中可以看出高度10米以下的μZ基本小于一;10米以上的基本大于一..这是因为基本风压是按十米高度给出的;所以不同高度上的风压应将W0乘以高度系数得出..谈到μZ个人认为只要记住其和结构高度以及地面粗糙程度有关并弄明白为什么有关即可..A类:近海湖以及沙漠地区B类:田野乡村及中小城镇和大城市郊区C类:有密集建筑群的城市市区D类:有密集建筑群且房屋较高的城市市区一般的建筑都选B类;道理简单的很:这样μZ取值偏高;风荷载标准值偏高;计算偏安全..μs 风荷载体型系数个人认为一级结构在这里考的多且很到位..以规则矩形结构平面为例风荷载体型系数分为三类μs1迎风面体形系数μs2 背风面体形系数μs3 和μs4为侧风面体型系数μs1=0.80μs2=-0.48+0.03H/Lμs3=μs4=-0.60平常计算风荷载主要是以顺风方向进行计算;则μs=μs1-μs2=0.080+0.48+0.03H/L为什么上式是减号是因为迎风面的压力还是背风面的吸力其实都在一个方向上;所以要调整两者的符号;要他们绝对值加;其实上式完全可以写成:μs=/μs1/+/μs2/=0.080+0.48+0.03H/L另外工作中经常会发现一种现象对于基本矩形的建筑;有的设计院不经计算直接在正压区取1.5的体型系数;经验取值也只能进行经验的解释:多年来这个系数是这样来的;一般建筑正风压系数为+0.8;侧面-0.7;背面-0.5..假定风来袭时正面门窗开启或者时被风损坏;那么正面的风压将会作用到室内各个部分;故其侧面的风压将会是-0.7-0.8=-1.5.. 但是现代建筑功能复杂;房屋众多;一般不会容易出现这种最不利的情况..所以新版规范进行了修改;改为了内压0.2;正压提高到1.0..原规范大面风压体型系数取值1.5..注意:对于一些超高层;在需要更细致的进行风荷载计算的情况下;需要进行风洞试验;以此来确定风荷载体型系数..βz z高度处的风振系数风振系数主要是为了考虑风载波动中的动力作用脉动风力对建筑产生的振动效应..进一步说;风振系数加大了风荷载;把原来风荷载中的脉动部分加强后算在了静力荷载上;作用就可以按照静力作用计算风荷载效应了..这是一种近似的把动力问题化为静力计算的方法;可以大大简化设计工作..但是;如果建筑物的高度很大例如超过200m;特别是对于周期较长比较柔的结构;最好进行风洞试验..用通过实验得到的风对建筑物的作用作为设计依据较为安全可靠..风振系数牵连的东西最多;包括脉动增大系数;脉动影响系数;风压高度变化系数和振型系数\其中脉动增大系数又和周期;基本风载和粗糙程度有关而脉动影响系数又与H/B和粗糙程度有关。
风荷载取值
3.1.3 风荷载之阳早格格创做兴办物受到的风荷载效率大小,与兴办物所处的天理位子、兴办物的形状战下度等多种果素有闭,简直估计依照《荷载典型》第7章真止.1、风荷载尺度值估计笔直于兴办物主体结构表面上的风荷载尺度值W K,依照公式(3.1-2)估计:βz——下度Z处的风振系数,主假如思量风效率的不准则性,依照《荷载典型》7.4央供与值.多层兴办,兴办物下度<30m,风振系数近似与1.(1)风荷载体型系数µS风荷载体型系数,不但与兴办物的仄里形状、下宽比、风背与受风墙里所成的角度有闭,而且还与兴办物的坐里处理、周围兴办物的聚集程度战下矮等果素有闭,普遍依照《荷载规表3.1.10 兴办物体型系数与值表范》7.3央供与值,表3.1.10中列出了时常使用体型兴办物的体型系数.注1:当估计要害且搀纯的兴办物、及需要更细致天举止风荷载效率估计的兴办物,风荷载体型系数可依照《下层规程》中附录A采与、或者由风洞考查决定.注4:当多栋或者群集的兴办物相互间距离较近时,宜思量风力相互搞扰的集体效率效力.普遍可将单体兴办的体型系数乘以相互搞扰删大系数,该系数可参照类似条件的考查资料决定,需要时宜通过风洞考查决定.注3:檐心、雨蓬、遮阳板、阳台等火仄构件,估计局部上调风荷载效率时,体型系数不宜小于2.0.注4:验算表面围护结构及其连交的强度时,应依照《荷载典型》7.3.3确定,采与局部风压力体型系数.(2)风压下度变更系数µz树坐风压下度变更系数,主假如思量兴办物随着下度的减少风荷载的删大效率.对付于位于仄坦或者稍有起伏天形上的兴办物,其风压下度变更系数应根据场合细糙程度按《荷载典型》7.2央供采用,表3.1.11中列出了时常使用风压下度变更系数的与值央供.3.1.11 风压下度变更系数闭于大天细糙程度的分类:A类:近海海里、海岛、海岸、湖岸及沙漠天区;B类:田家、乡村、丛林、丘陵以及房屋比较稠稀的乡镇战都会郊区;C类:有聚集兴办群的都会市区;D类:有聚集兴办群战且房屋较下的都会市区.(3)基础风压值W0基础风压值W0,单位kN/m2,以当天比较空旷仄坦场合上离天10m下、统计所得50年一逢10分钟仄衡最大风速为尺度决定的风压值,各天的基础风压可依照《荷载典型》附录D中的世界基础风压分散图查用,主要乡镇基础风压与值参照表.2、基础风压的与值年限《荷载典型》正在附录D中分别给出了n=10年、n=50年、n=100年一逢的基础风压尺度值,工程安排中根据兴办物的使用本量与功能央供,普遍依照下列要领采用风压尺度值的与值年限:①临时性兴办物:与n=10年一逢的基础风压尺度值;②普遍的工业与民用兴办物:与n=50年一逢的基础风压尺度值;③特天要害的兴办物、或者对付风压效率比较敏感的兴办物(兴办物下度大于60m):与表3.1.12 浙江省主要乡镇基础风压(kN/m2)与值参照表n=100年一逢的基础风压尺度值;正在不100年一逢基础风压尺度值的天区,可近似将50年一逢的基础风压值尺度值乘以1.1(体味系数)以去采与.3、闭于风荷载效率的目标问题兴办物受到的风荷载效率去自各个目标,风荷载的主要效率目标与兴办物天圆天的风玫瑰图目标普遍(世界主要都会风玫瑰图,不妨查相映的兴办安排资料).工程安排中,普遍依照风荷载效率的最大值,去估计兴办物受到的风荷载效率效力.对付于抗侧力构件相互笔直安插的兴办物:普遍依照二个相互笔直的主轴目标去思量风荷载的效率效力,详图3.1.3a所示.图3.1.3a 抗侧力构件笔直安插示企图图3.1.3b 抗侧力构件多背安插示企图对付于抗侧力构件多背安插的兴办物:普遍依照抗侧力构件安插目标,沿着相互笔直的主轴目标次依思量风荷载的效率效力,详图3.1.3b所示.注意:共一目标,左风荷载效率效力战左风荷载效率效力要分别举止估计.4、风洞考查《下层规程》3.2.8透彻,对付于特天要害的兴办物、特天不准则的兴办物,风荷载尺度值估计公式(3.1-2)中的相闭估计参数有需要通过风洞考查去决定,以便较透彻天估计兴办物受到的风荷载效率效力,保证兴办结构的抗风本领.普遍兴办物下度大于200m、或者兴办物下度大于150m但是存留下列情况之一时,宜采与风洞考查去决定兴办物的风荷载效率参数.①仄里形状不准则,坐里形状搀纯;②坐里启洞或者连体兴办;③典型或者规程中不给出体型系数的兴办物;④周围天形或者环境较搀纯.风洞考查常常由有考查本领战考查天分的下等院校、科研院所完毕,依照一定比率创造的兴办物模型置于人为模拟的风环境中,模型上分歧部位埋设一定数量的电子测压孔,通过压力传感器输出电流旗号、通过数据支集仪自动扫描记录并转为相闭的数字旗号,再通过一系列的估计机数据处理、模拟分解,不妨得到兴办物受到的仄衡风压力战动摇风压力值,供安排采与.多层兴办物,房屋下度小,风荷载效率效率较小,普遍不搞风洞考查.5、梯度风基础风压与风速有闭,普遍风速由大天为整沿下度目标依照直线渐渐删大,直至距离大天某一下度处达到最大值,表层风速度受大天效率较小,风速较为宁静.分歧的天表面细糙度使风速沿下度减少的梯度(速率)分歧,详图3.1.4所示,风速变更的那种顺序,称为梯度风.图3.1.4 风速随下度变更示企图6、特殊情况下基础风压的与值/110=VVZa①当沉现期为任性年限R时,相映风压值可依照公式(3.1-2a)举止近似估计:式中:X R——沉现期为R年的风压值(kN/m2);X10——沉现期为10年的风压值(kN/m2);X100——沉现期为100年的风压值(kN/m2).②当都会或者建造天面的基础风压值正在“世界基础风压分散图”上不给出时,可根据附近天区确定的基础风压或者少久瞅测资料,通过局里或者天形条件的对付比分解决定.正在分解当天的年最大风速时,往往会逢到本去测风速的条件不切合基础风压确定的尺度条件,果而必须将真测的风速资料换算为尺度条件的风速资料,而后再举止分解.情形一:当真测风速的位子不是l0m下度时,尺度条件风速的换算准则上应由局里台站根据分歧下度风速的对付比瞅测资料,并思量风速大小的效率,给出非尺度下度风速的换算系数,以决定尺度条件下度的风速资料.当缺累相映的瞅测资料时,可近似依照公式(3.1-2b)举止换算:式中:ν——尺度条件下l0m下度处、时距为10分钟的仄衡风速值(m/s);νz——非尺度条件下z下度(m)处、时距为10分钟的仄衡风速值(m/s);α——真测风速下度换算系数,可根据安排脚册,近似按表3.1.13与值.表3.1.13 真测风速下度换算系数参照表情形二:当最大风速资料不是时距10分钟的仄衡风速时,尺度条件风速的换算虽然天下上很多国家采与基础风压尺度值中的风速基础数据为10分钟时距的仄衡风速,但是也有一些国家不是那样.果此对付某些海中工程需要依照尔国典型安排时,或者海内工程需要与海中某些安排资料举止对付比时,会逢到非尺度时距最大风速的换算问题.本量上时距10分钟的仄衡风速与其余非尺度时距的仄衡风速的比值是不决定的,表3.1.14给出了非尺度时距仄衡风速与时距10分钟仄衡风速的换算系数,需要时可依照公式(3.1-2c)搞近似换算:式中:ν——时距为10分钟的仄衡风速值(m/s);νt——时距为t分钟的仄衡风速值(m/s);β——换算系数,可根据安排脚册,近似按表3.1.14与用.表 3.1.14分歧时距与10分钟时距风速换算系数参照表情形三:当已知风速沉现期为T年时,尺度条件风压的换算当已知10分钟时距仄衡风速最大值的沉现期为T年时,其基础风压与沉现期为50年的基础风压的闭系,可依照公式(3.1-2d)举止简朴换算:式中:W0——沉现期为50年的基础风压值(kN/m2);W——沉现期为T年的基础风压值(kN/m2);γ——换算系数,可根据安排脚册,近似按表3.1.15与用.表3.1.15 分歧沉现期与沉现期为50年的基础风压的换算系数参照表③山区的基础风压山区的基础风压应通过考察后决定,如无本量资料,可依照当天相近空旷仄坦大天的基础风压值,乘以一搁大系数后采与.2.7、围护结构的风荷载估计估计围护结构上效率的风荷载值,必须思量阵风的效率,依照公式(3.1-2e)举止:W K——风荷载尺度值,单位kN/m2;W0——基础风压值,单位kN/m2,与值央供共前;βgz——下度Z处的阵风系数,依照《荷载典型》7.5央供与值;µS——风荷载体型系数,依照《荷载典型》7.3.3央供与值.对付于檐沟、雨蓬、遮阳板等超过构件,风力效率笔直进与,风荷载体型系数为2;µz——风压下度变更系数,与值央供共前.8、玻璃幕墙的风荷载估计玻璃幕墙动做围护结构的一种表示形式,正在民用兴办中应用较多,其抗风安排必须谦脚围护结构风荷载尺度值的估计央供.由于玻璃幕墙单块受荷里积较小,根据《玻璃幕墙工程技能典型》(JGJ102-96)确定,笔直于玻璃幕墙表面上的风荷载尺度值,可近似依照公式(3.1-2f)估计:公式中有闭下度变更系数µz、基础风压W0的估计与值央供共前,对付于体型系数µS的与值央供如下:横直幕墙中表面依照±1.5与用;斜玻璃幕墙可根据本量情况依照《荷载典型》央供与用;当兴办物举止了风洞考查时,直交根据风洞考查截止决定.所有情况下,安排玻璃幕墙用风荷载尺度值W k2.。
风荷载标准值
Forpersonaluseonlyinstudyandresearch;notforcommercialuseForpersonaluseonlyinstudyandresearch;notforcommercialuse风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。
脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。
脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。
平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。
阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。
平均风相当于静力,不引起振动。
阵风相当于动力,引起振动但是引起的是一种随机振动。
也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
横风向,既有周期性振动又有随机振动。
换句话说就是既有周期性风力又有脉动风。
反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。
风荷载取值
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。
多层建筑,建筑物高度<30m ,风振系数近似取1。
(1)风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表范》7.3要求取值,表3.1.10中列出了常用体型建筑物的体型系数。
注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。
一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验W W z s z k μμβ=)21.3(-资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。
注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。
对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。
表3.1.11 风压高度变化系数地面粗糙度类别离地面或海平面高度(m )A B C D 5101520 1.171.381.521.63 1.001.001.141.250.740.740.740.840.620.620.620.62304050601.801.922.032.121.421.561.671.771.001.131.251.350.620.730.840.93附注:对位于山区的建筑物,按照本表确定的风压高度变化系数必须考虑地形条件的修正,详《荷载规范》7.2.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 风荷载取值建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。
多层建筑,建筑物高度<30m ,风振系数近似取1。
(1)风荷载体型系数µS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。
一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。
注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局W W z s z k μμβ=)21.3(-部风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。
对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。
表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:有密集建筑群的城市市区;D类:有密集建筑群和且房屋较高的城市市区。
(3)基本风压值W0基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照《荷载规范》附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。
2、基本风压的取值年限《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限:①临时性建筑物:取n=10年一遇的基本风压标准值;②一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取表3.1.12 浙江省主要城镇基本风压(kN/m2)取值参考表n=100年一遇的基本风压标准值;在没有100年一遇基本风压标准值的地区,可近似将50年一遇的基本风压值标准值乘以1.1(经验系数)以后采用。
3、关于风荷载作用的方向问题建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致(全国主要城市风玫瑰图,可以查相应的建筑设计资料)。
工程设计中,一般按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应。
对于抗侧力构件相互垂直布置的建筑物:一般按照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示。
图3.1.3a 抗侧力构件垂直布置示意图图3.1.3b 抗侧力构件多向布置示意图对于抗侧力构件多向布置的建筑物:一般按照抗侧力构件布置方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示。
注意:同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算。
4、风洞试验《高层规程》3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准值计算公式(3.1-2)中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力。
一般建筑物高度大于200m、或建筑物高度大于150m但存在下列情况之一时,宜采用风洞试验来确定建筑物的风荷载作用参数。
① 平面形状不规则,立面形状复杂; ② 立面开洞或连体建筑;③ 规范或规程中没有给出体型系数的建筑物; ④ 周围地形或环境较复杂。
风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,按照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上不同部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据采集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和波动风压力值,供设计采用。
多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验。
5、梯度风基本风压与风速有关,一般风速由地面为零沿高度方向按照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定。
不同的地表面粗糙度使风速沿高度增加的梯度(速率)不同,详图3.1.4所示,风速变化的这种规律,称为梯度风。
图3.1.4 风速随高度变化示意图6、特殊情况下基本风压的取值① 当重现期为任意年限R 时,相应风压值可按照公式(3.1-2a )进行近似计算:式中:X R ——重现期为R 年的风压值(kN /m 2);X 10——重现期为10年的风压值(kN /m 2);X 100——重现期为100年的风压值(kN /m 2)。
② 当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定。
在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的标准条件,因而必须将实测的风速资料换算为标准条件的风速资料,然后再进行分析。
情形一:当实测风速的位置不是l0m 高度时,标准条件风速的换算 原则上应由气象台站根据不同高度风速的对比观测资料,并考虑风速大小的影响,给出)21.3(a -)110ln ln )((1010010--+=RX X X X R非标准高度风速的换算系数,以确定标准条件高度的风速资料。
当缺乏相应的观测资料时,可近似按照公式(3.1-2b )进行换算:式中:ν——标准条件下l0m 高度处、时距为10分钟的平均风速值(m /s);νz ——非标准条件下z 高度(m )处、时距为10分钟的平均风速值(m /s); α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值。
表3.1.13 实测风速高度换算系数参考表情形二:当最大风速资料不是时距10分钟的平均风速时,标准条件风速的换算虽然世界上不少国家采用基本风压标准值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样。
因此对某些国外工程需要按照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非标准时距最大风速的换算问题。
实际上时距10分钟的平均风速与其它非标准时距的平均风速的比值是不确定的,表3.1.14给出了非标准时距平均风速与时距10分钟平均风速的换算系数,必要时可按照公式(3.1-2c )做近似换算:式中:ν——时距为10分钟的平均风速值(m /s);νt ——时距为t 分钟的平均风速值(m /s);β——换算系数,可根据设计手册,近似按表3.1.14取用。
表3.1.14 不同时距与10分钟时距风速换算系数参考表情形三:当已知风速重现期为T 年时,标准条件风压的换算 当已知10分钟时距平均风速最大值的重现期为T 年时,其基本风压与重现期为50年的基本风压的关系,可按照公式(3.1-2d )进行简单换算:式中:W 0——重现期为50年的基本风压值(kN /m 2);W ——重现期为T 年的基本风压值(kN /m 2);γ——换算系数,可根据设计手册,近似按表3.1.15取用。
表3.1.15 不同重现期与重现期为50年的基本风压的换算系数参考表③ 山区的基本风压山区的基本风压应通过调查后确定,如无实际资料,可按照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采用。
任何情况下,山区的基本风压值不得小于0.3kN/m 2。
zv v α=β/t v v =γ/0W W =)21.3(b -)21.3(c -)21.3(d -7、围护结构的风荷载计算计算围护结构上作用的风荷载值,必须考虑阵风的影响,按照公式(3.1-2e )进行:W K ——风荷载标准值,单位kN/m 2;W 0——基本风压值,单位kN/m 2,取值要求同前;βgz ——高度Z 处的阵风系数,按照《荷载规范》7.5要求取值;µS ——风荷载体型系数,按照《荷载规范》7.3.3要求取值。
对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;µz ——风压高度变化系数,取值要求同前。
8、玻璃幕墙的风荷载计算玻璃幕墙作为围护结构的一种表现形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载标准值的计算要求。
由于玻璃幕墙单块受荷面积较小,根据《玻璃幕墙工程技术规范》(JGJ102-96)规定,垂直于玻璃幕墙表面上的风荷载标准值,可近似按照公式(3.1-2f )计算:公式中有关高度变化系数µz 、基本风压W 0的计算取值要求同前,对于体型系数µS 的取值要求如下:竖直幕墙外表面按照±1.5取用;斜玻璃幕墙可根据实际情况按照《荷载规范》要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定。
任何情况下,设计玻璃幕墙用风荷载标准值W k 不得小于1.0kN/m 2。
0W W z s gz K μμβ=025.2W W z s K μμ=)21.3(f -)21.3(e -。