概率与统计试题

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

概率论与数理统计试题库及答案考试必做

概率论与数理统计试题库及答案考试必做

概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件;试用 A 、B 、C 分别表示事件1A 、B 、C 至少有一个发生2A 、B 、C 中恰有一个发生3A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8;则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在1,6上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用,X Y 的联合分布函数Fx,y 表示P{a b,c}X Y ≤≤<=13.用,X Y 的联合分布函数Fx,y 表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量x,y 在区域D 上服从均匀分布,则x,y 关于X 的边缘概率密度在x = 1 处的值为 ;15.已知)4.0,2(~2-N X ,则2(3)E X +=16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -=17.设X的概率密度为2()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在0,6上服从均匀分布,X 2服从正态分布N0,22,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则DY=19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或X ~ ;特别是,当同为正态分布时,对于任意的n ,都精确有X ~ 或X ~ .21.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且i EX μ=,2i DX σ=(1,2,)i =⋅⋅⋅ 那么211n i i X n =∑依概率收敛于 . 22.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;23.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差=24.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 AP A+B = P A; B ()P(A);P AB =C (|A)P(B);P B =D (A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 A “甲种产品滞销,乙种产品畅销”; B “甲、乙两种产品均畅销”C “甲种产品滞销”;D “甲种产品滞销或乙种产品畅销”;3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球;则第二人取到黄球的概率是A1/5 B2/5 C3/5 D4/54. 对于事件A,B,下列命题正确的是A 若A,B 互不相容,则A 与B 也互不相容;B 若A,B 相容,那么A 与B 也相容;C 若A,B 互不相容,且概率都大于零,则A,B 也相互独立;D 若A,B 相互独立,那么A 与B 也相互独立;5. 若()1P B A =,那么下列命题中正确的是A AB ⊂ B B A ⊂C A B -=∅D ()0P A B -=6. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A 增大 B 减少 C 不变 D 增减不定;7.设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=;那么对任意给定的a 都有A 0()1()a f a f x dx -=-⎰B 01()()2a F a f x dx -=-⎰ C )()(a F a F -= D 1)(2)(-=-a F a F8.下列函数中,可作为某一随机变量的分布函数是A 21()1F x x =+B x x F arctan 121)(π+= C =)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 9. 假设随机变量X 的分布函数为Fx,密度函数为fx.若X 与-X 有相同的分布函数,则下列各式中正确的是AFx = F-x; B Fx = - F-x;C f x = f -x;D f x = - f -x.10.已知随机变量X 的密度函数fx=x x Ae ,x 0,λλ-≥⎧⎨<⎩λ>0,A 为常数,则概率P{X<+a λλ<}a>0的值A 与a 无关,随λ的增大而增大B 与a 无关,随λ的增大而减小C 与λ无关,随a 的增大而增大D 与λ无关,随a 的增大而减小 11.1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A 21X X = B1}{21==X X P C 21}{21==X X P D以上都不正确12.设离散型随机变量(,)X Y 的联合分布律为 且Y X ,相互独立,则A 9/1,9/2==βαB 9/2,9/1==βαC 6/1,6/1==βαD 18/1,15/8==βα13.若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为 A 二维正态,且0=ρ B 二维正态,且ρ不定C 未必是二维正态D 以上都不对14.设X,Y 是相互独立的两个随机变量,它们的分布函数分别为F X x,F Y y,则Z = max{X,Y} 的分布函数是AF Z z= max { F X x,F Y y}; B F Z z= max { |F X x|,|F Y y|}C F Z z= F X x ·F Y yD 都不是(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ15.下列二无函数中, 可以作为连续型随机变量的联合概率密度;Afx,y=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B gx,y=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C ϕx,y=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D hx,y=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他16.掷一颗均匀的骰子600次,那么出现“一点”次数的均值为A 50B 100 C120 D 15017. 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A1. B9. C10. D6.18.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A ()()()D XY D X D Y =⋅B ()()()D X Y D X D Y +=+C X 和Y 独立D X 和Y 不独立19.设()(P Poission λX 分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ= A1, B2, C3, D020. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A 不相关的充分条件,但不是必要条件;B 独立的必要条件,但不是充分条件;C 不相关的充分必要条件;D 独立的充分必要条件21.设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是A 123X X X ++B 123max{,,}X X XC 2321i i X σ=∑D 1X μ-22.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B {}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅ C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅ D {}(1),1k k n k i nP X k C p p i n -==-≤≤ 23.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χD ()t n24.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是 A 1/1--=n S X t μ B 1/2--=n S X t μ C n S X t /3μ-= D n S X t /4μ-=25.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121n i i n m i i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n --三、解答题1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率;2.任意将10本书放在书架上;其中有两套书,一套3本,另一套4本;求下列事件的概率;1 3本一套放在一起;2两套各自放在一起;3两套中至少有一套放在一起;3.调查某单位得知;购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%;求下列事件的概率;1至少购买一种电器的;2至多购买一种电器的;3三种电器都没购买的;4.仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率;5.一箱产品,A,B 两厂生产分别个占60%,40%,其次品率分别为1%,2%;现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大6.有标号1∼n 的n 个盒子,每个盒子中都有m 个白球k 个黑球;从第一个盒子中取一个球放入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率;7.从一批有10个合格品与3个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在二种情况下,直到取出合格品为止,所求抽取次数的分布率;1放回 2不放回8.设随机变量X 的密度函数为()x f x Ae -= ()x -∞<<+∞,求 1系数A,2 {01}P x ≤≤3 分布函数)(x F ;9.对球的直径作测量,设其值均匀地分布在b a ,内;求体积的密度函数;10.设在独立重复实验中,每次实验成功概率为,问需要进行多少次实验,才能使至少成功一次的概率不小于;11.公共汽车车门的高度是按男子与车门碰头的机会在以下来设计的,设男子的身高2(168,7)X N ,问车门的高度应如何确定12. 设随机变量X 的分布函数为:Fx=A+Barctanx,-x ∞<<+∞.求:1系数A 与B ;2X 落在-1,1内的概率;3X 的分布密度;13.把一枚均匀的硬币连抛三次,以X 表示出现正面的次数,Y 表示正、反两面次数差的绝对值 ,求),(Y X 的联合分布律与边缘分布;14.设二维连续型随机变量),(Y X 的联合分布函数为 )3arctan )(2arctan (),(y C x B A y x F ++= 求1A B C 、、的值, 2),(Y X 的联合密度, 3 判断X Y 、的独立性;15.设连续型随机变量X,Y 的密度函数为fx,y=(34)0,0,0,x y x y Ae -+>>⎧⎨⎩其他, 求 1系数A ;2落在区域D :{01,02}x y <≤<≤的概率;16. 设),(Y X 的联合密度为x y x x Ay y x f ≤≤≤≤-=0,10),1(),(,1求系数A,2求),(Y X 的联合分布函数;17.上题条件下:1求关于X 及Y 的边缘密度; 2X 与Y 是否相互独立18.在第16题条件下,求)(x y f 和)(y x f ;19.盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数X 的数学期望()E X 和方差()D X ;20. 有一物品的重量为1克,2克,﹒﹒﹒,10克是等概率的,为用天平称此物品的重量准备了三组砝码 ,甲组有五个砝码分别为1,2,2,5,10克,乙组为1,1,2,5,10克,丙组为1,2,3,4,10克,只准用一组砝码放在天平的一个称盘里称重量,问哪一组砝码称重物时所用的砝码数平均最少21. 公共汽车起点站于每小时的10分,30分,55分发车,该顾客不知发车时间,在每小时内的任一时刻随机到达车站,求乘客候车时间的数学期望准确到秒;22.设排球队A 与B 比赛,若有一队胜4场,则比赛宣告结束,假设A,B 在每场比赛中获胜的概率均为1/2,试求平均需比赛几场才能分出胜负23.一袋中有n 张卡片,分别记为1,2,﹒﹒﹒,n ,从中有放回地抽取出k 张来,以X 表示所得号码之和,求(),()E X D X ;24.设二维连续型随机变量X ,Y 的联合概率密度为:f x ,y=,0x 1,0y x 0,k <<<<⎧⎨⎩其他 求:① 常数k, ② ()E XY 及()D XY .25.设供电网有10000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率;26.一系统是由n 个相互独立起作用的部件组成,每个部件正常工作的概率为0.9,且必须至少由 80%的部件正常工作,系统才能正常工作,问n 至少为多大时,才能使系统正常工作的概率不低于 0.9527.甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%;28.设总体X 服从正态分布,又设X 与2S 分别为样本均值和样本方差,又设21(,)n X N μσ+,且1n X +与12,,,n X X X ⋅⋅⋅相互独立,求统计量的分布;29.在天平上重复称量一重为α的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N α,若以n X 表示n 次称量结果的算术平均值,为使()0.10.95n P X a -<≥成立,求n 的最小值应不小于的自然数30.证明题 设A,B 是两个事件,满足)()(A B P A B P =,证明事件A,B 相互独立; 31.证明题 设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间0,1上服从均匀分布;<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 必须写出分布的参数;2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 ;3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 ;4.已知2)20,8(1.0=F ,则=)8,20(9.0F ;5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计;6.设样本的频数分布为则样本方差2s =_____________________;7.设总体X~N μ,σ²,X1,X2,…,Xn 为来自总体X 的样本,X 为样本均值,则D X =________________________;8.设总体X 服从正态分布N μ,σ²,其中μ未知,X1,X2,…,Xn 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;9.设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值x1,x2, (x)落入W 的概率为,则犯第一类错误的概率为_____________________; 10.设样本X1,X2,…,Xn 来自正态总体N μ,1,假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H0成立的条件下,对显著水平α,拒绝域W 应为______________________;11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __;12.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个简单随机样本,其中参数μ和2σ均未知,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则假设0H :0μ=的t 检验使用的统计量是 ;用X 和Q 表示13.设总体2~(,)X N μσ,且μ已知、2σ未知,设123,,X X X 是来自该总体的一个样本,则21231()3X X X σ+++,12323X X X μσ++,222123X X X μ++-,(1)2X μ+中是统计量的有 ;14.设总体X 的分布函数()F x ,设n X X X ,,,21 为来自该总体的一个简单随机样本,则n X X X ,,,21 的联合分布函数 ;15.设总体X 服从参数为p 的两点分布,p 01p <<未知;设1,,n X X 是来自该总体的一个样本,则21111,(),6,{},max n niin i n i ni i X XX X X X pX ≤≤==--+∑∑中是统计量的有 ;16.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;17.设2~(,)X X X N μσ,2~(,)Y Y Y N μσ,且X 与Y 相互独立,设1,,m X X 为来自总体X 的一个样本;设1,,n Y Y 为来自总体Y 的一个样本;2X S 和2Y S 分别是其无偏样本方差,则2222//X X Y Y S S σσ服从的分布是 ;18.设()2,0.3X N μ~,容量9n =,均值5X =,则未知参数μ的置信度为的置信区间是 查表0.025 1.96Z =19.设总体X ~2(,)N μσ,X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D X =________________________;20.设总体X 服从正态分布N μ,σ²,其中μ未知,X 1,X 2,…,X n 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;21.设12,,,n X X X ⋅⋅⋅是来自正态总体2(,)N μσ的简单随机样本,μ和2σ均未知,记11n i i X X n ==∑,221()ni i X X θ==-∑,则假设0:0H μ=的t 检验使用统计量T= ;22.设11m i i X X m ==∑和11ni i Y Y n ==∑分别来自两个正态总体211(,)N μσ和222(,)N μσ的样本均值,参数1μ,2μ未知,两正态总体相互独立,欲检验22012:H σσ= ,应用检验法,其检验统计量是 ;23.设总体X ~2(,)N μσ,2,μσ为未知参数,从X 中抽取的容量为n 的样本均值记为X ,修正样本标准差为*n S ,在显著性水平α下,检验假设0:80H μ=,1:80H μ≠的拒绝域为 ,在显著性水平α下,检验假设2200:H σσ=0σ已知,2110:H σσ≠的拒绝域为 ;24.设总体X ~12(,),01,,,,n b n p p X X X <<⋅⋅⋅为其子样,n 及p 的矩估计分别是 ;25.设总体X ~[]120,,(,,,)n U X X X θ⋅⋅⋅是来自X 的样本,则θ的最大似然估计量是 ;26.设总体X ~2(,0.9)N μ,129,,,X X X ⋅⋅⋅是容量为9的简单随机样本,均值5x =,则未知参数μ的置信水平为0.95的置信区间是 ;27.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差微米如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4则零件尺寸偏差的数学期望的无偏估计量是28.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;29.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差= 30.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~ )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F2.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是X X A +)( +A ∑=-n i iX n B 1211)( a X C +)( +10 131)(X a X D ++5 3.设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是)(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 4.设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计5、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是)(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 6.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当__ __时,一般采用统计量X t =A 220μσσ未知,检验=B 220μσσ已知,检验= C 20σμμ未知,检验= D 20σμμ已知,检验=7.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为im 的样本,则下列说法正确的是___ __A 方差分析的目的是检验方差是否相等B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异8.在一次假设检验中,下列说法正确的是______ A 既可能犯第一类错误也可能犯第二类错误B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都不变D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9.对总体2~(,)X N μσ的均值μ和作区间估计,得到置信度为95%的置信区间,意义是指这个区间A 平均含总体95%的值B 平均含样本95%的值C 有95%的机会含样本的值D 有95%的机会的机会含μ的值 10.在假设检验问题中,犯第一类错误的概率α的意义是 A 在H 0不成立的条件下,经检验H 0被拒绝的概率 B 在H 0不成立的条件下,经检验H 0被接受的概率 C 在H 00成立的条件下,经检验H 0被拒绝的概率 D 在H 0成立的条件下,经检验H 0被接受的概率 11. 设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 12.X 服从正态分布,1-=EX ,25EX =,),,(1n X X 是来自总体X 的一个样本,则∑==ni inX X 11服从的分布为___ ;A N 1-,5/nB N 1-,4/nC N 1-/n,5/nD N 1-/n,4/n13.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当___ __时,一般采用统计量X U =A 220μσσ未知,检验=B 220μσσ已知,检验=C 20σμμ未知,检验=D 20σμμ已知,检验=14.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为i m 的样本,则下列说法正确的是____ _ A 方差分析的目的是检验方差是否相等 B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异15.在一次假设检验中,下列说法正确的是___ ____ A 第一类错误和第二类错误同时都要犯B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都要变小D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16.设ˆθ是未知参数θ的一个估计量,若ˆE θθ≠,则ˆθ是θ的___ _____A 极大似然估计B 矩法估计C 相合估计D 有偏估计 17.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2, …,x n落入W 的概率为,则犯第一类错误的概率为__________; A B C D18.在对单个正态总体均值的假设检验中,当总体方差已知时,选用A t 检验法B u 检验法C F 检验法D 2χ检验法19.在一个确定的假设检验中,与判断结果相关的因素有 A 样本值与样本容量 B 显著性水平α C 检验统计量 DA,B,C 同时成立 20.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平下,下列结论中正确的是A 必须接受0HB 可能接受,也可能拒绝0HC 必拒绝0HD 不接受,也不拒绝0H21.设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是A 22111()1n i i S X X n ==--∑B 22211()n i i S X X n ==-∑C 221S X +D 222S X +22.总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于LA 152σ/2LB 15.36642σ/2LC 162σ/2LD 16 23.设12,,,nX X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C X X θ-+==-∑为 2σ的无偏估计,C =A 1/nB 1/1n -C 1/2(1)n -D 1/2n - 24.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 25.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B {}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D {}(1),1k kn k i nP X k C p p i n -==-≤≤ 26.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χ D ()t n27.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是A 1/1--=n S X t μ B 1/2--=n S X t μ C nS X t /3μ-=D nS X t /4μ-=28.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n -- 29.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A4114i i X X ==∑ B142X X μ+-C42211()i i K X X σ==-∑ D4211()3i i S X X ==-∑30. 设 ()2~,N ξμσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是统计量的是A 22212321()X X X σ++ B13X μ+C123max(,,)X X X D 1231()3X X X ++三、计算题1.已知某随机变量X 服从参数为λ的指数分布,设n X X X ,,,21 是子样观察值,求λ的极大似然估计和矩估计;10分2.某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为: 已知原来直径服从)06.0,(N μ,求:该天生产的滚珠直径的置信区间;给定05.0=α,645.105.0=Z ,96.1025.0=Z 8分3.某包装机包装物品重量服从正态分布)4,(2μN ;现在随机抽取16个包装袋,算得平均包装袋重为900=x ,样本均方差为22=S ,试检查今天包装机所包物品重量的方差是否有变化05.0=α488.2715262.6)15(2025.02975.0==)(,χχ8分 4.设某随机变量X 的密度函数为⎩⎨⎧+=0)1()(λλx x f 其他10<<x 求λ的极大似然估计; 6分5.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α求出滚珠的平均直径的区间估计;8分)96.1,645.1(025.005.0==Z Z6.某种动物的体重服从正态分布)9,(μN ,今抽取9个动物考察,测得平均体重为3.51公斤,问:能否认为该动物的体重平均值为52公斤;05.0=α8分96.1645.1025.005.0==Z Z7.设总体X 的密度函数为:⎩⎨⎧+=0)1()(ax a x f 其他10<<x , 设n X X ,,1 是X 的样本,求a 的矩估计量和极大似然估计;10分8.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,求σ的置信区间1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ8分9.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=10.10分某出租车公司欲了解:从金沙车站到火车北站乘租车的时间; 随机地抽查了9辆出租车,记录其从金沙车站到火车北站的时间,算得20x =分钟,无偏方差的标准差3s =;若假设此样本来自正态总体2(,)N μσ,其中2,μσ均未知,试求σ的置信水平为的置信下限;11.10分设总体服从正态分布2(,)N μσ,且μ与2σ都未知,设1,,n X X 为来自总体的一个样本,其观测值为1,,n x x ,设11n i i X X n ==∑,2211()n n i i S X X n ==-∑;求μ和σ的极大似然估计量;12.8分掷一骰子120次,得到数据如下表若我们使用2χ检验,则x 取哪些整数值时,此骰子是均匀的的假设在显著性水平0.05α=下被接受13.14分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布, 规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,21()0.008192nii x x =-=∑;问1在显著性水平0.05α=下,这天生产的食盐的平均净重是否和规定的标准有显著差异2 在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准3你觉得该天包装机工作是否正常14.8分设总体X 有概率分布现在观察到一个容量为3的样本,11x =,22x =,31x =;求θ的极大似然估计值15.12分对某种产品进行一项腐蚀加工试验,得到腐蚀时间X 秒和 腐蚀深度Y 毫米的数据见下表:X 5 5 10 20 30 40 50 60 65 90 120 Y 4 6 8 13 16 17 19 25 25 29 46假设Y 与X 之间符合一元线回归模型01Y X ββε=++1试建立线性回归方程;2在显著性水平0.01α=下,检验01:0H β=16. 7分设有三台机器制造同一种产品,今比较三台机器生产能力,记录其五天的日产量17.10分设总体X 在),0(θ)0(>θ上服从均匀分布,n X X ,,1 为其一个样本,设},,max{1)(n n X X X =1)(n X 的概率密度函数()n p x 2求()[]n E X18.7分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布,规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准19.10分设总体X 服从正态分布2(,)N μσ,1,,n X X 是来自该总体的一个样本,记11(11)kk i i X X k n k ==≤≤-∑,求统计量1k k X X +-的分布;20.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=<概率论>试题参考答案一、填空题1. 1 C B A 2 C B A C B A C B A3 B A C A C B 或 C B A C B A C B A C B A2. , 3.3/7 , 4.4/7 = 1/1260 , 5., 6. 1/5, 7.1=a ,=b 1/2, 8., 9.2/3, 10.4/5, 11.5/7, 12.Fb,c-Fa,c, 13.F a,b, 14.1/2, 15., 16., 17.1/2, 18.46, 19.85 20.22(,),(0,1),(,),(0,1)N N N N nnσσμμ; 21.22μσ+, 22,1/8 ,23.X =7,S 2=2 , 24.2N ,n σμ⎛⎫⎪⎝⎭,二、选择题1.A 2.D 3.B 4.D 5.D 6.C 7.B 8.B 9.C 10 .C11.C 12.A 13.C 14.C 1 5.B 16.B 17.C 18.B 19.A 20 .C21.C 22.B 23.A 24.B 25.C 三、解答题 1. 8/15 ;2. 11/15, 21/210, 32/21;3. 1 , 2, 3 ;4. ;5. 取出产品是B 厂生产的可能性大;6. m/m+k;7.11{}(3/13)(10/13)k P X K -== 28. 1A =1/2 , 211(1)2e -- , 31,02()11,02xx e x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩9. 1/32/3330()161()(),()366f x x x a b b a πππ-⎧⎪=⎨⎡⎤∈⎪⎢⎥-⎣⎦⎩其他, 10. 4≥n11. 提示:99.0}{01.0}{≥<≤≥h x P h x P 或,利用后式求得31.184=h 查表(2.33)0.9901φ= 12. 错误!A=1/2,B=1π; 错误! 1/2; 错误! f x=1/π1+x 2 13. 14. 12,,22A B C ππ===;2 222(,)(4)(9)f x y x y π=++;3 独立 ;15. 1 12; 2 1-e -31-e -816. 124A =24322432340003812(/2)010(,)3861014301111x y y y x x y x y x F x y y y y x y x x x x y x y <<⎧⎪-+-≤<≤<⎪⎪=++≥≤<⎨⎪-≤<≤⎪≥≥⎪⎩或 17. 1212(1),01()0,x x x x f x ⎧-≤≤=⎨⎩其他 ; 212(1),01()0,y y y y f y ⎧-≤≤=⎨⎩其他2不独立18. 22,0,01()0,Y X yy x x f y x x ⎧<<<<⎪=⎨⎪⎩其他 ;22(1),1,01(1)()0,X Y x y x y y f x y -⎧≤<<<⎪-=⎨⎪⎩其他19. 1224(),()749E X D X ==20. 丙组 21. 10分25秒 22. 平均需赛6场j PiP1/823. 2(1)(1)(),()212k n k n E X D X +-== ; 24. k = 2, EXY=1/4, DXY=7/144 25. 26. 27. 537 28. (1)t n - 29. 1630. 提示:利用条件概率可证得;31. 提示:参数为2的指数函数的密度函数为220()00xe xf x x -⎧>=⎨≤⎩ ,利用21xY e-=-的反函数⎪⎩⎪⎨⎧--=0)1ln(21y x 即可证得;<数理统计>试题参考答案一、填空题1.)1,0(N , 2.∑=n i i X n 11=, 3.121-∑=ni i x n , 4., 5.)ˆ()ˆ(β<θD D 6.2 , 7.n 2σ, 8.n-1s 2或∑=n 1i 2i )x -(x , 9. , 10.⎭⎬⎫⎩⎨⎧>2u |u |σ,其中n x u =11.21X u α-±, 385;12.X t =13. 222123X X X μ++-, (1)2X μ+ ; 14.1(,,)n F x x 为1()ni i F x =∏,15.2111,(),6,{}max n ni in i i ni i X XX X X ≤≤==--∑∑ ;16.21X u α-±,17. (,)F m n , 18.,, 19.n 2σ, 20.n-1s 2或∑=n1i 2i )x -(x ,21.T =, 22.F ,2121(1)()(1)()mi i ni i n X X F m Y Y ==--=--∑∑ , 23.__22221122100222()()(1),(1)(1)n n i i i i n x x x x t n n n αααχχσσ==-⎧⎫⎧⎫--⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪->-⋃<-⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎩⎭⎩⎭∑∑, 24.2,1X S n p p X∧∧==- , 25.12max{,,,}n X X X θ=⋅⋅⋅ ,26.[4.412,5.588], 27.2 , 28.1/8 , 29.X =7, S 2=2, 30.2N ,n σμ⎛⎫⎪⎝⎭二、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.D 8.A 9.D 10.C11.A 12.B 13.D 14.D 15.C 16.D 17.B 18.B 19.D 20.A21.D 22.B 23.C 24.A 25.B 26.A 27.B 28.C 29.C 30.A 三、计算题 1.10分解:设n X X X ,,,21 是子样观察值 极大似然估计: ∑⋅===-=-∏ni iix nni x eeL 11)(λλλλλ∑=-⋅=ni i n n x l n L l 1)(λλλ0)(1=-=∂∂∑=ni i n x n L l λλλ x1=λ 矩估计:λ=⋅λ⋅=⎰+∞λ-1)(0dx e x X E x 样本的一阶原点矩为:∑==ni i X n X 11所以有:XX X EX 1ˆ1=λ⇒=λ⇒= 2.8分解:这是方差已知,均值的区间估计,所以有: 置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X696.105.0025.0===αn Z代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯-所以为:]146.15,754.14[ 3.8分解:统计量为:)1(~)1(222--n X S n σ0H :22024==σσ,1H :202σσ≠16=n ,22=S ,224=σ代入统计量得875.116215=⨯ 262.6)15(875.12975.0=<χ所以0H 不成立,即其方差有变化; 4.6分解:极大似然估计:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得 ∑∑==+-=ni ini iXX n 11ln ln ˆλ5.8分解: 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x 代入计算可得]96.192.015,96.192.015[⨯+⨯-化间得:]131.15,869.14[ 6.8分解:52:00==μμH ,01:μμ≠H7.093523.51-=-=-nx σμ96.12=αμ96.17.0|7.0|025.0=μ<=-所以接受0H ,即可以认为该动物的体重平均值为52;7.10分 解: 矩估计为:210121)1()(21++=++=+⋅=+⎰a a x a a dx x a x X E a a 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX a X a a --=⇒=++112ˆ21极大似然估计:∏∏==⋅+=+=ni i a ni ni an x a x a x x x f 1121)1(])1[(),,,(两边取对数:∑=++=ni i n x a a n x x f 11)ln()1ln(),,(ln两边对a 求偏导数:=∂∂afln ∑=++ni i x a n 1)ln(1=0 所以有:∑=--=ni ix na1)ln(1ˆ8.8分 解:由2222221)1(ααχσχ≤-≤-S n 得 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:)11()1(222αχS n -,)11()1(2212αχ--S n 将12=n ,2.0=S 代入得 15.0,31.09.解:这是两正态总体均值差的区间估计问题;由题设知,2-n n 1)s -(n 1)s -(n s .05.01.9s 3.11s 172y 9.175x 6,n 5,n 21222211w 222121++========α,,,, 2分=, 4分 选取9=,则21μμ-置信度为的置信区间为: ⎥⎦⎤⎢⎣⎡+++++21w 21221w212n 1n 12)s -n (n t y -x ,n 1n 12)s -n (n t -y -x αα 8分 =,. 10分 注:置信区间写为开区间者不扣分; 10. 解:由于μ未知,故采用2222(1)~(1)n S n χχσ-=-作枢轴量 2分要求()1L P σσα≥=- 2分这等价于要求22()1L P σσα≥=-, 也即2222(1)(1)()1Ln S n S P ασσ--≤=- 2分而2212(1)((1))1n S P n αχασ--≤-=- 2分所以2212(1)(1)Ln S n αχσ--=-,故2221(1)(1)Ln S n ασχ--=- 1分 故σ的置信水平为1α-的置信下限为L σ=由于这里9n =,0.05α=,20.95(8)15.507χ=所以由样本算得ˆ 2.155L σ= 1分 即σ的置信水平为的置信下限为; 11. 解:写出似然函数221222()()2222(,)(2)ni i i n x x ni L eμμσσμσπσ=-----=∑== 4分取对数2222211ln (,)ln(2)()2nn ii L x μσπσμσ==---∑ 2分求偏导数,得似然方程221231ln 1()0ln 1()0n i i n i i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 3分解似然方程得:ˆX μ=,ˆσ= 1分12.解:设第i 点出现的概率为i p ,1,,6i =101266:H p p p ====,1126:,,,H p p p 中至少有一个不等于161分采用统计量 221()ri i i i n np np χ=-=∑1分在本题中,6r =,0.05α=,20.95(5)11.07χ= 1分所以拒绝域为2{11.107}W χ=≥ 1分 算实际的2χ值,由于1612020i np =⨯=,所以22222621()(20)4(2020)(20)(20)2010i i i i n np x x x np χ=--+-+--===∑ 1分所以由题意得2(20)011.10710x -≤<时被原假设被接受即9.4630.54x <<,故x 取[10,30]之间的整数时, 2分 此骰子是均匀的的假设在显著性水平0.05α=下被接受;1分13. 解:“这几天包装是否正常”,即需要对这天包装的每袋食盐净重的期望与方差分别作假设检验1检验均值,总共6分0:1H μ=,1:1H μ≠ 选统计量,并确定其分布~(1)X t t n =-确定否定域21{||}{|| 2.306}W t t t α-=≥=≥统计量的观测值为0.1875x t ==因为21||0.1875 2.306t t α-=<=,所以接受0:1H μ=;2检验方差,总共6分220:0.02H σ≤,220:0.02H σ>选统计量222211()~(1)0.02nii XX n χχ==--∑确定否定域2221{(1)}{15.5}W n αχχχ-=≥-=≥ 统计量的观测值为222221180.032()20.480.020.02n i i x x χ=⨯=-==∑因为22120.4815.5(1)n αχχ-=>=-,所以拒绝220:0.02H σ≤32分结论:综合1与2可以认为,该天包装机工作是不正常的; 14.解:此时的似然函数为123123()(1,2,1)(1)(2)(1)L P X X X P X P X P X θ======== 2分即225()2(1)2(1)L θθθθθθθ=⨯-⨯=- 2分 ln ()ln 25ln ln(1)L θθθ=++- 1分ln ()511d L d θθθθ=-- 1分 令 ln ()0d L d θθ= 1分得θ的极大似然估计值5ˆ6θ=.1分15.解:1解:根据公式可得01ˆˆY X ββ=+其中 011ˆˆˆXYXX l lY X βββ⎧=⎪⎨⎪=-⎩ 2分。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

概率与统计试题

概率与统计试题

概率与统计试题一、选择题(每题2分,共40分)1. 在某个班级中,学生的身高服从正态分布,均值为165厘米,标准差为5厘米。

如果随机选择一个学生,他的身高大于170厘米的概率是多少?A. 0.1587B. 0.3413C. 0.0228D. 0.47722. 某电子产品的工厂生产的电视机中,有10%出现质量问题。

如果从中随机抽取4台电视机进行检验,未出现质量问题的概率是多少?A. 0.0001B. 0.0006C. 0.0072D. 0.12963. 甲、乙、丙三个城市的年降雨量分别为1000毫米、1200毫米、800毫米,标准差分别为200毫米、100毫米、150毫米。

要选择一个城市旅行,选择降雨量最稳定的城市是?A. 甲市B. 乙市C. 丙市D. 无法确定4. 某批次产品的质量指标服从正态分布,平均值为80,标准差为5。

为了保证质量,要求产品的质量指标不低于75。

该批次产品中,有多少比例的产品不符合要求?A. 0.0228B. 0.1587C. 0.3413D. 0.47725. 某班级有60名学生,其中30名男生,30名女生。

从中随机选择10名学生,其中恰好有5名男生的概率是多少?A. 0.0002B. 0.1908C. 0.2461D. 0.7539...二、计算题(每题10分,共60分)1. 已知某地每天发生交通事故的概率为0.2%,共有365天。

求该地每年发生交通事故2次的概率。

2. 某地有三家超市提供手机销售服务。

已知超市A的手机有10%出现质量问题,超市B的手机有5%出现质量问题,超市C的手机有8%出现质量问题。

今天小明在超市A购买了一部手机,发现手机质量问题。

已知小明购买手机是随机的,求小明购买到来自超市A的手机且质量有问题的概率。

3. 某学校的学生体重服从均值为60千克,标准差为10千克的正态分布。

有一位学生的体重为75千克,求其体重超过其他学生的概率。

4. 某批产品的长度服从均值为100厘米,标准差为5厘米的正态分布。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。

本文将提供一套概率统计的试题及答案,以供学习和复习之用。

一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。

答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。

答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。

答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。

答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。

答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。

(完整版)概率论与数理统计试题库

(完整版)概率论与数理统计试题库

《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。

正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。

三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。

概率统计试题及答案

概率统计试题及答案

概率论与数理统计复习试卷一、填空题(本题共10小题,每小题2分,共20分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为1234020104Xp ..a .b c+-,则常数c b a ,,应满足的条件为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率{}P X a ,Y b >>= .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D .5.设12n X ,X ,,X 是从正态总体),(~2σμN X 中抽取的样本,则概率()202221201037176i i P .X X.σσ=⎧⎫≤-≤=⎨⎬⎩⎭∑ .6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为7、设θ∧是参数θ的估计,若θ∧满足________________,则称θ∧是θ的无偏估计。

8、设E (X )=-1,D (X )=4,则由切比雪夫不等式估计概率:P {-4<X<2}≥_______________.9、设随机变量X 服从二项分布()2.0,100B ,应用中心极限定理可以得到{}≈≥30X P (已知()9938.05.2=Φ)。

10、设样本,,,,21n X X X 取自正态总体()2,,0Nμσσ>X ______________。

二、单项选择题(本题共10小题,每小题2分,共20分)注意:在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写下面的表格内.............。

错选、多选或未选均无分。

1、如果 1)()(>+B P A P ,则 事件A 与B 必定( ))(A 独立;)(B 不独立;)(C 相容;)(D 不相容.2、已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。

概率统计试题及答案(本科完整版)

概率统计试题及答案(本科完整版)

填空题(每题2分,共20分)A1、记三事件为A ,B,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 .A3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。

A4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。

A5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b a b c ,c e b b aA6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .A7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 A8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。

则X 的数学期望=)(X E 4.5 。

A9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .A10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k =1/4 时,kY 服从2χ分布。

A 二、计算题(每小题10分,共70分)A1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率(2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则:P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯=ABC ABC ABC()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。

数的概率与统计练习题

数的概率与统计练习题

数的概率与统计练习题一、选择题1. 在一副扑克牌中,红桃的数量是黑桃的两倍,方块的数量是梅花的三倍,那么在这副扑克牌中,梅花的数量是黑桃的几倍?A. 1倍B. 2倍C. 3倍D. 4倍2. 如图所示,一个骰子的每个面上都标有1至6的数字。

若一个人掷这个骰子两次,那么两次掷骰子赢的概率是多少?A. 1/12B. 1/6C. 1/4D. 1/23. 甲、乙、丙、丁四名学生依次从一堆石子中取球,每次可以取1个、2个或3个。

最后一颗石子由谁取到就算谁赢。

如果甲先取球,那么乙获胜的概率是多少?A. 3/8B. 1/4C. 3/16D. 1/84. 一张卡片标有字母A、B、C、D、E,从中随机抽取一张卡片。

抽到辅音字母的概率是多少?A. 1/5B. 1/2C. 2/5D. 4/55. 某班有35个学生,其中15个学生喜欢唱歌,20个学生喜欢跳舞,并且5个学生既喜欢唱歌又喜欢跳舞。

现从这班学生中随机抽取一个学生,抽到既喜欢唱歌又喜欢跳舞的概率是多少?A. 1/7B. 1/5C. 1/6D. 1/4二、填空题1. 一袋中有8个红球和4个蓝球,现从袋中连续取球3次,取到的都是红球的概率是多少?答案:7/332. 一种水果篮中有5个苹果、3个橙子和2个香蕉,现从篮子中随机取出3个水果,取出的水果中至少有1个橙子的概率是多少?答案:13/183. 有3个红桃、4个黑桃和5个方块,现从中随机取出2个扑克牌,取到两者都是红桃的概率是多少?答案:1/224. 一组数据中,35%的数小于12,40%的数大于16,那么这组数据中小于12或大于16的概率是多少?答案:75%5. 一副扑克牌中有52张牌,其中4张是红桃A和4张是黑桃A。

现从中随机抽取2张牌,抽到两张A的概率是多少?答案:1/221三、解答题1. 班级有40个学生,其中25个学生擅长语文,30个学生擅长数学。

假设每个学生只擅长其中一门学科,那么至少有多少个学生既擅长语文又擅长数学?答案:15个学生2. 一个正方形瓷砖被分成了9个小正方形,并且每个小正方形中都标有一个数字(1至9)。

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计 B一.单项选择题每小题3分;共15分1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为 A 0; B 1; C 0.6; D 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字;则这两个数字不相同的概率为 A 12; B 225; C 425; D 以上都不对 3.投掷两个均匀的骰子;已知点数之和是偶数;则点数之和为6的概率为 A 518; B 13; C 12; D 以上都不对 4.某一随机变量的分布函数为()3x xa be F x e +=+;a=0;b=1则F 0的值为 A 0.1; B 0.5; C 0.25; D 以上都不对5.一口袋中有3个红球和2个白球;某人从该口袋中随机摸出一球;摸得红球得5分;摸得白球得2分;则他所得分数的数学期望为A 2.5;B 3.5;C 3.8;D 以上都不对二.填空题每小题3分;共15分1.设A 、B 是相互独立的随机事件;PA =0.5; PB =0.7; 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==;则n =______.3.随机变量ξ的期望为()5E ξ=;标准差为()2σξ=;则2()E ξ=_______. 4.甲、乙两射手射击一个目标;他们射中目标的概率分别是0.7和0.8.先由甲射击;若甲未射中再由乙射击..设两人的射击是相互独立的;则目标被射中的概率为_________.5.设连续型随机变量ξ的概率分布密度为2()22a f x x x =++;a 为常数;则P ξ≥0=_______. 三.本题10分将4个球随机地放在5个盒子里;求下列事件的概率1 4个球全在一个盒子里;2 恰有一个盒子有2个球.四.本题10分 设随机变量ξ的分布密度为1 求常数A ;2 求P ξ<1;3 求ξ的数学期望.五.本题10分 设二维随机变量ξ;η的联合分布是1 ξ与η是否相互独立2 求ξη⋅的分布及()E ξη⋅;六.本题10分有10盒种子;其中1盒发芽率为90%;其他9盒为20%.随机选取其中1盒;从中取出1粒种子;该种子能发芽的概率为多少 若该种子能发芽;则它来自发芽率高的1盒的概率是多少七.本题12分 某射手参加一种游戏;他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标;则得奖金100元;且游戏停止. 若4次都未射中目标;则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3;求他在此游戏中的收益的期望.八.本题12分某工厂生产的零件废品率为5%;某人要采购一批零件;他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件注:(1.28)0.90Φ=;(1.65)0.95Φ=九.本题6分设事件A 、B 、C 相互独立;试证明A B 与C 相互独立.某班有50名学生;其中17岁5人;18岁15人;19岁22人;20岁8人;则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度;重复测量5次;数据如下单位:℃:1820;1834;1831;1816;1824假定重复测量所得温度2~(,)N ξμσ.估计10σ=;求总体温度真值μ的0.95的置信区间. 注:(1.96)0.975Φ=;(1.65)0.95Φ=概率论与数理统计B 答案一.1.D 、2.D 、3.A 、4.C 、5.C二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分1A={4个球全在一个盒子里}共有5种等可能结果;故PA =5/625=1/125------------------------------------------------------5分2 5个盒子中选一个放两个球;再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里;其他2个各放在一个盒子里有12种方法因此;B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:1⎰⎰∞∞-==+=304ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 2⎰==+=<10212ln 1)1(A dx x A P ξ-------------------------------6分 33300()()[ln(1)]1Ax E xf x dx dx A x x x ξ∞-∞===-++⎰⎰ 13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:1ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 1 0--------------------------------2分η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分因)1()0(05.0)1,0(==≠===ηξηξP P P ;故ξ与η不相互独立-------5分 2ξη⋅的分布列为因此; -------10分另解:若ξ与η相互独立;则应有P ξ=0;η=1=P ξ=0P η=1; P ξ=0;η=2=P ξ=0P η=2;P ξ=1;η=1=P ξ=1P η=1; P ξ=1;η=2=P ξ=1P η=2;因此;但 10.012.003.005.0≠;故ξ与η不相互独立.. 六.解:由全概率公式及Bayes 公式P 该种子能发芽=0.1×0.9+0.9×0.2=0.27-----------------------------------5分P 该种子来自发芽率高的一盒=0.1×0.9/0.27=1/3---------------------10分七.令A k ={在第k 次射击时击中目标};A 0={4次都未击中目标}..于是P A 1=0.3; P A 2=0.7×0.3=0.21; P A 3=0.72×0.3=0.147 P A 4= 0.73×0.3=0.1029; P A 0=0.74=0.2401-----------------------------------6分在这5种情行下;他的收益ξ分别为90元;80元;70元;60元;-140元..-------------------------------------------------------------------------------------------8分因此;--------------------12分八.解:设他至少应购买n 个零件;则n ≥2000;设该批零件中合格零件数ξ服从二项分布Bn;p; p=0.95. 因n 很大;故Bn;p 近似与Nnp ;npq ------------4分由条件有(2000)10.95P ξ≥≈-Φ=-------------------------------------------8分 因(1.65)0.95Φ=; 1.65=-;解得n=2123; 即至少要购买2123个零件. -------------------------------------------------------------12分九. 证:因A 、B 、C 相互独立;故PAC=PAPC; PBC=PBPC; PAB=PAPB; PABC=PA PBPC.(())()()()()==+-------2分P A B C P AC BC P AC P BC P ABC=+----------------------------4分()()()()()()()P A P C P B P C P A P B P C故A B与C相互独立. -------------------------------------------------------6分。

高中概率与统计试题及答案

高中概率与统计试题及答案

高中概率与统计试题及答案一、选择题(每题4分,共40分)1. 某班级有50名学生,其中男生30人,女生20人。

随机抽取一名学生,抽到男生的概率是多少?A. 0.4B. 0.6C. 0.8D. 1.02. 在一次掷骰子的实验中,掷得的点数为奇数的概率是多少?A. 0.5B. 0.25C. 0.75D. 1.03. 某工厂生产的产品中,有5%的产品是次品。

如果随机抽取100件产品,计算至少有1件次品的概率。

A. 0.95B. 0.975C. 0.995D. 1.04. 某篮球队在一场比赛中,投篮命中率为40%。

如果该队在一场比赛中投篮20次,求至少投中8次的概率。

A. 0.1B. 0.3C. 0.5D. 0.95. 某次考试共有100道选择题,每题4个选项,随机猜测,求至少猜对20题的概率。

A. 0.1B. 0.3C. 0.5D. 0.96. 某城市有两家电影院,A影院的观众满意度为70%,B影院的观众满意度为80%。

随机选择一家影院,求观众满意度超过70%的概率。

A. 0.5B. 0.7C. 0.8D. 1.07. 某公司有5名员工,其中2名是女性。

随机选择2名员工参加培训,求至少有1名女性的概率。

A. 0.5B. 0.6C. 0.7D. 0.88. 某班有40名学生,随机选择5名学生参加竞赛,求至少有1名男生的概率,已知该班男生比例为60%。

A. 0.9B. 0.95C. 0.99D. 1.09. 某地区一年中下雨的天数占总天数的30%,求连续3天都下雨的概率。

A. 0.027B. 0.09C. 0.3D. 1.010. 某彩票中奖率为1/100,求购买一张彩票中奖的概率。

A. 0.01B. 0.1C. 0.5D. 1.0二、解答题(每题10分,共60分)11. 某学校有200名学生,其中100名男生和100名女生。

如果随机抽取4名学生组成一个小组,求该小组中恰好有2名男生的概率。

12. 某工厂的零件合格率为90%,求从100个零件中随机抽取10个,至少有8个合格的概率。

概率与统计初步测试题3份

概率与统计初步测试题3份

测试一一、填空题:(每空 4分,共 32 分)1.设,表示两个随机事件,,分别表示它们对立事件,用,和,表示,恰有一个发生的式子为2.从一批乒乓球中任取 4 只检验,设表示“取出的 4 只至少有 1 只是次品”,则对立事件表示3.甲、乙两人同时各掷一枚硬币观察两枚硬币哪面向上。

这个随机试验的样本空间为4.____________________________________ 掷一颗骰子,出现 4点或 2 点的概率等于___________________________________ .5.____________________________________ 甲、乙两个气象合同时作天气预报,如果它们预报准确的概率分别是 0.8 和 0.7,那么在一次预报中,两个气象台都预报准确的概率是___________________________ (设两台独立作预报) .6._______________________________________________ 标准正态变量(0,1)在区间(- 2, 2)内取值的概率为_____________________ .7.作统计推断时,首先要求样本为随机样本,要得到简单随机样本,必须遵从的条件是8.已知随机变量的分布列为则()=_____ .二、选择题:(每小题 5 分,共 25 分)9.在掷一颗骰子的试验中,下列事件和事件为互斥事件的选项是()( A )= {1 ,2} ={1,3,5} (B)={ 2,4, 6}= {1}(C)= {1,5} ={3,5,6} (D)={2,3,4,5}={1,2}10.下面给出的表,可以作为某一随机变量的分布列的是11.对某项试验,重复做了次,某事件出现了次,则下列说法正确的一个是()( A )就是( B )当很大时,与有较大的偏差C )随着试验次数的增大,稳定于( D )随着试验次数的无限增大,与的偏差无限变小。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。

(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。

(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。

5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。

(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。

(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。

答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。

答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。

答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。

答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。

答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。

答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计综合测试卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一所中学有高一、高二、高三共三个年级的学生1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为80人的样本,那么应当从高三年级的学生中抽取的人数是( )A .10B .20C .30D .402.从总体中抽取的样本数据共有m 个a ,n 个b ,p 个c ,则总体的平均数x 的估计值为( ) A .3a b c ++ B .3m n p++ C .3ma nb pc++ D .ma nb pc m n p++++3.甲、乙两人独立地解同一问题,甲解出这个问题的概率是14,乙解出这个问题的概率是12,那么其中至少有1人解出这个问题的概率是( ) A .34B .18C .78D .584.若*(31)()nx n N -∈的展开式中各项的系数和为128,则2x 项的系数为( )A .189B .252C .-189D .-252 5.甲、乙、丙、丁四名射击选手在选拨赛中所得的 平均环数x 及其方差S 2如下表所示,则选送参加决赛的最佳人选是A .甲B .乙C .丙D .丁6.已知n 为奇数,且n ≥3,那么112217777n n n n n n n C C C ---+⋅+⋅+⋅⋅⋅+⋅被9除所得的余数是( )A .0B .1C .7D .87.某仪表显示屏上有一排八个编号小孔,每个小孔可显示红或绿两种颜色灯光.若每次有且只有三个小孔可以显示,但相邻小孔不能同时显示,则每次可以显示( )种不同的结果.A .20B .40C .80D .1608.现有20个零件,其中16个一等品,4个二等品.若从20个零件中任取2个,那么至少有一个是一等品的概率是( )A .11164220C C C B .111619220C C C C .2162201C C -D .11216416220C C C C +9.七张卡片上分别写有0、0、1、2、3、4、5,现从中取出三张后排成一排,组成一个三位数,则共能组成( )个不同的三位数.A .100B .105C .145D .15010.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是( ) A .40243B .1027C .516D .10243二.填空题:本大题共6小题,每小题5分,共30分.11.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的户数估计有 户12.如下是一个容量为200的样本的频率分布直方图,根据图中数据填空:(1)样本数据落在范围[5,9)的频率为_______;据(2)样本数据落在范围[9,13)的频数为_______.13.在某市高三数学统考的抽样调查中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为_____________人. 14.方程2551616x xx CC--=的解集是____________________.15.若某人投篮的命中率为p ,则他在第n 次投篮才首次命中的概率是________________. 16.从1到10这10个数中任取不同的三个数,相加后能被3整除的概率是_____________.戴南高级中学2005~2006学年度下学期月考高二年级数学科答卷二.填空题:11 12 13 14 15 16 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)有A 、B 、C 、D 四封信和1号、2号、3号三个信箱,若四封信可以随意投入信箱,投完为止.(1)求3号信箱恰好有一封信的概率;(2)求A 信没有投入1号信箱的概率.18.(本小题满分12分)一个口袋中装有三个红球和两个白球.第一步:从口袋中任取两个球,放入一个空箱中;第二步:从箱中任意取出一个球,记下颜色后放回箱中.若进行完第一步后,再重复进行三次第二步操作,分别求出从箱中取出一个红球、两个红球.19.(本小题满分12分)若非零实数m 、n 满足2m +n =0,且在二项式12()mn ax bx (a >0,b >0)的展开式中当且仅当常数项是系数最大的项,(1)求常数项是第几项;(2)求a b的取值范围.20.(本小题满分12分)在一次由甲、乙、丙三人参加的围棋争霸赛中,比赛按以下规则进行,第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者.根据以往战绩可知,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,(1)求比赛以乙连胜四局而告终的概率;(2)求比赛以丙连胜三局而告终的概率.21.(本小题满分12分)在矩形ABCD 中,AB=4,BC=3,E 为DC 边的中点,沿AE 将ΔAED折起,使二面角D-AE-B 为60°. (1)求DE 与平面AC 所成角的大小; (2)求二面角D-EC-B 的大小.(1) (2)E DABCABCDE22。

(本小题满分12分)已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1) 第一小组做了三次实验,求至少两次实验成功的概率;(2) 第二小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.戴南高级中学2005~2006学年度下学期期中考试高二年级数学科试卷参考答案一.B 、D 、D 、C 、C C 、D 、D 、B 、A二.(11)9500; (12)0.32,72; (13)810;(14){1,3};(15)1(1)n p p --; (16)720三.(17) (1)设3号信箱恰好有一封信的概率为P 1, -------(1分)则P 1 =134423C ⋅=3281; ------(5分)(2)设A 信没有投入1号信箱的概率为P 2, -------(6分)则132242333C P ⋅== . ------(10分) (18)设从箱中取出一个红球、两个红球、三个红球的概率分别为12P P 、 ----(1分) 从箱中取出一个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为11132312359240C C C P C ==⋅ --------(6分)从箱中取出两个红球时,完成事件只有一种可能:第一步取出的2个球1红1白,此时事件发生的概率为11232322359240C C C P C ==⋅ -------(12分)解法二:设从箱中取出一个红球、两个红球、三个红球的概率分别为12P P 、 ----(1分) 第一步操作结束后,箱子中没有红球的概率为2225110C C =,箱子中有1个红球的概率为11322535C C C =,箱子中有2个红球的概率为2325310C C =, -------(5分)则12311311390()010*******P C =⨯+⨯+⨯=, --------(8分) 22321311390()010*******P C =⨯+⨯+⨯=, --------(12分) (19)(1)设12112()()r m r n rr T C ax bx -+=为常数项, ------(1分)则可由(12)020,0,0m r nr m n m n -+=+=≠≠⎧⎨⎩------(3分)解得 r=4, ------(5分)所以常数项是第5项. ------(6分) (2)由只有常数项为最大项且a >0,b >0,可得48457512124843931212C a b C a b C a b C a b>>⎧⎨⎩ -------(10分) 解得8954ba <<------(12分)(20)(1)设乙连胜四局的概率为1P ,则1(10.4)0.5(10.4)0.50.09P =-⨯⨯-⨯= -------(6分) (2)设丙连胜三局的概率为2P ,则20.40.6(10.5)0.6(10.4)0.50.6(10.5)0.162P =⨯⨯-⨯+-⨯⨯⨯-= ------(12分) (21)解:(1)在图(2)中,作DH ⊥平面AC ,H 为垂足, 作DM ⊥AE ,M 为垂足,连结MH ,则MH ⊥AE ∴AMH ∠为二面角B AE D --的平面角 ∴AMH ∠=︒60在∆Rt ADE 中,AE DM DE AD •=•212113136232322=+⨯=•=AE DE AD DM 在∆Rt DMH 中,DH =DM ︒•60sin =133932313136=⨯ ∵DH ⊥平面AC∴DEH ∠为DE 与平面AC 所成的角sin DEH ∠=26393213393==DE DH ------------(6分) (2)在图(2)中过H 作HF ⊥CE 于F ,F 为垂足,连结AF ,则AF ⊥CE ∴AFH ∠为二面角B EC D --的平面角 则HF HDF ∠•⎪⎪⎭⎫⎝⎛+=sin 33136DAE ∠=sin 139 1318132139=⨯= tan AFH ∠=18393131813393==HF DH∴AFH ∠=18393arctan∴二面角B EC D --的平面角为18393arctan。

----------(12分) (22)(1) 第一小组做了三次实验,至少两次实验成功的概率是2323331117()C 1C 33327P A ⎛⎫⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.------------(6分)(2) 第二小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其各种可能的情况种数为24A 12=.因此所求的概率为3312132()12333729P B ⎛⎫⎛⎫=⨯⋅= ⎪ ⎪⎝⎭⎝⎭.----------(12分)。

相关文档
最新文档