误差理论与测量平差习题课
误差理论和测量平差5道经典习题

误差理论和测量平差5道经典习题1、以下对于随机变量的描述,正确的是:A. 其数值的符号和大小均是偶然的B. 其数值的符号和大小均是随机的C. 数值的符号和大小均是无规律的D. 随机变量就其总体来说具有一定的统计规律2、以下关于偶然误差的描述正确的是:A. 在一定的观测条件下,误差的绝对值有一定的限值;B. 绝对值较小的误差比绝对值较大的误差出现的概率大;C. 绝对值相等的正负误差出现概率相同;D. 偶然误差的数学期望为零3、下列关于偶然误差的特性描述正确的是:A 绝对值小的误差比绝对值大的误差出现的概率小B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度D 误差的符号只与观测条件有关4、下列观测中,哪些是具有“多余观测”的观测活动A 对平面三角形的三个内角各观测一测回,以确定三角形形状B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状C 对两边长各测量一次D 三角高程测量中对水平边和垂直角都进行一次观测第四次作业:1、求随机变量σμ-=x t 的期望和方差2、设随机变量X~N (0,9),求随机变量函数Y=5X 2的均值3、为了鉴定经纬仪的精度,对已知精确测定的水平角α=45°00′00″作12次观测,结果为:45°00′06″ 44°59′55″ 44°59′58″ 45°00′04″ 45°00′03″ 45°00′04″ 45°00′00″ 44°59′58″ 44°59′59″ 44°59′59″ 45°00′06″ 45°00′03″设α没有误差,试求观测值的中误差。
1、对真值为L ~=100.010m 的一段距离以相同的方法进行了10次独立的观测,得到的观测值见下表,试求该组观测值的系统误差、中误差、均方误差。
误差理论和测量平差习题3(含答案)

第三章思考题3.1 下列各式中的()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求X 的中误差: (1)()12312X L L L =++;(2)123L L X L =3.2 已知观测值1L ,2L 的中误差12σσσ==,120σ=,设11225,2X L Y L L =+=-,12Z L L =,t X Y =+,试求X ,Y ,Z 和t 的中误差。
3.3 设有观测向量[]12331TL L L L =,其协方差阵为40003002LLD ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦分别求下列函数的的方差: (1)1133F L L =-; (2)2233F L L =3.4 设有同精度独立观测值向量[]12331TL L LL=的函数为113s i n s i n ABL Y S L =,22AB Y L α=-,式中A B α和AB S 为无误差的已知值,测角误差1"σ=,试求函数的方差12y σ、22y σ及其协方差12y y σ3.5 在图中△ABC 中测得A A σ∠±,边长b b σ±,c c σ±,试求三角形面积的中误差s σ。
3.6 在水准测量中,设每站观测高差的中误差均为1mm ,今要求从已知点推算待定点的高程中误差不大于5cm ,问可以设多少站?3.7 有一角度测4个测回,得中误差为0.42〃,问再增加多少个测回其中误差为0.28〃? 3.8 在相同观测条件下,应用水准测量测定了三角点A ,B ,C 之间的高差,设三角形的边长分别为S 1=10km ,S 2=8km ,S 3=4km ,令40km 的高差观测值权威单位权观测,试求各段观测高差之权及单位权中误差。
3.9 以相同观测精度A ∠和B ∠,其权分别为14A P =,12B P =,已知8"B σ=,试求单位权中误差0A σ∠和的中误差A σ。
3.10 已知观测值向量21L 的权阵为5224LL P -⎡⎤=⎢⎥-⎣⎦,试求观测值的权1L P 和2L P答案:3.1 (1)x σ=, (2)3x Lσ=3.2 2x σσ=,y σ=,z σ=,t σ=3.3 122F D =,222231827F D L L =+3.4 ()122222113"223cossin cot sin AB y SL L L L σρ=+⋅()2221y σ=秒120y y σ=3.5 s σ=3.6 最多可设25站 3.7 再增加5个测回3.8 14.0P =,25.0P =,310.0P =,0()km σ=3.9 "0 5.66σ=,"11.31A σ=3.10 14L P =,2165L P =。
误差理论与测量平差基础习题集

第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年1.参数平差中,当观测值之间相互独立时,若某一误差方程式中不含有未知参数,但自由项不为0,则此误差方程式对组成法方程不起作用。
( )参考答案:正确2.某测角网的网形为中点多边形,其中共有5个三角形,实测水平角15个进行间接平差,则下列选项正确的是( )。
参考答案:误差方程的个数为15个_待求量的个数为5个3.间接平差中测方向三角网函数模型中,网中所有测站均存在一个定向角平差值参数,其系数为( )。
参考答案:-14.某平差问题有12个同精度观测值,必要观测数为t=6,现选取2个独立的参数参与平差,应列出( )个条件方程。
参考答案:85.在附有参数的条件平差中,法方程的个数为C个。
参考答案:错误6.观测值与最佳估值之差为观测值的真误差。
参考答案:错误7.通过平差可以消除误差,从而消除观测值之间的矛盾。
参考答案:错误8.在附有参数的条件平差法中,任何一个量的平差值都可以表达成( )的函数。
参考答案:观测量平差值和参数平差值9.单位权方差估值与具体采用的平差方法相关。
参考答案:错误10.测量成果精度主要包括观测值的实际精度、观测值经平差得到的观测值函数的精度两个方面。
参考答案:正确11.条件方程类型包括图形条件、极条件、边条件、方位角条件、基线条件等。
参考答案:正确12.极条件方程是以某点为极,列出各图形边长比的和为1。
参考答案:错误13.水准网的条件方程式为符合水准路线。
参考答案:错误14.为了确定一个几何模型,并不需要知道该模型中所有元素的大小,而只需要知道其中部分元素的大小就行了。
参考答案:正确15.必要元素的个数t与几何模型和实际观测量有关。
参考答案:错误16.平差的最终目的都是对参数和观测量作出某种估计,并评定其精度。
参考答案:正确17.间接平差的函数模型中的未知量是t个独立参数,多余观测数会随平差方法不同而异。
误差理论与测量平差习题01

误差理论与测量平差习题编写葛永慧付培义胡海峰太原理工大学测绘科学与技术系第一章 绪论习题..................................................... 2 第二章 平差数学模型与最小二乘原理习题............................... 3 第三章 条件平差习题................................................. 4 第四章 间接平差习题................................................. 7 第五章附有限制条件的条件平差习题.................................... 2 第六章 误差椭圆习题................................................. 4 第七章 误差分布与平差参数的统计假设检验习题......................... 6 第八章 近代平差理论习题 (7)第一章 绪论习题1.1 举出系统误差和偶然误差的例子各5个。
1.2 已知独立观测值1L 、2L 的中误差分别为1m 、2m ,求下列函数的中误差:(1) 2132L L x -=; (2)212132L L L x -=; (3))cos(sin 211L L L x +=1.3 已知观测值L 及其协方差阵LL D ,组成函数AL X =和BX Y =,A 、B 为常数阵,求协方差阵XL D 、YL D 和XY D 。
1.4 若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里? 1.5 有一角度测20测回,得中误差24.0''±,问再增加多少测回,其中误差为82.0''±? 1.6 设对某量进行了n 次独立观测,得观测值i L ,权为),,2,1(n i p i =,试求加权平均值[][]p pL x =的权x p 。
误差理论与测量平差基础习题集1

第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差基础习题集精选文档

误差理论与测量平差基础习题集精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-第五章条件平差§5-1条件平差原理条件平差中求解的未知量是什么?能否由条件方程直接求得5. 1. 02 设某一平差问题的观测个数为n.必要观测数为t,若按条件平差法进行平差,其条件方程、法方程及改正数方程的个数各为多少?5. 试用符号写出按条件平差法平差时,单一附合水准路线中(如图5-1所示)各观测值平差值的表达式。
图5-15. 1. 04 在图5-2中,已知A ,B的高程为Ha = m , Hb=11. 123m,观测高差和线路长度为:图5-2S1=2km,S2=Ikm,S3=,h1=,h2= m,h3= m,求改正数条件方程和各段离差的平差值。
在图5-3的水准网中,A为已知点B、C、D为待定点,已知点高程=,观测了5条路线的高差:HA=,h1h=0. 821 m,2=,h3h=,4= m。
h5各观测路线长度相等,试求:(1)改正数条件方程;(2)各段高差改正数及平差值。
有水准网如图5-4所示,其中A、B、C三点高程未知,现在其间进行了水准测量,测得高差及水准路线长度为h 1 =1 .335 m ,S 1=2 km; h 2= m ,S 2=2 km;h 3= m ,S 3=3km 。
试按条件平差法求各高差的平差值。
如图 5-5 所示,L 1=63°19′40″,=30″;L 2 =58°25′20″,=20″;L 3=301°45′42″,=10″.(1)列出改正数条件方程;(2)试用条件平差法求∠C的平差值(注: ∠C是指内角)。
5-2条件方程5. 对某一平差问题,其条件方程的个数和形式是否惟一?列立条件方程时要注意哪些问题?如何使得一组条件方程彼此线性无关?. 10 指出图5-6中各水准网条件方程的个数(水准网中P表示待定高i表程点,hi示观测高差)。
文档:误差理论与测量平差基础习题集(二期)

误差理论与测量平差基础题库集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X XB B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W AA =-、ˆ3W BB =-、ˆ3W C C =-。
()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A WA B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。
误差理论与测量平差基础习题集4

若设参
数
X=[X1X2X3 ]T=[HBh3h4]T,定权时 C=2km。试列出 (1)误差方程式及限制条件; (2)法方程式。 8.1.09 在图 8-6 中,A、B 为已知三角点,C、D 为待定点,观测了 9 个内
角 L1~L9。现选取参数X=[X1X2X3X4X5 ]T =[L1L2L3L4L5 ]T,试列出误差方程 式和限制条件。 8.1.10 在图 8-7 所示的测边网中,A、B 为已知点,1,2 为待定点,观
角度观测精度均为������
= 1″。
������
观测了边长 S1、S2,观测精度均为������ ������
2
= 10mm,
0 ������
������
1
= 148.283m,
= 107.967m。 设 P 点的坐标为未知参数,其近似坐标为������ = 882.270m,
������
0 ������
9.2.04 附有限制条件的条件平差模型在解决实际平差问题中有什么意 义? 9.2.05 某平差问题有 15 个同精度观测值,必要观测数等于 8,现选取 8 个参数,且参数之间有 2 个限制条件。若按附有限制条件的条件平差法进行 平差,应列出多少个条件方程和限制条件方程?由其组成的法方程有几个? 9.2.06 在测站 O 上观测 A、B、C、D 四个方向(如图 9-1 所示) ,得等精 度观测值为: L1=44°03′14.5″, L2=43°14′20.0″, L3=53°33′32.0″, L4=87°17′31.5″,
(a)已知值:矩形的对角边 S 观测值:L1~L4 参数:������1、������2、������3
图 8-4
8.1.08
习题课1

精度就是指误差分布的密集或离散的
程度,也就是指离散度的大小。 程度,也就是指离散度的大小。假如两组观 测成果的误差分布相同, 测成果的误差分布相同,便是两组观测成果 的精度相同;反之,若误差分布不同, 的精度相同;反之,若误差分布不同,则精 度也就不同。 度也就不同。
习题课1 习题课 误差理论与平差原则
n −1
☆误差传播规律:对于线性函数Z,其中误差与自变量中 误差传播规律:对于线性函数 , 误差的关系即为误差传播规律, 误差的关系即为误差传播规律,即:
Z = k1 x12 + k 2 x 2 + … + k n x n
的中误差分别为σ 上式中:ki为系数,xi为自变量,设xi 的中误差分别为σi, 式中: 为系数, 为自变量, 则可得: 则可பைடு நூலகம்:
2 2 2 σ Z = k12σ 12 + k22σ 2 +…+ kn2σ n 2 1 2 1 2 2 2 2 2 n
中误差: 中误差:σ Z
= k σ + k σ +…+ k σ
2 n
DZZ = σ = KD XX K
2 Z
T
上式的纯量形式为: 上式的纯量形式为:
2 2 2 D ZZ = σ Z = k12σ 12 + k 22σ 2 + … + k n2σ n + 2 k1 k 2σ 12
2 σL =
应用误差传播规律得: 应用误差传播规律得:
σ2
σ
n
σL =
n
中误差 相对误差 = 观测值
单一未知量的最佳估值通常为其平均值, 单一未知量的最佳估值通常为其平均值,包括算术平均值 和加权平均值,平均值与观测值之间的差异称为改正数。 和加权平均值,平均值与观测值之间的差异称为改正数。 改正数=观测值平均值 观测值 改正数 观测值平均值-观测值,即: 观测值平均值 观测值,
误差理论和测量平差习题5(含答案)

第五章条件平差习题第五章思考题参考答案5.1(a)n=6,t=3,r=3(b)n=6,t=3,r=3(c)n=14,t=5,r=95.2(a)n=13,t=6,r=7共有7个条件方程,其中有5个图形条件,2个极条件。
(b)n=14,t=8,r=6共有6个条件方程,其中有3个图形条件,3个极条件。
(c)n=16,t=8,r=8共有8个条件方程,其中有6个图形条件,2个极条件。
(d)n=12,t=6,r=6共有6个条件方程,其中有4个图形条件,1个圆周条件,1个极条件。
5.3n=23,t=6,r=17共有17个条件方程,其中有9个图形条件,1个圆周条件,1个固定角条件,1个固定边条件,5个极条件。
5.4 (1)n=22,t=9,r=13:7个图形条件,1个圆周条件,2个极条件,2个边长条件,一个基线条件。
(2)12837941314121520111718195610166101119910111213510ˆˆˆ1800ˆˆˆ1800ˆˆˆ1800ˆˆˆ1800ˆˆˆˆ1800ˆˆˆˆ1800ˆˆˆˆ1800ˆˆˆˆˆ1800ˆˆˆsin sin sin L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ++-=++-=++-=++-=+++-=+++-=+++-=++++-=171961116203614184715192211151217121318124ˆsin 1()ˆˆˆˆsin sin sin sin ˆˆˆˆsin sin sin sin 1()ˆˆˆˆsin sin sin sin ˆˆ()ˆˆˆˆsin sin sin sin ˆˆ(ˆˆˆˆsin sin sin sin FG FG L L L L L L L L L L L L L S S S S L L L L S S L L L L ===→=以大地四边形中心为极以中点四边形D 点为极的边长条件1213611891719ˆˆ)ˆˆˆˆsin sin sin sin ˆˆˆˆsin sin sin sin FG AB S S L L L L S S L L L L →=的边长条件(基线条件)5.5 n=8,t=4,r=4;有多种条件方程的列法,其中之一为:1001000100110000120001001104000011014V ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦⎣⎦(注意常数项单位为mm ) 5.6 (1)P=3/2,(2)P=15.7 (1)P B =1.6,P C =2.1,P D =2.1,P E =1.6(2)P hCD =1.85.8 []ˆ 2.4998 1.9998 1.3518 1.8515h=2P σ=0.32(mm)5.9 1234561110009100110900101016V V V V V V ⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦ []045452TV mm =---[]ˆ 1.576 2.219 3.7950.867 2.443 1.352T h m =--- 5.10 (1)1ˆ10.3556h m = 2ˆ15.0028h m = 3ˆ20.3556h m = 4ˆ14.5008h m =5ˆ 4.6472h m = 6ˆ 5.8548h m = 7ˆ10.5020h m =(2)±2.2mm。
误差理论与测量平差基础习题集4

误差理论与测量平差基础习题集4第⼋章附有限制条件的间接平差§8-1附有限制条件的间接平差原理8.1.01 附有限制条件的间接乎差中的限制条件⽅程与条件平差中的条件⽅程有何异同?8.1.02 附有限制条件的间接平差法适⽤于什么样的情况,解决什么样的平差问题? 在⽔准测量平差中,经常采⽤此平差⽅法吗?8.1.03 采⽤附有限制条件的间接平差,对参数的选取有何限制?8.1.04 试按附有限制条件的间接平差法列出图8-1所⽰图形的函数模型。
(a)已知值:αoc (b)已知点:A、B观测值:L1 ~L5 观测值:h1 ~h5参数:L?1、L?2、L?3、∠AOC 参数: ?1?、?2?、?4?、?5?图8-18.1.05 在⼤地四边形中(如图8-2所⽰),A、B为已知点,C、D为待定点,现选取L3、L4、L5、L6、L8的平差值为参数,记为X?1,X?2,…, X?5,试列出误差⽅程和限制条件。
图8-2 图8-38.1.06 在三⾓形ABC中(图8-3),A、C间边长S AC为已知,L1、L2、L3为⾓度观测值,S 1、S 2为边长观测值。
若设参数X ?=[X ?1 X ?2 X ?3 ]T =[L ?1 L ?2 L ?3 ]T ,试列出误差⽅程和限制条件。
8.1.07 试按附有限制条件的间接平差法列出图8-4所⽰图形的函数模型。
(a)已知值:矩形的对⾓边S (b)已知值:y 0观测值:L 1~L 4 观测值:y 1~y 5参数:L ?1、L ?2、L ?3 参数: a ?、b图8-48.1.08 在图8-5所⽰的⽔准⽹中,A 为已知点,其⾼程H A =10m ,观测⾼差和路线长度为:若设参数X=[X 1 X 2 X 3 ]T =[H B h 3 h 4]T ,定权时C =2km 。
试列出(1)误差⽅程式及限制条件;(2)法⽅程式。
8.1.09 在图8-6中,A 、B 为已知三⾓点,C 、D 为待定点,观测了9个内⾓L1~L9。
误差理论与测量平差基础习题集3.docx

第七章间接平差§7-1间接平差原理7.1.01 在间接平差中,独立参数的个数与什么量有关?误差方程和法方程的个数是多少?7.1.02 在某平差问題中,如果多余现测个数少于必要观测个数,此时间接平差中的法方程和条件平差中的法方程的个数哪—个少,为什么?7.1.03 如果某参数的近似值是根据某些现测值推算而得的,那么这些观测值的误差方程的常数项都会等于零吗?7.1.04 在图7-1所示的闭合水准网中,A为已知点(HA =10.OOOm),P1,P2为高程未知点,测得离差及水准路线长度为:h 1= 1.352m,S1=2km,h2=-0.531m,S2= 2km,h3= - 0.826m,S3= lkm。
试用间接平差法求各髙差的平差值。
7.1.05在三角形(图7-2)中,以不等精度测得α=78º23´12",Pα=1;β= 85º30 '06 ",Pß=2;γ=16º06'32",Pγ=1;δ=343º53'24", Pδ=1;试用间接平差法求各内角的平差值。
7. 1.06设在单一附合水准路线(图7-3)中已知A,B两点高程为HA,HB,路线长为S 1,S 2,观测高差为h 1 h 2,试用间接平差法写出P 点高程平差值的公式。
7. 1.07在测站0点观测了6个角度(如图7-4所示),得同精度独立观测值: L 1=32º25'18", L 2 =61º14'36", L 3=94º09'40",L 4 172010'17" L 5=93º39'48", L 6=155º24'20"已知A 方向方位角αA =21º10'15",试按间接平差法求各方向方位角的平差值。
误差理论和测量平差5道经典习题

1、以下对于随机变量的描述,正确的是:A. 其数值的符号和大小均是偶然的B. 其数值的符号和大小均是随机的C. 数值的符号和大小均是无规律的D. 随机变量就其总体来说具有一定的统计规律2、以下关于偶然误差的描述正确的是:A. 在一定的观测条件下,误差的绝对值有一定的限值;B. 绝对值较小的误差比绝对值较大的误差出现的概率大;C. 绝对值相等的正负误差出现概率相同;D. 偶然误差的数学期望为零3、下列关于偶然误差的特性描述正确的是:A 绝对值小的误差比绝对值大的误差出现的概率小B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度D 误差的符号只与观测条件有关4、下列观测中,哪些是具有“多余观测”的观测活动A 对平面三角形的三个内角各观测一测回,以确定三角形形状B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状C 对两边长各测量一次D 三角高程测量中对水平边和垂直角都进行一次观测第四次作业:1、求随机变量σμ-=x t 的期望和方差2、设随机变量X~N (0,9),求随机变量函数Y=5X 2的均值3、为了鉴定经纬仪的精度,对已知精确测定的水平角α=45°00′00″作12次观测,结果为:45°00′06″ 44°59′55″ 44°59′58″ 45°00′04″ 45°00′03″ 45°00′04″ 45°00′00″ 44°59′58″ 44°59′59″ 44°59′59″ 45°00′06″ 45°00′03″设α没有误差,试求观测值的中误差。
1、对真值为L ~=100.010m 的一段距离以相同的方法进行了10次独立的观测,得到的观测值见下表,试求该组观测值的系统误差、中误差、均方误差。
误差理论与测量平差基础习题集-二期

误差理论与测量平差基础习题集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X X B B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W A A =-、ˆ3W B B =-、ˆ3W C C =-。
()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A W A B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。
测量平差课后练习题(1~3章)2011

[L1, L2, L3]T
的方差协方差阵为 D LL
1
2
1
,求
1 1 4
设对A 观测 4 个测回的测角精度(中误差)为 3,权为 2,问观 测 9 个测回的精度为多少?权为多少?单位权观测为多少
《误差理论与测量平差基础》课后测验题
第一章 绪论 1、什么是观测条件?相同观测条件下进行的观测称为什么观测? 2、举出系统误差和偶然误差的例子各 5 个。
3、观测误差分为几类?分别是如何定义的?
4、在测量上为什么要进行多余观测?
5、测量平差的任务是什么?
第二章 误差分布与精度指标
1、什么是真值、真误差?
36,测回间角值之差不超过 24,分别代表什么误差?
9、什么是协方差?协方差是描述观测值之间什么关系的?
10、在什么情况下,观测值之间相互独立与不相关是等价的?
11、什么是方差协方差阵?其是有什么组成的?有何特点?
12、何谓准确度?何谓精确度?何谓不确定性?
第三章 协方差传播率及其权
3 1 1
1、设观测向量 L
2、简述偶然误差的特性?
3、偶然误差服从什么分布?
4、衡量精度的指标有哪几种?分别是如何定义的?
5、设一段距离为:520m2.3mm 代表什么意思?相对误差是多少?
6、对于在相同的观测条件下进行的一系列的观测,误差有大有小,
是否代表精度不同?
7、在测距仪的检定中,要对基线场两固定观测墩点间的精确距离
进行多次观测,设精确距离为 326.750 米,观测了 10 次,得距离
如下:
326.758m
326.754m
326.745m
326.755m
326.762m
误差理论与测量平差基础习题集5(参考答案)

参考答案第一章1.1.04 (1)系统误差。
当尺寸大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”。
(3)偶然误差,符号为“+”或“-”。
(4)系统误差,符号为“-”。
(5)系统误差,符号为“-”。
1.1.05 (1)系统误差。
当i角为正值时,符号为“-”;当i角为负值时,符号为“+”。
(2)系统误差,符号为“+”。
(3)偶然误差,符号为“+”或“-”。
(4)系统误差,符号为“-”。
第二章2.3.08 σ=3.62″2.3.09 真误差可能出现的范围是|△|45mm,或写为-45mm,1/23045.2.3.10 他们的真误差不一定相等,相对精度不相等,后者高于前者。
2.6.17 θ1 =2.4,θ2 =2.4,σ 1 =2.7,σ 2 =3.6。
两组观测值的平均误差相同,而中误差不同。
由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。
本题中,σ1σ2,因此,第一组观测值的精度高。
2.6.18 Dxx22=4229(秒2)2.6.19 σL1 =2 σL2 =3 σL3 =4 σL1L2 =-2 σL1L3 =0 σL2L3 =-3第三章3.2.07 (1)σX = 32σ (2)σx =L 12L 22 L 12L 32 L 22L 32L 32σ3.2.08 σx=2σ σy = 5σ σz = L 12L 22σ σt = 13σ3.2.09 (1)σx = σ124σ22(2)σy = (L1 L2)2σ12L 12σ22(3)σx = sin²L2σ12sin²L1 cos²(L1 L2)σ22sin²(L1 L2)3.2.10 (1)DF1 =22 (2)DF2 =18L 2227L 323.2.12 (2)DXL =ADLLDYL = BADLL 或DYL =ADLXBT DXY =ADLLATBT 或DXY =ADLXBT 3.2.13 D φ1 =4L 12+ 3L 22D φ2 =18 D φ1φ2 =7L2 – L13.2.14 DWW = XXXY XZ YX YY YZ ZX ZYZZ D D D D D D DD D ⎛⎫ ⎪ ⎪ ⎪⎝⎭= TT T 111213T T 212223TTT 313233AD A AD B AD C BD ABD B BD CD A CD A CD A ⎛⎫⎪ ⎪ ⎪⎝⎭TC3.2.15 X σy σ3.2.16 122222AB y 113''223S =cos L +sin L cot L sin L σρ⋅()22y2=1σ(秒)y1y2=0σ3.2.17 c =185.346(m )C σ=0.154(m )3.2.18 S σ=123.2.19 令p 点坐标X 、Y 的协方差阵为22x xy yz y σσσσ⎛⎫ ⎪ ⎪⎝⎭式中:2222222022()AP xS AP AP X Y Y S βσσσσρρ∆=+∆-+∆222222222()+X X oAP yS AP AP X S βσσσσρρ∆=∆+∆222222o AP AP xy S AP AP AP AP X Y X Y X Y S βσσσσρρ∆∆=-∆∆-∆∆yz xyσσ=3.2.20 (1)22111121()3112LLD ∧∧-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦秒(2) 1321()3L L D ∧∧=-秒 3.3.24 (1)2hσ=1.73(mm) (2)1H ρσ=1.29(mm)3.3.25 最多可设25站 3.3.26 16km 3.3.27ρσ=0.097(m)3.3.28 在增加5个测回 3.3.29 S =4 635.563(m2) S σ=2.88(m)3.3.30ασ=βσ=3.34(秒)3.4.35 P1 P2 P3 σ0 =2.0’’ 1.0 0.25 4.0 σ0 =4.0’’ 4.0 1.0 16.0 σ0 =1.0’’ 0.25 0.0625 1.0 按各组权分别计算得X ∧= 3041’17.2’’ σS =0.87’’3.4.36 P1 =4.0 P2 =5.0 P3 =10.0 σ0 = 40σ(km) 3.4.37 P =np 3.4.38 PD =dD3.4.39 PC(平差前) =140PC (平差后)=1203.4.40 σ0 =5.66’’ σA =11.31’’3.4.41 (1)观测∠A 两次的算术平均值 (2)σ0 =1.70’’ (3)N =12(次)3.4.42 不对。
误差理论与测量平差习题课

误差理论与测量平差习题课⼀.填空题1、有⼀段距离,其观测值及其中误差为mm m 25400± ,该观测值的相对中误差K 为。
2、已知独⽴观测值[]T L L L 211,2=的⽅差阵??=8004LL D ,单位权⽅差420=σ,则其权阵LL P 为。
3、测量平差的任务:求观测值的及其评定观测值及平差值的精度。
4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i =,若每次观测的精度为σ,权为p ,则其算术平均值L 的权为。
5、已知某三⾓⽹中P 点坐标的协因数阵为))/((60.125.025.010.222??"?=cm Q X X ,单位权⽅差的估值为220)(0.1?"=σ,位差的极⼤值⽅向E ?为。
6、观测误差按其性质可分为、和粗差。
经典测量平差主要研究的是。
7、已知某平差问题,观测值个数为30个,必要观测量个数为20个,若选20个独⽴参数进⾏平差,应该利⽤的平差模型是,则⽅程个数为8、有⼀段距离,其观测值及其中误差为,该观测值的相对中误差为。
9、已知独⽴观测值[]TL L L 211,2=的⽅差阵160064LL D ??=,单位权⽅差1620=σ,则其权阵LL P 为。
10、某⾓以每测回中误差为"±1的精度测量了9次,其平均值的权为1,则单位权中误差为。
11、设有观测向量[]TL L L X 321=,其协⽅差阵为----=1630302024XXD 。
则观测值3L 关于2L 协⽅差32σ是。
12、已知某三⾓⽹中P 点坐标的协因数阵为))/((60.125.025.010.222??"?--=cm Q X X ,单位权⽅差的估值为220)(0.1?"=σ,位差的极⼩值⽅向F ?为。
13、某平差问题的必要观测数为t ,多余观测数为r ,独⽴的参数个数为u 。
若u=t ,则平差的函数模型为。
若,则平差的函数模型为附有参数的条件平差。
误差理论与测量平差基础教学课件第二章练习

0? 0?? 1??
??
???
?? ???
1 2 3 4
? ? ? ? ? ?
?
B?
?2
-1
0
?1
?
?3 2 1?
? PL=?-1
?
2
? -1?
?
?
1
? ?2
4
? 2?
4?
?
?? 0 -1 2 ??
??1 2 3??
参数平差在测量中的应用
解:
[1] 选择未知参数和单位权路线长度
[2] 列误差方程式
第二章 参 数 平 差
Parametric Least-Squares Adjustment
大学教育的最终目的:
教者:授人以鱼,不如授人以渔 学生:受人之鱼,不如受人之渔
学习方式:
学而不思则罔,思而不学则殆
学习过程:
? 确定目标 ? 变得沉浸于行动之中 ? 注意正在发生的事情 ? 学习欣赏即时的经验
v1 ? x?1
? h1 ? H A
v2 ? ? x?1
? h2 ? H B
v3 ? ? x?1 ? x?2
? h3
v4 ?
x?2 ? x?3 ? h4
v5 ?
x?3 ? h5 ? H C
v6 ?
x?3 ? h6 ? H D
权1 1 2 1 2 2
参数平差在测量中的应用
解:
[1] 选择未知参数和单位权路线长度
h1
A
h1 E
C
h4
F
h5
h2
h6
h3
D
B
通常设点的高程为未知参数
权:等精度观测
pi
误差理论和测量平差习题集(含答案)

1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。
1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.4 在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沉。
1.5 何谓多余观测?测量中为什么要进行多余观测?答案:1.3 (1)系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003'"450004'"450000 '"455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 填空题1、有一段距离,其观测值及其中误差为mm m 25400± ,该观测值的相对中误差K 为 。
2、已知独立观测值[]T L L L 211,2=的方差阵⎥⎦⎤⎢⎣⎡=8004LL D ,单位权方差420=σ,则其权阵LL P 为 。
3、测量平差的任务:求观测值的 及其评定观测值及平差值的精度。
4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i =,若每次观测的精度为σ,权为p ,则其算术平均值L 的权为 。
5、已知某三角网中P 点坐标的协因数阵为))/((60.125.025.010.222ˆˆ"⎥⎦⎤⎢⎣⎡=cm Q X X ,单位权方差的估值为220)(0.1ˆ"=σ,位差的极大值方向E ϕ为 。
6、观测误差按其性质可分为 、 和粗差。
经典测量平差主要研究的是 。
7、已知某平差问题,观测值个数为30个,必要观测量个数为20个,若选20个独立参数进行平差,应该利用的平差模型是 ,则方程个数为8、有一段距离,其观测值及其中误差为 ,该观测值的相对中误差为 。
9、已知独立观测值[]TL L L 211,2=的方差阵160064LL D ⎡⎤=⎢⎥⎣⎦,单位权方差1620=σ,则其权阵LL P 为 。
10、某角以每测回中误差为"±1的精度测量了9次,其平均值的权为1,则单位权中误差为 。
11、设有观测向量[]TL L L X 321=,其协方差阵为⎪⎪⎪⎭⎫ ⎝⎛----=1630302024XXD 。
则观测值3L 关于2L 协方差32σ是 。
12、已知某三角网中P 点坐标的协因数阵为))/((60.125.025.010.222ˆˆ"⎥⎦⎤⎢⎣⎡--=cm Q X X ,单位权方差的估值为220)(0.1ˆ"=σ,位差的极小值方向F ϕ为 。
13、某平差问题的必要观测数为t ,多余观测数为r ,独立的参数个数为u 。
若u=t ,则平差的函数模型为 。
若 ,则平差的函数模型为附有参数的条件平差。
14、测量是所称的观测条件包括 、观测人员、 。
15、中误差是衡量精度的主要指标之一,中误差越 ,精度越高。
mm m 15300±二、选择题1、下列说法错误的是( )。
A 、一个平差问题中,必要观测的个数取决于该问题本身的性质,与观测值的多少无关。
B 、在间接平差中,待定参数的个数必须等于必要观测的个数,而且要求这个参数必须是独立的,这样才可能将每个观测量表达成这个参数的函数。
C 、间接平差与条件平差采用了不同的函数模型和原理,所以两种方法的平差结果是不相等的。
D 、在平面控制网、GPS 网的间接平差中,通常选取未知点的二维坐标或三维坐标作为未知参数,也可以选取观测值的平差值作为未知数,但要注意参数之间的独立性。
2、下列关于附有限制条件的间接平差法,说法错误的是( )。
A 、平差中选取了u>t 个量作为参数,其中包含t 了个独立量。
B 、附有限制条件的间接平差是在间接平差法的基础上增设s 个参数,从而在参数和观测量之间存在了s 个约束条件而形成的一种平差方法。
C 、在附有限制条件的间接平差过程中,应列出n 个观测方程和s 个限制条件方程。
D 、附有限制条件的间接平差过程中所得到的改正数向量V 和平差值向量ˆL是互不相关的。
3、在水准测量中,观测高差1h 和2h 对应的路线长度分别为km S 21=和km S 52=。
若1h 的权为3,则2h 的权为( )A . 56B . 65C .1D .354、已知观测向量L 的权阵为⎥⎦⎤⎢⎣⎡--=5333LL P ,观测值的权1L p 和2L p 分别为( )。
A 、65和21; B 、56和2 ;C 、3和5; D 、31和515、附有参数的条件平差法的函数模型为( )。
A 、0ˆ11=++⨯⨯⨯⨯c u u c nc W x B V A , B 、0=+W AV , C 、111ˆ⨯⨯⨯⨯-=n t t n n l x B V , D 、111ˆ⨯⨯⨯⨯-=n t t n n l x B V 和0ˆ11=+⨯⨯⨯s x u u s W xC 6、已知观测向量L 的权阵为⎥⎦⎤⎢⎣⎡--=5224LL P ,观测值的权1L p 和2L p 分别为( )。
A 、516和4,B 、41和51,C 、 165和41, D 、4和57、附有限制条件的间接平差法的函数模型为( )。
A 、0ˆ11=++⨯⨯⨯⨯c u u c nc W x B V A , B 、0=+W AV , C 、111ˆ⨯⨯⨯⨯-=n t t n n l x B V , D 、111ˆ⨯⨯⨯⨯-=n t t n n l x B V 和0ˆ11=+⨯⨯⨯s x u u s W xC 8、设三角形三个内角的中误差是"±=2A σ、"±=4B σ、"±=8C σ,取A σ为单位权中误差,则各内角的权分别为( )。
A 、1,41和161, B 、1,21和41, C 、161,41和1, D 、41,21和1 9、设有一系列不等精度的独立观测值1L 、2L 和3L ,它们的权分别为1P 、2P 和3P ,则函数32121L L L Y ++=的权倒数为( )。
A 、3214P P P ++;B 、3212P P P ++ ;C 、3211411P P P ++ ;D 、3211211P P P ++ 10、点位误差椭圆的参数(误差椭圆的三要素)是( )A 、F E F 和、ϕ,B 、F E E 和、ϕ ,C 、 F E Q X X 和、ˆˆ ,D 、Y X Y Y X X Q Q Q ˆˆˆˆˆˆ和、 11、设有观测向量[]TL L X 211,2=,已知2ˆ1''=L σ,4ˆ2''=L σ,2)'('2ˆ21-=L L σ,其协方差阵XX D 为( )。
A 、⎥⎦⎤⎢⎣⎡4222 ,B 、⎥⎦⎤⎢⎣⎡--4222 ,C 、 ⎥⎦⎤⎢⎣⎡16444 ,D 、⎥⎦⎤⎢⎣⎡--16224 12、设有观测向量L ,其协方差阵为⎪⎪⎪⎭⎫ ⎝⎛=432LL D 。
函数32113L L L F --=的方差为( )。
A 、9 ,B 、41 ,C 、 17 ,D 、25 三、简答题1、 已知间接平差的函数模型为:)⎭⎬⎫+-=-=d BX L l l x B V 0ˆ(,试根据最小二乘原理V TPV=min ,导出求解Xˆ的表达式。
2、 自20世纪五六十年代开始,测量平差得到了很大的发展,主要表现在哪些方面?3、某一平差问题列有以下误差方程:5121321524132211-+-=+-=+-=--=+-=X X V X V X V X V X V试将其改写成条件方程。
4、设有观测向量[]TL L L L 3211,3=,其协方差阵为⎪⎪⎪⎭⎫ ⎝⎛--=211140103LL D 。
现有函数321132L L L --=ϕ,2123L L =ϕ,试求函数的方差21ϕσ,22ϕσ和互协方差21ϕϕσ 5、已知观测值向量L ,其协因数阵为单位阵,有方程:L BX V -=,0=-L B BX B T T ,()L B B B X TT 1-=,V L L +=ˆ式中,B 为已知的系数阵,B B T为可逆矩阵。
(1)求协因数阵XX Q 、LL Q ˆˆ;(2)证明V 与X 和Lˆ均互不相关。
四、计算题1、在如图(1)所示的三角网中,A 、B 为已知点,C 、D 、E 、F 、G 是待定点,观测了22个角度。
此外,又高精度测量了DE 边的边长S 和方位角T 作为已知数据。
(1)试计算该网必要观测数、多余观测数有多少?(2)若按条件平差可列出多少独立条件?各类条件数分别是多少?2、在如下图1所示的三角网中,(1)试计算该网必要观测数、多余观测数有多少;(2)若按条件平差可列出多少独立条件?各类条件数分别是多少?图13、在如图(2)所示的水准网中,A 、B 、C 为已知点,P 为待定高程点,已知,870.22,910.21m H m H B A ==m H c 890.26=,观测高差及相应的路线长度为:mh m h m h 425.1605.2552.3321=== km s kms km s 362321=== 利用间接平差法,试求:(1)P 点的高程平差值;(2)P 点平差后的高程中误差。
4、在如图(2)所示的水准网中,A 、B 点为已知水准点,C 、D 点为待定的水准点,已知15.000A H m =,18.303B H m =,同精度独立观测的高差观测值为:()1.258, 2.041, 1.571, 1.724Th m m m m =,试按条件平差求(1)各段高差平差值;(2)C 、D 点高程平差值及其中误差。
(说明:计算结果要求保留到整mm 位。
)()(1ˆˆAQf N AQf Qf f f Q f Q aa T T L L T H H --==BC2h A1h 3h P图(2)。