空间几何体的表面积和体积公式汇总表
空间几何体的表面积和体积公式汇总表定稿版
![空间几何体的表面积和体积公式汇总表定稿版](https://img.taocdn.com/s3/m/bb0b8241fab069dc51220125.png)
空间几何体的表面积和体积公式汇总表精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积=底S ,侧面积=侧S ,表面积S = 。
(3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积=侧S ,表面积S = 。
(4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。
4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的(1)全面积:S全= 2a ; (2)体积:V=3a ; (3)对棱中点连线段的长:d=a ;(4)对棱互相垂直。
(5)外接球半径:R= 4a ; (6)内切球半径; r= 12a5、正方体与球的特殊位置结论;空间几何体练习题1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( )A. 1:3B. 1:1C. 2:1D. 3:12.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A.ππ221+ B. ππ421+ C. ππ21+ D. ππ241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知底面圆的半径为1,求该圆锥的体积。
4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。
5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。
6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. 2.5 C. 5 D. 107.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )A. π2883cmB. π1923cmC. π2883cm 或 π1923cmD. π1923cm8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )A. 4s πB. S π2C. S πD. S π332。
空间几何体的表面积和体积公式汇总表
![空间几何体的表面积和体积公式汇总表](https://img.taocdn.com/s3/m/6bdff9477e21af45b307a8cd.png)
空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式1、圆柱体:表面积: 2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根]体积:πR²h/3 (r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a² ,V=a³4、长方体a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc5、棱柱S-底面积 h-高 V=Sh6、棱锥S-底面积 h-高 V=Sh/37、棱台S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积 ,S2-下底面积 ,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径 ,h-高 ,C—底面周长S底—底面积 ,S侧—侧面积 ,S表—表面积 C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底 ,V=S底h=πr²h 10、空心圆柱R-外圆半径 ,r-内圆半径 h-高 V=πh(R^2-r^2)11、直圆锥r-底半径 h-高 V=πr^2h/312、圆台r-上底半径 ,R-下底半径 ,h-高 V=πh(R²+Rr+r²)/3 13、球r-半径 d-直径 V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径 V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径 h-高 V=πh[3(r1²+r2²)+h²]/6 16、圆环体R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径V=2π2Rr² =π2Dd²/417、桶状体D-桶腹直径 d-桶底直径 h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)1.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4 :平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交.异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线.两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角.esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线.a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行.b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的取值范围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱.(4)二面角的面:这两个半平面叫做二面角的面.(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(6)直二面角:平面角是直角的二面角叫做直二面角.esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直.记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面.Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
空间几何体的表面积及体积公式大全
![空间几何体的表面积及体积公式大全](https://img.taocdn.com/s3/m/4a481007a9114431b90d6c85ec3a87c240288a33.png)
空间几何体的表面积及体积公式大全空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体① 棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧2 1=3、台体① 棱台:h c c S )(21‘下底上底棱台侧+=② 圆台:l c c S )(21下底上底棱台侧+=4、球体① 球:r S 24π=球② 球冠:略③ 球缺:略二、体积 1、① 棱柱② 圆柱 2、① 棱锥② 圆锥 3、① 棱台② 圆台 4、球体① 球:r V 334π=球② 球冠:略③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。
三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便就是运用这个原理实现的。
2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高与底面直径都就是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。
分析:圆柱体积:V 32圆柱侧面积因此:球体体积:V 球球体表面积通过上述分析,+即底面直径与高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之与 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
设台体上底面积为S 上,下底面积为S 下高为h 。
易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS hS h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S h S V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆。
几何学中的体积与表面积公式整理
![几何学中的体积与表面积公式整理](https://img.taocdn.com/s3/m/36562c1dae45b307e87101f69e3143323968f52b.png)
几何学中的体积与表面积公式整理几何学是研究空间中图形、形体的性质与变换规律的数学分支。
在几何学中,体积和表面积是两个重要的概念,求解几何体的体积和表面积是很常见的问题。
本文将综合整理常见几何体的体积与表面积公式,以帮助读者更好地理解和应用这些公式。
一、体积公式1. 立方体的体积公式立方体是一种六个面都为正方形的特殊几何体。
其体积公式为:体积 = 边长³或 V = a³,其中 a 为立方体的边长。
2. 正方体的体积公式正方体是一种六个面都为正方形且边长相等的特殊几何体。
其体积公式与立方体相同:体积 = 边长³或 V = a³,其中 a 为正方体的边长。
3. 长方体的体积公式长方体是一种六个面都为矩形且相邻两矩形边长相等的几何体。
其体积公式为:体积 = 长 ×宽 ×高或 V = lwh,其中 l 为长方体的长度,w 为宽度,h 为高度。
4. 圆柱的体积公式圆柱是一种由两个平行且相同大小的圆底面和连接两个圆底面的曲面组成的几何体。
其体积公式为:体积 = 圆底面积 ×高或V = πr²h,其中 r 为圆底面的半径,h 为圆柱的高度。
5. 锥形的体积公式锥形是一种由一个圆锥底面和连接顶点和圆锥底面上各点的直线段组成的几何体。
其体积公式为:体积 = 圆锥底面积 ×高 ÷ 3 或V = πr²h ÷ 3,其中 r 为圆锥底面的半径,h 为锥形的高度。
6. 球体的体积公式球体是一种所有点到中心点距离相等的几何体。
其体积公式为:体积= 4/3 × π × 半径³或V = 4/3 × πr³,其中 r 为球体的半径。
二、表面积公式1. 立方体的表面积公式立方体的表面积公式为:表面积 = 6 ×边长²或 A = 6a²,其中 a 为立方体的边长。
空间几何体的表面积及体积计算公式
![空间几何体的表面积及体积计算公式](https://img.taocdn.com/s3/m/f1553274a9956bec0975f46527d3240c8447a1b2.png)
空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。
对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。
下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。
一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。
二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。
三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。
四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。
五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。
以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。
同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。
体积公式和表面积公式
![体积公式和表面积公式](https://img.taocdn.com/s3/m/9787cd055b8102d276a20029bd64783e08127d46.png)
体积公式和表面积公式
体积和表面积是数学中的基本概念,下面是常见几何图形的体积公式和表面积公式:
1. 立方体:一个边长为a的立方体的体积公式为V=a,表面积
公式为S=6a。
2. 正方体:一个边长为a的正方体的体积公式为V=a,表面积
公式为S=6a。
3. 圆柱体:一个底面半径为r、高为h的圆柱体的体积公式为
V=πrh,表面积公式为S=2πrh+2πr。
4. 圆锥体:一个底面半径为r、斜高为l的圆锥体的体积公式
为V=1/3πrl,表面积公式为S=πrl+πr。
5. 球体:一个半径为r的球体的体积公式为V=4/3πr,表面积公式为S=4πr。
以上公式仅供参考,需要根据具体情况选择合适的公式进行计算。
如果遇到复杂的几何问题,也可以通过数学软件或工具来求解。
空间几何体的表面积与体积公式大全,DOC
![空间几何体的表面积与体积公式大全,DOC](https://img.taocdn.com/s3/m/147174aa6137ee06eff918ef.png)
空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。
面积体积表面积公式大全
![面积体积表面积公式大全](https://img.taocdn.com/s3/m/11c83ea1900ef12d2af90242a8956bec0975a5fb.png)
面积体积表面积公式大全一、平面图形面积公式。
1. 长方形。
- 面积公式:S = ab(其中a为长,b为宽)。
2. 正方形。
- 面积公式:S=a^2(其中a为边长)。
3. 三角形。
- 面积公式:S=(1)/(2)ah(其中a为底边长,h为这条底边对应的高)。
- 已知三角形三边a、b、c,还可以用海伦公式S = √(p(p - a)(p - b)(p - c)),其中p=(a + b+ c)/(2)。
4. 平行四边形。
- 面积公式:S = ah(其中a为底边长,h为这条底边对应的高)。
5. 梯形。
- 面积公式:S=((a + b)h)/(2)(其中a、b为梯形的上底和下底,h为梯形的高)。
6. 圆。
- 面积公式:S=π r^2(其中r为圆的半径)。
- 扇形面积公式:S=frac{nπ r^2}{360}(其中n为扇形圆心角的度数,r为扇形所在圆的半径)。
二、立体图形体积公式。
1. 长方体。
- 体积公式:V=abc(其中a、b、c分别为长方体的长、宽、高)。
2. 正方体。
- 体积公式:V = a^3(其中a为正方体的边长)。
3. 圆柱。
- 体积公式:V=π r^2h(其中r为圆柱底面半径,h为圆柱的高)。
4. 圆锥。
- 体积公式:V=(1)/(3)π r^2h(其中r为圆锥底面半径,h为圆锥的高)。
5. 球。
- 体积公式:V=(4)/(3)π r^3(其中r为球的半径)。
三、立体图形表面积公式。
1. 长方体。
- 表面积公式:S = 2(ab+bc + ac)(其中a、b、c分别为长方体的长、宽、高)。
2. 正方体。
- 表面积公式:S = 6a^2(其中a为正方体的边长)。
3. 圆柱。
- 表面积公式:S = 2π r^2+2π rh(其中r为圆柱底面半径,h为圆柱的高)。
4. 圆锥。
- 侧面积公式:S_侧=π rl(其中r为圆锥底面半径,l为圆锥的母线长)。
- 表面积公式:S=π r^2+π rl。
5. 球。
高中数学的几何体表面积和体积公式是哪些
![高中数学的几何体表面积和体积公式是哪些](https://img.taocdn.com/s3/m/0a7c645e571252d380eb6294dd88d0d233d43c9b.png)
高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。
对于这一类学生有以下几点建议。
几何体的表面积和体积公式
![几何体的表面积和体积公式](https://img.taocdn.com/s3/m/1c7a7cb1f9c75fbfc77da26925c52cc58bd69094.png)
几何体的表面积和体积公式一、柱体。
1. 棱柱。
- 表面积公式:- 直棱柱的表面积S = 2S_底+S_侧,其中S_底为底面多边形的面积,S_侧为侧面积。
若直棱柱底面多边形的边长为a,边数为n,棱柱的高为h,则S_侧=nah。
- 体积公式:V = S_底h,h为棱柱的高。
2. 圆柱。
- 表面积公式:S = 2π r^2+2π rh,其中r为底面半径,h为圆柱的高。
- 体积公式:V=π r^2h。
二、锥体。
1. 棱锥。
- 表面积公式:S = S_底+S_侧,棱锥的侧面积S_侧等于各个侧面三角形面积之和。
若棱锥底面多边形的边长为a,边数为n,斜高(侧面三角形底边上的高)为h',则S_侧=(1)/(2)nah'。
- 体积公式:V=(1)/(3)S_底h,h为棱锥的高。
2. 圆锥。
- 表面积公式:S=π r^2+π rl,其中r为底面半径,l为母线长。
- 体积公式:V = (1)/(3)π r^2h,h为圆锥的高。
三、台体。
1. 棱台。
- 表面积公式:S = S_上底+S_下底+S_侧,棱台的侧面积S_侧=(1)/(2)(n(a + b)h'),其中n为底面边数,a为上底面多边形的边长,b为下底面多边形的边长,h'为斜高。
- 体积公式:V=(1)/(3)h(S_上底+S_下底+√(S_上底)S_{下底}),h为棱台的高。
2. 圆台。
- 表面积公式:S=π r^2+π R^2+π l(R + r),其中r为上底面半径,R为下底面半径,l为母线长。
- 体积公式:V=(1)/(3)π h(r^2+R^2+rR),h为圆台的高。
四、球体。
- 表面积公式:S = 4π R^2,其中R为球的半径。
- 体积公式:V=(4)/(3)π R^3。
空间几何体的表面积和体积公式大全
![空间几何体的表面积和体积公式大全](https://img.taocdn.com/s3/m/9c76cbe6ad02de80d4d840f7.png)
空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。
三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。
3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。
易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。
立体几何体积与表面积公式
![立体几何体积与表面积公式](https://img.taocdn.com/s3/m/8cae23ccdbef5ef7ba0d4a7302768e9951e76eed.png)
立体几何体积与表面积公式一、棱柱。
1. 长方体。
- 设长方体的长、宽、高分别为a、b、c。
- 体积V = abc。
- 表面积S=2(ab + bc+ac)。
2. 正方体(特殊的长方体,a = b = c)- 设棱长为a。
- 体积V=a^3。
- 表面积S = 6a^2。
3. 棱柱(底面积为S_底,高为h)- 体积V=S_底h。
- 表面积S = S_侧+2S_底,其中直棱柱的侧面积S_侧=Ch(C为底面多边形的周长)。
二、棱锥。
1. 三棱锥(四面体)- 设三棱锥的底面积为S_底,高为h。
- 体积V=(1)/(3)S_底h。
- 表面积S = S_侧+S_底,三棱锥的侧面是三个三角形,S_侧为三个侧面三角形面积之和。
2. 棱锥(底面积为S_底,高为h)- 体积V=(1)/(3)S_底h。
- 表面积S = S_侧+S_底,其中正棱锥的侧面积S_侧=(1)/(2)Ch^′(C为底面多边形的周长,h^′为斜高)。
三、圆柱。
1. 设圆柱底面半径为r,高为h- 体积V=π r^2h。
- 表面积S = 2π r^2+2π rh(两个底面圆的面积2π r^2加上侧面展开矩形的面积2π rh)。
四、圆锥。
1. 设圆锥底面半径为r,母线长为l,高为h(h=√(l^2)-r^{2})- 体积V=(1)/(3)π r^2h=(1)/(3)π r^2√(l^2)-r^{2}。
- 表面积S=π r^2+π rl(底面圆面积π r^2加上侧面展开扇形的面积π rl)。
五、球。
1. 设球的半径为R- 体积V=(4)/(3)π R^3。
- 表面积S = 4π R^2。
空间几何体的表面积与体积
![空间几何体的表面积与体积](https://img.taocdn.com/s3/m/9757c3c6daef5ef7ba0d3cfc.png)
空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式S=2πrl S=πrl S=π(r+r′)l①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+25C .20+4 5D .20+25解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1BB 1D 1D =13×(1×2)×22=13.法二:割补法连接BD 1,则四棱锥A 1BB 1D 1D 分成两个三棱锥B A 1DD 1与B A 1B 1D 1,所以V A 1BB 1D 1D =V B A 1DD 1+V B A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13.[答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1ABC 1的体积等于三棱锥A B 1BC 1的体积,三棱锥A B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .123B .183C .24 3D .543[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ABC 高的最大值为2+4=6,所以三棱锥D ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S ABCD =13S四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π2 10.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32. 答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2. 答案:212.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径,∴点O 为SC 的中点,∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,设球O 的半径为R ,则OA =OB =R ,SC =2R .∴V S ABC =V A SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π.答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积;(2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1A 2B 2C +VC ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5,BC =22+(3-2)2=5,AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积63,求该三棱锥E ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥EACD的体积V三棱锥EACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.。
空间几何体的体积与面积的全部公式
![空间几何体的体积与面积的全部公式](https://img.taocdn.com/s3/m/a789432d001ca300a6c30c22590102020640f250.png)
空间几何体的体积与面积的全部公式空间几何体的体积与面积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体高)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其高)S=πR²+πR[(h²+R²)的平方根]V=πR²h/33、正方体(a为边长)S=6a²V=a³4、长方体(a为长,b为宽,c为高)S=2(ab+ac+bc)V=abc 5、棱柱(S为底面积,h为高)V=Sh6、棱锥(S为底面积,h为高)V=Sh/37、棱台(S1和S2分别为上、下底面积,h为高)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为高,C为底面周长,S底为底面积,S侧为侧面积,S表为表面积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为高)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间几何体中的面积和体积公式的方法:1. 面积问题:空间几何体的面积主要分为两类:侧面积和表面积,其中的重点是旋转体的侧面积公式。
对于多面体的面积,其各个面都是多边形,这个在小学阶段就研究过了。
其中,只需要记住圆台的侧面积公式就够了。
将圆台侧面打开,是一个扇环,很像一个梯形。
所以圆台的侧面积就按照梯形来进行计算,就很容易理解。
如下图所示:圆台侧面积公式对于圆柱和圆锥的侧面积公式,不需要单独去记忆,只需要将其看成一个特殊的圆台就行了。
圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:按照上面的思路,把柱体和椎体看成一个特殊的台体,因此也只需要记住一个台体的体积公式就可以啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的表面积和
体积公式汇总表
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
空间几何体的表面积和体积公式汇总表
1.多面体的面积和体积公式
2.旋转体的面积和体积公式
3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积
=底S ,侧面积=侧S ,表面积S = 。
(3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积
=侧S ,表面积S = 。
(4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。
4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的
(1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2
a ;
(4)对棱互相垂直。
(5)外接球半径:R=
4a ; (6)内切球半径;
r= 12a
5、正方体与球的特殊位置结论;
空间几何体练习题
1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( )
A. 1:3
B. 1:1
C. 2:1
D. 3:1
2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π
π241+
3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知
底面圆的半径为1,求该圆锥的体积。
4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。
5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。
6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10
7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288
3cm B. π192
3cm C. π288
3cm 或 π192
3cm D. π1923cm
8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )
A. 4s π
B. S π2
C. S π
D. S π3
32。