一函数与映射的基本概念
映射与函数知识点总结
映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。
对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。
记作f:A→B。
2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。
对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。
记作f:A→B。
3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。
二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。
换句话说,每个元素a∈A都对应着集合B中唯一的元素。
2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。
3.双射:即同时满足单射和满射的函数,也称为一一映射。
4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。
5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。
这样的函数g称为函数f的反函数。
三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。
通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。
2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。
中考数学复习如何理解函数与映射的概念
中考数学复习如何理解函数与映射的概念函数与映射是中学数学中重要的概念之一,很多同学在学习数学时往往对这两个概念感到困惑。
为了帮助大家更好地理解函数与映射,本文将从概念定义、特性以及实际应用等方面进行探讨。
一、函数的概念与特性在数学中,函数是指两个数集之间的一种对应关系,其中每个输入都对应唯一的一个输出。
具体地说,对于一个函数 f,输入集合中的每个元素 x,都对应唯一的输出 y。
函数通常用 f(x) 来表示,其中 x 是自变量,y 是因变量。
函数可以用多种形式来表示,比如集合表示法、符号表示法、图像表示法等。
符号表示法最为常用,通常采用 f(x) = ... 的形式来表示。
函数的定义域是指所有可能的自变量的取值,值域是指所有可能的因变量的取值。
函数具有以下特性:1. 唯一性:每个自变量的取值只能对应一个输出。
2. 定义域与值域:函数的定义域和值域可以是实数集、整数集或自然数集等。
3. 单调性:函数可以是递增的或递减的。
4. 奇偶性:函数可以是奇函数或偶函数,具有一定的对称性。
5. 周期性:有些函数具有周期性,即在一定的周期内重复。
二、映射的概念与特性映射是函数的一种特殊形式,也是一个集合与集合之间的对应关系。
映射从一个集合中的元素映射到另一个集合中的元素,通常用f: A →B (读作“映射 f 从集合 A 到集合B”) 来表示。
A 称为原集合,B 称为目标集合。
映射的特性包括:1. 确定性:映射中的每个元素在原集合中只能有一个对应元素。
2. 全射性:如果目标集合中的每个元素都有在原集合中的对应元素,则称映射是满射的。
3. 单射性:如果原集合中的每个元素在目标集合中都有唯一的对应元素,则称映射是单射的。
4. 满射性:如果映射同时具有全射性和单射性,则称映射是双射的。
三、函数与映射的实际应用函数与映射在数学中具有广泛的应用,也在实际生活中起到重要作用。
下面以几个实际例子来说明:1. 财务管理中的函数:在企业财务管理中,成本与产量之间的关系可以用函数来表示。
函数、映射的概念
函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
1-1 映射与函数
例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
《高等数学》第一节:映射与函数
[
, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x
2
2
0
2
x
| arctanx |
定义域 (,)
2
2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos
,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!
高数A1第一讲映射与函数
一、映射 二、函数
一、映射
1、映射概念
例 某校学生的集合 学号的集合 按一定规则查号
某班学生的集合
按一定规则入座
某教室座位 的集合
定义
f 使得
设 X , Y 是两个非空集合, 若存在一个对应规则
有唯一确定的 与之对应 , 则
称 f 为从 X 到 Y 的映射, 记作 f : X Y .
o
x
x
奇函数
奇函数的图形关于原点对称. 函数 y=sinx是奇函数. 函数 y=sinx+cosx既非奇函数,又非偶函数.
(4) 函数的周期性: 设函数f (x)的定义域为D,如果存在一个正数l ,使得 对于任一x D 有 ( x l ) D, 且 f ( x l ) f ( x ) 恒成立,
Q ( b, a )
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y=x 对称.
复合函数
------“代入”
定义:设函数 y=f(u)的定义域为D1,函数u=g(x)在D上有 定义,且 g( D) D1 , 则由下式确定的函数
y f g( x ), x D
2. 逆映射与复合映射
设 f 是X到Y的单射,定义一个从Rf到X的新映射g 即
g : Rf X ,
1
对每个 y R f , 规定g(y)=x,这x满足f(x)=y. 1 f 这个映射g称为f 的逆映射,记作 , 其定义域 D f R f , 值域 R f X .
1
f
注意:只有单射才存在逆映射.
x, x 0, 例6 函数 y | x | x , x 0
高中数学第2章函数2.3映射的概念课件苏教版必修1
(3)A=B=R,f:x→±x;
(4)A={x|x是三角形},B=R,f:x→x的面积.
典例导学 即时检测 一 二 三
解(1)对于集合A中的元素3,在f作用下得0∉B,即3在集合B中没有 对应元素,所以不是映射.
(4)是映射,也是函数.因为当x≥2时,x-3≥-1,而y=x2-4x+3=(x-2)21≥-1,所以对集合A中每一个元素,在集合B中都有唯一元素与之对 应.A,B是非空数集,所以该对应既是映射,又是函数.
典例导学 即时检测 一 二 三
判断下列对应关系,哪些是集合A到B的映射,哪些不是?为什么? (导学号51790059)
(2)在f作用下,集合A中的0,1,2,9分别对应到集合B中的1,0,1,64,所 以是映射.
(3)对于集合A中元素1,在f作用下得±1,该对应是“一对多”,故不是
映射. (4)对于集合A中的每一个三角形,在f作用下,都有唯一的一个面
积相对应,所以是映射.
典例导学 即时检测 一 二 三
映射的判断要严格按照定义,映射定义包括如下性质:①方
典例导学 即时检测 一 二 三
解(1)是映射,也是函数.因为集合A中的每一个元素在集合B中都 能找到唯一的元素与之对应.又A、B均为非空数集,所以该映射是 函数.
(2)不是集合A到B的映射,更不是函数,因为集合A中元素0,在集合 B中无对应元素.
(3)不是集合A到B的映射,也不是函数,因为任何正数的平方根都 有两个值,即集合A中的任一元素,在集合B中都有两个元素与之对 应,所以不是映射.
������ + ������ = 2,解得 ������ = 3,
高数课件-映射与函数
义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射
与
主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1
映射、对应和函数1
中都有唯一的元素和它对应.
8
四.映射与函数的联系和区别
映射、对应和函数 2019/4/29
映射:
设A,B是两个非空集合,如果按照某种对应法则f,
对A中的任意一个元素x,在B中有一个且仅有一个元素y
与x对应,则称f是集合A到集合B的映射。
记作 f: A → B 函数: 设集合A是一个非空的数集,对A内任意数x,按
如果A、B是非空数集,那么A到B 的映射f:A B 就叫做A到B的函数
记作: y=f(x)
函数是一种特殊的映射
10
映射、对应和函数
例3:在下列对应中、哪些是映射、那些映射是20函19/4数/29 、
那些不是?为什么?
(1)设A={1,2,3,4},B={3,5,7,9},对应关系:
f(x)=2x+1,x∈A .
设A,B是两个非空集合,如果按照 某种对应法则f,对A中的任意一个 元素x,在B中有且仅有一个元素y与 x对应,则称f是集合A到集合B的映 射.
这时, X称作y的原象,y称作是x在映射f的作
用的象,记作f(x), 于是
y=f(x).
映射f也可记为:
f: A →B
X → f(x)
4
二、对概念的认识
映射、对应和函数 2019/4/29
照 确定的法则f,都有唯一确定的数值y与它应,则这 种对应关系叫做集合A上的一个函数。
记作 y=f(x),x∈A
联系:都是从A到B 的单值对应 区别:构成函数的两个集合必须是数集,而构成映射的两个集
合可以是其它集合
9
四.映射和函数的联系和区别
映射、对应和函数 2019/4/29
因此还可以用映射的概念来定义函数:
高数1-1映射与函数
则称函数 f ( x )在区间 I上是单调增加的 ;
y
y = f ( x)
f ( x2 )
f ( x1 )
o
I
x
设函数 f ( x )的定义域为 D , 区间I ∈ D ,
为单射, 则存在一新映射 其中
f (D )
y = f −1(x) , x∈ f (D )
例如, 映射 其逆映射为
(2) 复合映射 引例.
D 1
D
手电筒
D 2
D 复合映射
定义. 设有映射链
u = g(x)∈g(D ) ∀x∈D ∀u∈D 1 ) 则当 g(D ⊂D 时, 由上述映射链可定义由 D 到 Y 的复 1
{ x a < x < b} 称为开区间 称为开区间,
o a b 称为闭区间, { x a ≤ x ≤ b} 称为闭区间 o a
记作 (a , b )
x 记作 [a , b] x
b
称为半开区间, { x a ≤ x < b} 称为半开区间
记作 [a , b ) 记作 (a , b]
{ x a < x ≤ b} 称为半开区间 称为半开区间,
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规 定义 则 f , 使得 有唯一确定的 与之对应 , 则 称 f 为从 X 到 Y 的映射 记作 f : X →Y. 映射, 映射
X
f
Y
元素 y 称为元素 x 在映射 f 下的 像 , 记作 y = f (x). 元素 x 称为元素 y 在映射 f 下的 原像 . 集合 X 称为映射 f 的定义域 ; 定义域 Y 的子集 f (X) ={ f (x) x∈X } 称为 f 的 值域 . 注意: 注意 1) 映射的三要素— 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
函数和映射的区别和联系
函数和映射的区别和联系许多人将函数和映射混为一谈,但它们虽然是一类概念,但它们还是有着紧密的关系与不同之处的。
本文将就函数和映射的区别和联系作一个详细的介绍,以加深对这两个概念的理解。
首先,让我们来了解一下函数和映射。
函数是一种特定类型的数学关系,它主要用来表示两个变量或者实体之间存在某种推导或者关系,可以将其视为“表达式”或者“等式”,例如y=a*x+b,两边的x 和y是变量,而a和b是常量,当我们改变x的值时,y的值也会相应发生变化。
而映射将一个特定的值映射到另一个特定的值,其中可以存在多对一的映射,一对多的映射,多对一的映射和多对多的映射,而且当映射关系发生变化时,所有的映射都会发生变化。
其次,我们来看函数和映射之间的关系。
首先,函数可以被看作是一种特殊的映射,可以将函数看作是一种特殊的一对一的映射,即给定一个x值,就可以求得其对应的y值,而且不管如何改变x值,y值都是唯一的,这正是函数的定义和特征。
其次,两者还有着共同的特点,比如它们都可以用来描述两个不同的实体之间的某种联系,而且都可以用来构建某种变换关系,例如将函数应用到映射中,可以将原来的映射变换成新的映射,而且它们之间也可以相互转换,将函数转换成映射,将映射转换成函数,甚至变换成多项式之类的结构。
最后,我们再来总结一下函数和映射的区别和联系。
函数是一种特定类型的数学关系,可以将其视为“表达式”或者“等式”,两边的x和y是变量,而a和b是常量,当改变x的值时,y的值也会相应发生变化,而映射是将一个特定的值映射到另一个特定的值,可以存在多对一,一对多,多对多的映射关系发生变化时,所有的映射都会发生变化。
函数和映射之间有着非常紧密的关系,可以将函数看作是特殊的一对一映射,也具有一些共同的特点,比如可以用来构建某种变换关系,而转换成一个另外函数或者映射,两者之间也可以相互转换。
综上所述,函数和映射是一类概念,有着相互关联的特征,但仍有不少的区别,两者之间的关系可以通过函数转换成映射或者映射转换成函数来实现,用来表示两个变量或者实体之间存在某种推导或者关系,对此,我们应当做到分清概念,从而可以更好地理解它们之间的不同之处。
微积分第一章1-2
是X 到Y 的单射; 若f 既是单射,又是满射,则称f 为一一映射(或 双射).
5
2. 逆映射与复合映射
设f 是X 到Y 的单射, 则对每个y R f , 有唯一的 x X , 适合f ( x ) y . 于是可定义一个新映射g , 即 g : Rf X
注 : (1) 构成映射必须具备三个要素 :
集合X ,即定义域; 集合Y ,即值域的范围; 对应法 则f , 使对每个x X , 有唯一确定的y f ( x )与之对应.
(2) 对每个x X , 元素x的像 y是唯一的; 而对每 个y R f , 元素 y的原像不一定是唯一的.
(3) 一般地Rf Y , 不一定Rf Y .
当x (1, )时, 对应的 函数值f ( x ) 1 x.
O
y
y 1 x
y2 x
1
x
21
2. 函数的几种特性
(1) 函数的有界性
设D是函数f ( x )的定义域 , 数集X D , 若存在 数K 1 , 对任一x X , 有 f ( x ) K1 , 则称函数f ( x )在X 上有上界.而K 1 称为函数f ( x )在 X 上的一个上界. 若存在数K2 , 对任一x X , 有
8
注 : 对于映射g : X Y1 和映射f : Y2 Z , 只有 当Rg D f 时, 才能构成复合映射f g.
一般地, 若f 使f
g有意义, 但g f 未必有意义.即 g与g f 也未必相同.
g与g f 都有意义,f
高三总复习第六讲 函数概念
高三总复习第六讲 函数概念 姓名一.函数与映射概念:函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.2.下列函数中,与函数y x =相同的函数是( )A. 2x y x= B.2y = C. lg10x y = D. 2log 2xy =3.下列各对函数中,相同的是 ( ) A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,11lg )(--+=-+=x x x g x x x fC 、 vvv g u u u f -+=-+=11)(,11)( D 、f (x )=x ,2)(x x f = 4.A R =,{|0}B y y =>,:||f x y x →=;(2)*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;(3){|0}A x x =>,{|}B y y R =∈,:f x y →=.上述三个对应 是A 到B 的映射.6.}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有 ( ) A 、 0个 B 、 1个 C 、 2个 D 、3个7.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是CD2222-2-2OOy x y x A BC D222-2-2x y O Ox y8.给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是 .(a,b )在映射f 下的象是(a+b,a-b),则(1,2)的象是 (5,3)的原象是 .二.分段函数图像: 1.函数x x x xe e y e e--+=-的图像大致为( ).2.画出函数y=|x|=⎩⎨⎧<-≥.0,0x xx x 的图象. 3.作出分段函数21++-=x x y 的图像4.作出函数|32|2--=x x y 的函数图像5.作出函数322--=x x y 的函数图像三.分段函数解析式1.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) A.(1-,1)B.(1-,∞+)C.(∞-,2-)U (0,∞+)D.(∞-,1-)(1,∞+)D2.函数21sin(),10,(),0.x x x f x e x π-⎧-<<⎪=⎨≥⎪⎩,若()()21=+a f f 则a 的所有可能值为( )A. 1B.C. 1,D.3.设0()ln 0x e x g x x x ⎧=⎨>⎩ ,,,≤则12g g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭4.己知f (x )= ⎩⎨⎧>+≤⋅0)(x 1,1)(x 0)(x x,cos -f π ,则f (34)+f (34-)的值为( )A. 1B. 2C. -1D. -25.给出函数⎪⎩⎪⎨⎧<+≥=)4(),1()4(,)21()(x x f x x f x,则=)3(log 2f ( )A.823- B .111 C. 191 D . 2416.设函数⎪⎩⎪⎨⎧≥--<+=1141)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A.]10,0[]2,( --∞B.]1,0[]2,( --∞C.]10,1[]2,( --∞D.]10,1[)0,2[ -7.定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的值为( )A.-1B. -2C.1D. 2四.函数解析式与求值:1.下列各函数解析式中,满足)(21)1(x f x f =+的是 ( ) A. 2x B. 21+x C. x-2 D. x 21log2.已知32)121(+=-x x f ,且 6)(=m f ,则m 等于 ( )A . 41- B.41 C. 23 D.23-3.已知1)1(+=+x x f ,则函数)(x f 的解析式为 ( ) A.2)(x x f = B.)1(1)(2≥+=x x x f C.)1(22)(2≥+-=x x x x f D.)1(2)(2≥-=x x x x f4.若f (sin x )=3-cos2x ,则f (cos x )= ( ) A. 3-cos2x B. 3-sin2x C. 3+cos2x D. 3+sin2x5.已知5()lg ,(2)f x x f ==则( ) A. lg 2 B. lg 32 C. 1lg32D. 1lg 256.已知函数22()1x f x x =+,那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++= 。
映射知识点总结
映射知识点总结一、概念及基本原理映射是数学中一个非常重要的概念,它指的是将某个集合中的元素通过一个函数对应到另一个集合中的元素的过程。
在数学中,映射通常被称为函数,而两个集合之间的映射关系则被称为函数的定义域和值域。
映射的基本原理是一一对应,即一个元素只能对应到另一个元素,不能对应到多个元素,也不能没有对应的元素。
二、映射的符号表示在数学中,映射一般用函数的符号表示,即f: A → B,其中f表示函数的名称,A表示函数的定义域,B表示函数的值域。
当我们说“f是从集合A到集合B的映射”时,就是指函数f将集合A中的元素映射到集合B中的元素。
三、映射的分类根据映射的函数特性和性质,可以将映射分为多种不同的类型。
常见的映射类型包括:1. 单射:如果函数f:A → B满足对任意的x1、x2∈A,当x1≠x2时,有f(x1)≠f(x2),则称函数f是单射。
2. 满射:如果函数f:A → B满足对任意的y∈B,存在x∈A使得f(x)=y,即每一个B中的元素都有对应的A中的元素与之对应,则称函数f是满射。
3. 双射:如果函数f:A → B既是单射又是满射,则称函数f是双射。
四、映射的应用映射在实际生活和科学研究中有着广泛的应用。
例如,在工程技术领域,映射常用于描述物理量和控制系统之间的关系;在经济学和管理学领域,映射常用于描述市场供求关系和企业决策模型;在生物学和医学领域,映射常用于描述遗传规律和生理现象等。
其实,映射在数学上的应用是最为丰富和广泛的,几乎贯穿于整个数学领域。
五、映射的相关定理映射作为数学中的一个重要概念,有着许多重要的定理和性质。
其中,最为著名的定理之一就是庞加莱-齐帕多定理。
该定理是解析函数论领域中的一个重要结果,它表明了圆盘上的解析映射具有特殊的性质,可以通过保角映射将圆盘上的问题转化为单位圆上的问题。
六、映射的发展与研究自底加莱-齐帕多定理被提出以来,映射的研究领域得到了很大的发展。
在此基础上,许多数学家提出了各种不同类型的映射和函数,并研究了它们的性质与应用。
《函数的基本概念与表示》知识点及典型例题总结
函数的基本概念与表示模块一、函数与映射要点一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A→B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。
要点二、函数1.定义:设A 、B 是 ,f :A→B 是从A 到B 的一个映射,则映射f :A→B 叫做A 到B 的 ,记作 。
2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。
3.函数的表示法有 、 、 。
要点三、函数相等只有当两个函数的 和 都分别相同时,这两个函数才是相等函数(或称为同一个函数)。
考点一、同一函数的判断 例1.下列各组函数中,表示同一函数的是( ).A. B. C. D. 变式训练1:下列函数中,与函数y=x 相同的函数是 ( )A.y= B.y=()2 C.y=lg10x D.y=考点二、已知函数解析式求函数值例2-1. 已知f(x)= 12−x (x ∈R,x≠2),g(x)=x+4(x ∈R).⑴求f (1),g (1)的值.⑵求f [g (1)],g [f (1)]的值.⑶求f [g (x)],g [f (x)]的表达式.例2-2. 设f (x )={1−√x ,x ≥0,2x ,x <0,则f(f (−2))=( ) A. -1 B. 14 C. 12 D. 32变式训练2:函数f (x )={x 2+2(x ≤2),2x (x >2)则f (−4)=( ),若f (x 0)=8,则x 0=( )。
1,x y y x==211,1y x x y x =-+=-33,y x y x ==2||,()y x y x ==x x 2x x 2log 2模块二、函数的三要素要点四、函数的定义域1. 函数的定义域就是使函数式 的集合.2.常见函数:使式子有意义(1)整式:定义域为R(2)一次函数:,定义域是R 。
映射的概念分类及与函数的关系
映射的概念分类及与函数的关系1.映射:对于非空集合A、B,定义从A到B得对应法则f,对于A中的每一个元素a,按照法则f的作用,在B中都有唯一的元素b与之对应。
这就叫做从A到B得一个映射。
记作f:A→B。
通常把集合A叫做像集(源像),集合B 叫做像。
为了理解透彻,对其有两点说明:(1)集合A的遍历性,即集合A中的所有元素都必须参与法则f的作用,也就是说A中没有“剩余”元素,但是集合B不要求遍历性,B中可以有“剩余”元素,即B中可以有一部分元素不存在A中的任何元素与之对应。
(2)对应的唯一性,即对于A中的每一个元素,在法则f作用下,只能对应B中的一个元素,即“一对一”,如果“一对多”,则不叫做映射,只能叫做对应。
所以可以说映射是对应的一个子集。
同时,“多对一”也是映射所允许的,因为它仍满足唯一性。
2.单射:对于f:A→B,B中的每一个不“剩余”的元素b在A中只有一个a与之对应。
即除去了“多对一”的情况,但是仍然保留了B中可以有“剩余”元素这一点。
3.满射:集合B中的每一个元素在A中都至少有一个元素与之对应。
即对A、B都要求遍历性,使B中元素也没有“剩余”的。
即“满”之意。
当然,也允许“多对一”。
4.双射:既单又满谓之双,即“一一对应”,A、B元素皆遍历,并除去了“多对一”的情况。
换句话说,映射f:A→B 反过来(即f:B→A)也是映射。
这大概就是“双”的意思吧。
其他的类型则不然,所以双射的约束是最严苛的。
5.函数:是映射的一个子集,通常将A和B限定在数集中(对实际问题也总能够进行数学建模抽象成数域上的函数),集合A和B分别叫做定义域和值域。
法则f就抽练为函数表达式。
显然,它首先必须是一个满射,即值域不能有“剩余”,如果有了,则它不是函数值,当然集合B就不能叫做值域了。
其次,当函数又满足双射的条件时,自然就是所谓的严格单调函数了,或者说反函数存在(当然,函数的分类有许多种,我这样的说法严格来说是不准确的。
函数的概念
;资讯 / 资讯
②限制型: 指命题的条件或人为对自变量 x 的限制, 这是函 数学习中的重点, 往往也是难点, 有时这种限制比较隐蔽, 容 易出错;
③实际型: 解决函数的综合问题与应用问题时, 应认真考察 自变量 x 的实际意义.
3.值域 中学数学要求能用初等方法求些简单函数的值域:
①配方法(将函数转化为二次函数); ②判别式法(将函数转化为二次方程); ③不等式法(运用不等式的各种性质); ④函数法(运用有关函数的性质, 或抓住函数的单调性、函 数图象等).
一、映射
如果按照某种对应法则 f, 对于集合 A 中的任何一个元素, 在 集合 B 中都有唯一的元素和它对应, 那么这种对应叫做集合A 到集合 B 的映射, 记作 f: A→B.
若 a∈A, b∈B, 且 a 和 b 对应, 则称 b 是 a 的象, a 是 b 的原象.
二、一一映射
如果 f: A→B 是集合 A 到集合 B 的映射, 对于集合 A 中的不 同元素, 在集合 B 中有不同的象, 且 B 中的每一个元素都有原 象, 那么这种映射叫做一一映射.
三、函数
设 A, B 是两个非空数集, 如果按照某种对应法则 f, 对于集合 A 中的任何一个数 x, 在集合 B 中都有唯一确定的数和它对应, 那么称 f: A→B 为集合 A 到 B 的一个函数.
变量 x 叫做自变量, x 取值的集合 A 叫做函数的定义域;
与 x 的值对应的 y 的值叫做函数值, 函数值的集合叫做函数 的值域.
映射与函数
函数与映射一、知识点1.函数映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.二、易错点1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成. [试一试]1.(2013·江西高考)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1]D .[0,1]解析:选B 根据题意得⎩⎪⎨⎪⎧1-x >0,x ≥0,解得0≤x <1,即所求定义域为[0,1).2.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.[练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( ) A .-2x +1 B .2x -1 C .2x -3 D .2x +7答案:D2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________. 答案:x 2-4x +3函数与映射的概念1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.以下给出的同组函数中,是否表示同一函数?为什么?(1)f 1:y =xx;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2:如图所示.解:(1)不同函数.f 1(x )的定义域为{x ∈R|x ≠0},f 2(x )的定义域为R.(2)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(3)同一函数.理由同②. [类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.函数的定义域问题角度一 求给定函数解析式的定义域 1.(1)(2013·山东高考)函数f (x )=1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1].答案:(1)A (2)(0,1]角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域. 解:∵函数f (x )的定义域是[-1,1],∴-1≤log 2x ≤1, ∴12≤x ≤2.故f (log 2x )的定义域为⎣⎡⎦⎤12,2. 角度三 已知定义域确定参数问题 3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0] [类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.求函数的解析式求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[典例] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. [解] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).(4)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).[针对训练]1.已知f (x +1)=x +2x ,求f (x )的解析式. 解:法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1).2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.(3)已知含参函数值或函数值关系(范围)求参数的值或范围 提醒:当分段函数的自变量范围不确定时,应分类讨论.[典例] (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.(2)(2013·福建高考)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. [解析] (1)当a >0时,1-a <1,1+a >1.这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.(2)∵π4∈⎣⎡⎭⎫0,π2, ∴f ⎝⎛⎭⎫π4=-tan π4=-1, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. [答案] (1)-34 (2)-2[针对训练]设函数f (x )=⎩⎨⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.解析:当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2.综上可得x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。
例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。
3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。
由映射的概念可知,函数本质上是定义在两个非空数集上的一类特殊的映射:当A 、B 是两个非空数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,并记作y =f (x ),其中x ∈A ,y ∈B .原象的集合A 叫做函数的定义域,象的集合C 叫做函数的值域,显然C B .8、函数的三种表示法及其优缺点(1)、解析法用一个含有这两个变量及数学运算符号的等式表示两个变量间的函数关系,,这种表示法叫做解析法.例如,代数式,y =-2x -1,y =22-+x x ,y =x1,y =3-x 等等都是函数解析式.一般的可表示为)(x f y =。
解析法简单明了,能准确地反映整个变化过程中自变量与函数的相依关系,即给出了由x 求y 的方法,但求对应值时,往往要经过比较复杂的计算,而且在实际问题中,有的函数关系不一定能用解析式表达出来. (2)、列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法.如平方表、平方根表等.列表法一目了然,表格中已有自变量的每一个值,不需计算就可以直接查出与它对应的函数值,使用起来很方便,但列表法有局限性,因为列出的对应值是有限的,而且在表格中也不容易看出自变量与函数之间的对应规律.而且是近似值 (3)、图象法用平面直角坐标系中的曲线表示函数关系的方法叫做图象法.图象法形象直观,通过函数的图象,可以直接、形象地把函数关系表示出来,能够直观地研究函数的一些性质,例如函数有没有最大值(或最小值)?最大(小)值是多少?函数值是随自变量增大而增大,还是随自变量的增大而减小等等,函数图象是研究函数性质的有力工具.但是,由图象观察只能由x 的值量出y 的近似值 使函数有意义的自变量的取值的全体,叫做函数的自变量的取值范围. 注意:(1)当函数是由一个解析式表示时,欲求函数值,实质就是求代数式的值.(2)当已知函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程. (3)当已知函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式.9、分段函数在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式例:求分段函数的函数值 已知函数求f{f[f(a)]} (a<0)的值。
分析 求此函数值关键是由内到外逐一求值,即由 a<0, f(a)=2a ,又0<2a <1, , , 所以,。
注:求分段函数值的关键是根据自变量的取值代入相应的函数段的表达式.二、典型例题解析例1 在对应法则“f ”下,给出下列从集合A 到集合B 的对应: (1)A =N ,B =R ,f :x →y =x1; (2)A =N ,B =Z ,f :x →y =x)1(-;(3)A ={x ∣x 是平面内的三角形},B ={y ∣y 是平面内的圆},f :x →y 是x 的外接圆. 其中能构成映射的是 ( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)分析 判断一个对应是不是映射,应紧扣映射的定义,即在对应法则f 下,对于集合A 中的任一..元素在B 中是否都有唯一..的象. 解 : 在(1)中,元素“0”在B 中没有象,不满足“任意性”,故不能构成映射.在(2)中,当x 为偶数时,其象为1;当x 为奇数时,其象为-1,而1,-1∈B ,即A 中任一元素在B 中都有唯一的象.在(3)中,因为任一三角形都有唯一的外接圆,所以(2)、(3)能构成映射.答案选C .点评 ①判断一个对应是否能构成映射,应紧扣映射定义.②在课本中,已规定0是自然数,忽视了这一点,将误认为对应(1)是映射.③在映射f :A →B 中,A 、B 的地位是不对等的,它并不要求B 中元素均有原象,或有原象也未必唯一.一般地,若A 中元素的象的集合为C ,则C ⊆B .如(2)中除1,-1以外的任何元素均无原象,(3)中任一圆的内接三角形都有无数个.④映射中的集合元素的对象是任意的,可以是数集、点集或其他任意对象,如(3)中的集合对象是几何图形.变题 设集合A ={x ∣x 是平面内的圆},B ={y ∣y 是平面内的矩形},f :x →y 是x 的内接矩形.试问它能否构成映射?答案:不能。
因为圆的内接矩形有很多个,与映射要求的通过对应关系只有唯一的元满足关系不符例2 已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意a ∈A ,在B 中和它们对应的元素是|a |,则集合B 中元素的个数是 ( ) A .4 B .5 C .6 D .7分析 本题主要考查映射的概念及对对应概念的理解.解本题应抓住:①对应法则f 是什么?②集合B 中的具体元素是什么?而②的解决由①来决定.解: 依题意,由A →B 的对应法则为f :a →|a |.于是,将集合A 中的7个不同元素分别取绝对值后依次得3,2,1,1,2,3,4.由集合元素的互异性可知,B ={1,2,3,4},它有4个元素,答案选A .点评 ①准确理解题目本身所给的信息,捕捉对解题有用的成份,是解决问题的关键. ②不能忽视集合元素的三大特性在解题中的应用.本题中如果忽视集合元素的互异性,将导致错选D .例3 设A ={(x ,y )∣x ∈R ,y ∈R }.如果由A 到A 的一一映射,使象集合中的元素(y -1,x +2)和原象集合中的元素(x ,y )对应,那么象(3,-4)的原象是 ( ) A .(-5,5) B .(4,-6) C .(2,-2) D .(-6,4) 分析 由象与原象的概念可知,本题中的对应法则是f :(x ,y )→(y -1,x +2),问题即:当点(y -1,x +2)是(3,-4)时,对应的x ,y 的值分别是多少?于是由⎩⎨⎧-=+=-4231x y ⎩⎨⎧=-=⇒46y x ,即象(-3,4)的原象是(-6,4),选D .点评①已知原象要求象,只需根据对应法则直接代入计算;已知象元素,反求原象,需逆向思考,通常借助方程思想,通过解方程组来解决.②在映射f:A→B中,A是原象集合,B是象的集合,对应法则是f:原象→象,二者顺序不能颠倒,否则将误选A;点(x,y)是有序数对,x,y的顺序不能搞错,否则将误选B.例4 设A={x∣0≤x≤2},B={y∣1≤y≤2},图1中表示A到B的函数是()分析可根据映射观点下的函数定义直接求解.首先C图中,A中同一个元素x(除x=2)与B中两个元素对应,它不是映射,当然更不是函数;其次,A、B两图中,A所对应的“象”的集合均为{y∣0≤y≤2},而{y∣0≤y≤2}B={y∣1≤y≤2},故它们均不能构成函数.从而答案选D.点评函数首先必须是映射,是当集合A与B均为非空数集时的映射.因此,判断一个对应是否能构成函数,应判断:①集合A与B是否为非空数集;②f:A→B能否为一个映射.另外,函数f:A→B中,象的集合M叫函数的值域,且M B.变题已知函数y=f(x),集合A={(x,y)∣y=f(x)},B={(x,y)∣x=a,y∈R},其中a为常数,则集合A∩B的元素有(C )A.0个B.1个C.至多1个D.至少1个提示设函数y=f(x)的定义域为D,则当a∈D时,A∩B中恰有1个元素;当a∈/D时,A∩B中没有元素.例5 集合A={3,4},B={5,6,7},那么可建立从A到B的映射个数是__________,从B到A的映射个数是__________.剖析:从A到B可分两步进行:第一步A中的元素3可有3种对应方法(可对应5或6或7),第二步A中的元素4也有这3种对应方法.由乘法原理,不同的映射种数N1=3×3=9.反之从B 到A,道理相同,有N2=2×2×2=8种不同映射.答案:9 ,8例6、某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.p=;(1)写出图一表示的市场售价与时间的函数关系式)(t fQ=;(2)写出图二表示的种植成本与时间的函数关系式)(t g解:(Ⅰ)由图一可得市场售价与时间的函数关系为⎩⎨⎧≤<-≤≤-= 300t 2003002 200,t 0,300)(t t t f由图二可得种植成本与时间的函数关系为300t 0 ,100)150(201)(2≤≤+-=t t g例7、若f :y =3x +1是从集合A ={1,2,3,k }到集合B ={4,7,a 4,a 2+3a }的一个映射,求自然数a 、k 的值及集合A 、B.解:∵f (1)=3×1+1=4,f (2)=3×2+1=7,f (3)=3×3+1=10,f (k )=3k +1,由映射的定义知(1)⎪⎩⎪⎨⎧+=+=,133,1024k a a a 或(2)⎪⎩⎪⎨⎧+==+.13,10342k a a a∵a ∈N ,∴方程组(1)无解. 解方程组(2),得a =2或a =-5(舍),3k +1=16,3k =15,k =5.∴A ={1,2,3,5},B ={4,7,10,16}.三、基本概念练习题1.对于映射f :A →B ,下列说法正确的是 ( ) A .A 中某一元素的象可以不止一个 B .B 中某一元素的原象可以不止一个 C .A 中两个不同元素的象必不相同 D .B 中两个不同元素的原象可能相同2.设集合A ={a ,b ,c },B ={m ,n ,p },那么从集合A 到B 可以建立 个一一映射.3.已知A =B =R ,x ∈A ,y ∈B ,且f :x →y =ax +b ,若5和20的原象分别是5和10,则7在f 下的象为 .4.下列函数中,表示同一函数的是 ( )A .f (x )=1,g (x )=x °B .f (x )=x +1,g (x )= x 2-1x -1C .f (x )= x 2,g (x )=|x |D .f (x )=x ,g (x )=(x )25.函数y =x -1,x ∈Z 且x ∈[-1,5 ],则函数的值域为 . 6.给出三个命题:①映射f :A →B 是函数,则A 叫做函数的定义域,B 叫做函数的值域;②x x x f -+-=34)(是函数;③函数y =3x (x ∈Z )的图象是一条直线.A.0个B.1个C.2个D.3个7、集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少?参考答案1.B2.63.114.C5.{-2,-1,0,1,2,3,4}6.A(定义域对,值域不一定对,值域是B的真子,第二个定义域空,第三是点)7、解:∵f(a)∈N,f(b)∈N,f(c)∈N,且f(a)+f(b)+f(c)=0,∴有0+0+0=0+1+(-1)=0.当f(a)=f(b)=f(c)=0时,只有一个映射;当f(a)、f(b)、f(c)中恰有一个为0,而另两个分别为1,-1时,共有3*2=6个映射.因此所求的映射的个数为1+6=7.评述:本题考查了映射的概念和分类讨论的思想.四、小结1.理解映射的概念,应紧紧抓住映射的两个特性:①任意性;②唯一性.2.判断一个对应是不是映射或一一映射,应“回到定义去”;说明一个对应不是映射或一一映射,只须找出一个反例.3.深化对函数概念的理解,能从函数三要素(定义域、值域与对应法则)的整体上去把握函数概念.在函数三要素中,定义域和对应法则是函数的两大要素,对应法则是核心。