因式分解的应用与探究(含答案)-
用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案
![用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案](https://img.taocdn.com/s3/m/d140fc18b90d6c85ec3ac67e.png)
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:- 2 -原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.- 3 -(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8- 4 -(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.- 5 -- 6 -6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗- 7 -参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7.5.(1)x 2-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2, ∴x -2a =±(a -1), ∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0, ∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0, (x +m )[x +(m +1)]=0, ∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy yy +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0, (x 2+y 2)2-(x 2+y 2)-12=0, (x 2+y 2-4)(x 2+y 2+3)=0, ∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,- 8 -∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t -2)(t +1),∴t =1(t =0舍去)11.(1)x 1=-2,x 2=2(2)(x 2-2)(x 2-5)=0, (x +2)(x -2)(x +5)(x -5)=。
初二因式分解习题大全含答案
![初二因式分解习题大全含答案](https://img.taocdn.com/s3/m/6ecfcf6267ec102de2bd89ee.png)
因式分解进阶中考要求例题精讲一、基本概念因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式 因式分解的常用方法:提取公因式法、运用公式法、分组分解法、十字相乘法.分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式 十字相乘法分解,如还不能,就试用分组分解法或其它方法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;②结果一定是乘积的形式;③每一个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解; ③单项式因式写在多项式因式的前面;④每个因式第一项系数一般不为负数;⑤形式相同的因式写成幂的形式.二、提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:系数——取多项式各项系数的最大公约数;字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.三、公式法平方差公式:22()()a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++33223()33a b a a b ab b +=+++ 33223()33a b a a b ab b -=-+-2222()222a b c a b c ab ac bc ++=+++++模块一 因式分解的基本方法【例1】已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 .【解析】先利用平方差公式分解因式,再找出范围内的解即可.【答案】248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1); ∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.【点评】本题考查了利用平方差公式分解因式,先分解因式,然后再找出范围内的解是本题解题的思路【巩固】333333()()()()ay bx ax by a b x y +-++--=_________. 【解析】 原式22222()()()()()b a x y a b ab x y a b xy ⎡⎤=--++++++⎣⎦()()a b x y --22()a ab b ++22()x xy y ++ ()()a b x y abxy =---.【巩固】 化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++ 【解析】 原式()()()20051111x x x x x x ⎡⎤=+++++++⎣⎦()()()()200411111x x x x x x x ⎡⎤=++++++++⎣⎦ …()()2005111x x x x =++++⎡⎤⎣⎦()20071x =+【例2】已知整数a 、b 、c 满足不等式a 2+b 2+c 2+43≤ab+9b+8c ,则a 、b 、c 分别等于 .【解析】由已知条件构造完全平方公式,得(a ﹣)2+3(﹣3)2+(c ﹣4)2≤0,然后由非负数的性质求解.【答案】由已知得a 2+b 2+c 2+43﹣ab ﹣9b ﹣8c≤0,配方得(a ﹣)2+3(﹣3)2+(c ﹣4)2≤0,又∵(a ﹣)2+3(﹣3)2+(c ﹣4)2≥0,∴(a ﹣)2+3(﹣3)2+(c ﹣4)2=0,∴a ﹣=0,﹣3=0,c ﹣4=0,∴a=3,b=6,c=4.故答案为:a=3,b=6,c=4.【点评】此题考查用分组分解法进行因式分解.难点是配方成非负数的形式,再根据非负数的性质求解. 模块二 重组分解法【例3】分解因式:2222(1)(2)(1)x x x x x x ++-++-【解析】 原式424322212x x x x x x x =+++----43221x x x =--+3(21)(21)x x x =---3(21)(1)x x =--2(1)(21)(1)x x x x =--++.【答案】2(1)(21)(1)x x x x --++【巩固】 分解因式:3322()()ax y b by bx a y +++【解析】3322()()ax y b by bx a y +++ 332222axy ab x b x y a by =+++2222()()xy ay b x ab ay b x =+++22()()ay b x xy ab =++【答案】22()()ay b x xy ab ++【例4】分解因式:2222111[()()](2)222x y x y x y -++- 【解析】 2222111[()()](2)222x y x y x y -++- 222222111[](2)442x xy y x xy y x y =-++++- 222211(2)(2)22x y x y =+- 【答案】222211(2)(2)22x y x y +-【巩固】 分解因式:2231()b a x abx +--【解析】2231()b a x abx +-- 2223(1)()a x bx abx =-+-2(1)(1)(1)ax ax bx ax =+-+-2(1)(1)ax ax bx =-++【答案】2(1)(1)ax ax bx -++【例5】已知三个连续奇数的平方和为251,求这三个奇数.【解析】 设三个连续奇数分别为21,21,23n n n -++,则利用()()()222212123251n n n -++++=,求n 的值.设三个连续奇数分别为21,21,23n n n -++,则 ()()()222212123251n n n -++++=整理后,得2200n n +-=,()()540n n +-=∴15n =-,24n =∴三个连续奇数分别为-11,-9,-7或7,9,11.【答案】连续奇数分别为-11,-9,-7或7,9,11.【巩固】 已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证:2b a c =+【解析】 22243372a ac c ab bc b ++--+(3)(2)a b c a b c =-+-+0=因为三角形的两边之和大于第三边,所以30a b c -+≠,故20a b c -+=,即2b a c =+.【答案】见解析 模块三 拆、填项法☞利用配方思想拆项与添项【例 1】分解因式:432234232a a b a b ab b ++++=_______.【解析】432234232a a b a b ab b ++++ 2222222()2()a b ab a b a b =++++222()a b ab =++【答案】222()a b ab ++【例 2】分解因式: 12631x x -+【解析】12631x x -+126621x x x =-+- 6363(1)(1)x x x x =-+--【答案】6363(1)(1)x x x x -+--【例 3】分解因式: 841x x ++【解析】841x x ++ 84421x x x =++- 4242(1)(1)x x x x =+++-42242(12)(1)x x x x x =++-+-2242(1)(1)(1)x x x x x x =+++-+- 【答案】6363(1)(1)x x x x -+--【例 4】分解因式: 4224781x x y y -+【解析】4224422422781188125x x y y x x y y x y -+=++-2222(95)(95)x y xy x y xy =+-++【答案】2222(95)(95)x y xy x y xy +-++【例 5】已知n 是正整数,且4216100n n -+是质数,那么n =_______.【解析】原式4222010036n n n =++- 222(10)(6)n n =+-22(610)(610)n n n n =-+++.又因为4216100n n -+是质数,且n 是正整数,且26101n n ++≠,故26101n n -+=,3n =.【答案】3n =【例 6】分解因式:()()()222241211y x y x y +-++-【解析】()()()222241211y x y x y +-++- ()()()222242212114y x y x y x y =+--+--()()22211(2)y x y xy ⎡⎤=+---⎣⎦ (1)(1)(1)(1)x x x xy y x xy y =+-------【答案】(1)(1)(1)(1)x x x xy y x xy y +-------【例 7】分解因式:42222222()()x a b x a b -++-【解析】42222224222222222()()2()()4x a b x a b x a b x a b b x -++-=--+--222222222222()4(2)(2)x b a b x x b a bx x b a bx =+--=+--+-+()()()()x a b x a b x a b x a b =++--+--+【答案】()()()()x a b x a b x a b x a b ++--+--+【例 8】分解因式:33(1)()()(1)x a xy x y a b y b +---++ 【解析】33(1)()()(1)x a xy x y a b y b +---++33(1)()[(1)(1)](1)x a xy x y a b y b =+--+-+++322322(1)()(1)()a x x y xy b y x y xy =+-++++-2222(1)()(1)()x a x xy y b x xy y =+-+++-+22()()x xy y ax by x y =-++++【答案】22()()x xy y ax by x y -++++【例 9】 把444x y +分解因式.【解析】4422224()(2)x y x y +=+使用平方差公式显然是不行的.44422422422422x y x x y y x y +=+⋅⋅+-⋅⋅2222(2)(2)x y xy =+-2222(22)(22)x xy y x xy y =++-+【答案】2222(22)(22)x xy y x xy y ++-+【例 10】分解因式:464x +【解析】464x +42222222166416(8)(4)(48)(48)x x x x x x x x x =++-=+-=++-+【答案】22(48)(48)x x x x ++-+【例 11】证明:在m n 、都是大于l 的整数时,444m n +是合数.【解析】444m n +422422444m m n n m n =++-2222(2)(2)m n mn =+-2222(22)(22).m n mn m n mn =+++-由于在m n 、都大于1时,两个因数中较小的那一个2222222()1m n mn m n n n +-=-+≥>即两个因数都是444m n +的真因数,所以444m n +是合数.【答案】见解析【例 12】分解因式:444222222222a b c a b b c c a ---+++【解析】444222222222a b c a b b c c a ---+++444222222(222)a b c a b b c c a =-++---44422222222(2224)a b c a b b c c a a b =-+++---22222[()(2)]a b c ab =-+--222222(2)(2)a b c ab a b c ab =-+-++--2222[()][()]a b c a b c =-+---()()()()a b c a b c a b c a b c =-+++--+--()()()()a b c a b c a b c b c a =+++--++-【答案】()()()()a b c a b c a b c b c a +++--++-☞拆项与添项【例 13】(“CASIO”杯河南省竞赛)把下列各式因式分解:4322928x x x x +--+【解析】原式()()()()()()42322222228812181x x x x x x x x x x =-+---=-+---()()()()()()221281142x x x x x x x =-+-=+-+-【答案】()()()()1142x x x x +-+-【例 14】若1x y +=-,则43222234585x x y x y x y xy xy y ++++++的值等于( )A.0B.1-C.1D.3【解析】43222234585x x y x y x y xy xy y ++++++4322342233224642x x y x y xy y x y xy xy x y x y =+++++++++42()()()1x y xy x y xy x y =+++++=【答案】1【例 15】分解因式:323233332a a a b b b ++++++【解析】前三项比完全立方公式少l ,四、五、六项的和也比立方公式少l .如果把2拆为两个l ,那么就可以使两组都成为完全立方,皆大欢喜.于是323233332a a a b b b ++++++3232(331)(331)a a a b b b =++-++++33(1)(1)a b =+++22(2)[(1)(1)(1)(1)]a b a a b b =+++-++++22(2)(1)a b a ab b a b =++-++++【答案】22(2)(1)a b a ab b a b ++-++++【例 16】分解因式:51x x ++【解析】法1:此题既无公因式可提,又无法分组分解,更无法使用什么公式,于是我们想到要添项.不妨试试4x ,55444411(1)(1)x x x x x x x x x ++=+++-=++-无法进行下去.那么试试4x -,554411x x x x x x ++=-+++显然也无法进行下去.开始尝试3x ,如下:55333343311(1)(1)1(1)(1)x x x x x x x x x x x x x x x ++=-+++=+-+++=+-++,无法分解下去.这样尝试下去,可分解如下:552211x x x x x x ++=-+++222(1)(1)1x x x x x x =-+++++232(1)(1)x x x x =++-+.法2:也可以这样解:5543243211x x x x x x x x x x ++=+++++---32(1)(1)x x x =+++-22(x x + 3221)(1)(1)x x x x x +=-+++.只要我们能够用心地思考,大胆地尝试,我们会发现很多非常巧妙的想法!【答案】322(1)(1)x x x x -+++【例 17】分解因式:541a a ++【解析】原式5433322321(1)(1)(1)(1)(1)a a a a a a a a a a a a a a =++-+=++--++=-+++【答案】32(1)(1)a a a a -+++【例 18】分解因式:3333a b c abc ++-.【解析】3333a b c abc ++-332232233333a b a b ab c a b ab abc =++++---33()3()a b c ab a b c =++-++222()(2)3()a b c a b ab c ac bc ab a b c =+++++---++222()()a b c a b c ab bc ca =++++---.也可添加23b c ,23bc 或者23c a ,23ca .【答案】222()()a b c a b c ab bc ca ++++---【例 19】分解因式:22268x y x y -++-【解析】22222226821(69)(1)(3)x y x y x x y y x y -++-=++--+=+--(13)(13)(4)(2)x y x y x y x y =+-+++-=-++-【答案】(4)(2)x y x y -++-【例 20】分解因式: 224414x y x y -++【解析】2244442222222214216(4)(4)x y x y x y x y x y x y xy x y xy -++=++-=+++-【答案】2222(4)(4)x y xy x y xy +++-【例 21】分解因式:42471x x -+【解析】42422224712149(17)(17)x x x x x x x x x -+=++-=+++-【答案】22(17)(17)x x x x +++-【例 22】分解因式: 4414x y + 【解析】4414x y +442222222211()()42x y x y x y x y xy =++-=+-22221(22)(22)4x xy y x xy y =++-+ 【答案】22221(22)(22)4x xy y x xy y ++-+【例 23】分解因式:441x +=__________.【解析】442222222414414(21)(2)(221)(221)x x x x x x x x x x +=++-=+-=++-+【答案】22(221)(221)x x x x ++-+【例 24】分解因式:432433x x x x ++++【解析】(法1):原式432222222()(333)(1)3(1)(3)(1)x x x x x x x x x x x x x =+++++=+++++=+++(法2):原式432423222433(3)(3)(3)(3)(1)x x x x x x x x x x x x =++++=+++++=+++【答案】22(3)(1)x x x +++模块三 换元法【例1】 分解因式:(1)(2)(3)(4)24a a a a -----【解析】2(5)(510)a a a a --+【答案】2(5)(510)a a a a --+【例2】 分解因式:22(1)(2)12x x x x ++++-【解析】2(1)(2)(5)x x x x -+++【答案】2(1)(2)(5)x x x x -+++【例3】 分解因式:()()()()26121311x x x x x ----+=【解析】原式()()()()()()22226112131671651x x x x x x x x x x =----+=-+-++设2671x x t -+=,原式()()()22222661t t x x t x x x =++=+=-+ 【答案】()22661x x -+【例4】 分解因式:()()()()461413119x x x x x ----+=【解析】原式()()22467112719x x x x x =-+-++设2671x x t -+=,原式()()()222422693971t x t x t x x x =++=+=-+ 【答案】()22971x x -+【例5】 分解因式:22224(31)(23)(44)x x x x x x --+--+-【解析】咋一看,很不好下手,仔细观察发现:222(31)(23)44x x x x x x --++-=+-,故可设2231,23x x A x x B --=+-=,则244x x A B +-=+.故原式=24()AB A B -+2A =-222()B AB A B -+=--22222(31)(23)(232)x x x x x x ⎡⎤=----+-=--+⎣⎦. 【答案】22(232)x x --+【例6】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+-【解析】由于题中以整体形式出现的式子有两个,共4个地方,故采取换元法后会大大简化计算过程,不妨设,a b x ab y +==,则原式=222(2)(2)(1)222x y x y x xy y y x --+-=-++-222221()2()1(1)(1)(1)(1)x y x y x y a b ab a b +=---+=--=+--=--【答案】22(1)(1)a b --【例7】 分解因式:()()()2113212xy xy xy x y x y ⎛⎫+++-++-+- ⎪⎝⎭ 【关键词】1997~1998年,天津市初二数学竞赛决赛,换元法【解析】设xy a x y b =+=,则原式()()()213211a a a b b =+++----()()()222221111a a b a b a b a b =++-=+-=+++- ()()()()1111x y x y =++--【答案】()()()()1111x y x y ++--【例8】 分解因式:4444(4)a a ++-【解析】为方便运算,更加对称起见,我们令2x a =-4444(4)a a ++-444(2)(2)4x x =++-+22224(44)(44)4x x x x =+++-++422(2416)256x x =+++422(24144)x x =++222(12)x =+222[(2)12]a =-+222(416)a a =-+【答案】222(416)a a -+【例9】 分解因式:()()()3332332125x y x y x y -+---【解析】设233255x y a x y b x y c -=-=-+=,,,显然0a b c ++=由公式()()3332223a b c abc a b c a b c bc ca ab ++-=++++---知,此时有3333a b c abc ++= 故原式()()()()()()3233255152332x y x y x y x y x y x y =---+=----【答案】()()()152332x y x y x y ----【例10】 分解因式:43241x x x x +-++【解析】原式222222111144x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+-++=+++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 设1x t x +=,则22212x t x+=- 原式()()()2222432x t t x t t =+--=+-()()22311x x x =++- 【答案】()()22311x x x ++-【例11】 分解因式:()()4413272x x +++-【解析】设2x t +=,则原式()()444211272212270t t t t =-++-=+-()()()()()2222159241951t t x x x x =+-=+++- 【答案】()()()2241951x x x x +++-模块四 主元法【例 25】分解因式:2222223a b ab a c ac abc b c bc -+--++【解析】这个多项式是a 、b 、c 的三项式,相数多,似乎无从下手,解决它的方法却是最基本的:把a 当作主要字母,也就是把这个多项式看成a 的二次式,按a 降幂排列整理为:22222()(3)()b c a b c bc a b c bc +-++++,后用十字相乘进行分解,“常数项”为22()b c bc bc b c +=+ 2222223a b ab a c ac abc b c bc -+--++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-【答案】()()a b c ab ac bc --+-【例 26】分解因式:22(1)(1)(221)y y x x y y +++++【解析】将x 看为主元,原式可化为:22(1)(221)(1)y y x y y x y y ++++++[(1)][(1)]yx y y x y =++++(1)()yx y yx x y =++++【答案】(1)()yx y yx x y ++++【例 27】分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++【解析】以a 、b 为主要字母,这个多项式是a 、b 的二次齐次式,把它整理为:2222[(1)()]()[()(1)]b xy x y ab x y a x y xy +-++--+++2222[()(1)]()[()(1)]b xy x y ab x y a x xy y =---+--+++2222[(1)(1)]()[(1)(1)]b x y y ab x y a x y y =---+--+++2222(1)(1)()(1)(1)b x y ab x y a x y =--+--++[(1)(1)][(1)(1)]x b y a y b x a =--+--+()()bx b ay a by b ax a =----++【答案】()()bx b ay a by b ax a ----++课后作业1.分解因式:()()()2442111x x x ++-+-【解析】 原式224222(21)(21)(21)x x x x x x =+++-++-+423103x x =++ 22(31)(3)x x =++【答案】22(31)(3)x x ++2.若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【解析】()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令2254x xy y u ++=∴上式2422222(2)()(55)u u y y u y x xy y ++=+=++即()()()()4222234(55)x y x y x y x y y x xy y +++++=++【答案】见解析3.分解因式:44(1)(3)272x x +-+- 【解析】设1322x x y x +++==+,则原式=4442(1)(1)2722(61)272y y y y -++-=++- 422222(6135)2(9)(15)2(3)(3)(15)y y y y y y y =+-=-+=+-+22(5)(1)(419)x x x x =+-++【答案】22(5)(1)(419)x x x x +-++4.分解因式:322222422x x z x y xyz xy y z --++-【解析】原式()()()()()22222222x z y x z xy x z x x z y x =---+-=--【答案】()()22x z y x --。
第三讲 因式分解的应用(含答案)-
![第三讲 因式分解的应用(含答案)-](https://img.taocdn.com/s3/m/514ba1b0dc88d0d233d4b14e852458fb770b3894.png)
第三讲 因式分解的应用在一定的条件下,把一个代数式变换成另一个与它恒等的代数式称为代数式的恒等变形,是研究代数式、方程和函数的基础.因式分解是代数变形的重要工具.在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础,现阶段.因式分解在数值计算,代数式的化简求值,不定方程(组)、代数等式的证明等方面有广泛的应用.同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力、探究能力得以提高.因此,有人说因式分解是学好代数的基础之一.例题求解【例1】若142=++y xy x 282=++x xy y ,则y x +的值为 .(2002年全国初中数学联赛题)思路点拨 恰当处理两个等式,分解关于y x +的二次三项式.注:在信息技术飞速发展的今天,信息已经成为人类生活中最重要的因素.在军事、政治、商业、生活等领域中,信息的保密工作显得格外重要.现代保密技术的一个基本思想,在编制密码的工作中,许多密码方法,就来自于因数分解、因式分解技术的应用. 代数式求值的常用方法是:(1)代入字母的值求值; (2)通过变形,寻找字母间的关系,代入关系求值;(3)整体代入求值.【例2】已知 a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值( )A .恒正B .恒负C .可正可负D .非负(大原市竞赛题)思路点拨 从变形给定的代数式入手,解题的关键是由式于的特点联想到熟悉的结果,注意几何定理的约束.【例3】计算下列各题:(1))219961993()2107)(285)(263)(241()219971994()2118)(296)(274)(222(+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ ; (2)20012000200019982000220002323-+-⨯-思路点拨 观察分子、分母数字间的特点,用字母表示数,从一般情形考虑,通过分解变形,寻找复杂数值下隐含的规律.【例4】已知 n 是正整数,且n 4—16n 2+100是质数,求n 的值.(第13届“希望杯’邀请赛试题)思路点拔 从因数分解的角度看,质数只能分解成l 和本身的乘积(也可从整除的角度看),故对原式进行恰当的分解变形,是解本例的最自然的思路.【例5】(1)求方程07946=--+y x xy 的整数解;(上海市竞赛题)(2)设x 、y 为正整数,且096422=-++y y x ,求xy 的值.(第14届“希望杯”邀请赛试题)思路点拔 观察方程的特点,利用整数解这个特殊条件,运用因式分解或配方,寻找解题突破口.链接解题思路的获得,一般要经历三个步骤:(1)从理解题意中提取有用的信息,如数式特点、图形结构特征等;(2)从记忆储存中提取相关的信息,如有关公式、定理、基本模式等;(3)将上述两组信息进行进行有效重组,使之成为一个舍乎逻辑的和谐结构.不定方程(组)的基本解法有:(1)枚举法; (2)配方法;(3)因数分解、因式分解法; (4)分离系数法.运用这些方法解不定方程时,都需灵活运用奇数偶数、质数合数、整除等与整数相关的知识.学历训练1.已知x+y =3,422=-+xy y x ,那么3344xy y x y x +++的值为 .2.方程01552=-+--y x xy x 的整数解是 . (第13届“希望杯”邀请赛试题)3.已知a 、b 、c 、d 为非负整数,且ac+bd+ad+bc=1997,则a+b+c+d = .4.对一切大于2的正整数n ,数n 5一5n 3+4n 的量大公约数是 .(2003年四川省竞赛题)5.已知724-1可被40至50之间的两个整数整除,这两个整数是( )A .41,48B .45,47C .43,48D .4l ,476,已知2x 2-3xy+y 2=0(xy ≠0),则xy y x +的值是( ) A . 2,212 B .2 C .212 D .-2,212- 7.(第17届江苏省竞赛题)a 、b 、c 是正整数,a>b ,且a 2-ac+bc=7,则a —c 等于( )A .一2B .一1C .0D . 28.如果133=-x x ,那么200173129234+--+x x x x 的值等于( )A .1999B .2001C .2003D .2005(2000年武汉市选拔赛试题)9.(1)求证:8l 7一279—913能被45整除;(2)证明:当n 为自然数时,2(2n+1)形式的数不能表示为两个整数的平方差;(3)计算:)419)(417)(415)(413)(411()4110)(418)(416)(414)(412(4444444444++++++++++。
因式分解例题(附答案)(汇总)
![因式分解例题(附答案)(汇总)](https://img.taocdn.com/s3/m/11fa826dbceb19e8b9f6ba1d.png)
因式分解例题讲解及练习【例题精选】:〔1〕5x2y 15x3y2 20x2 y3 评析:先查各项系数〔其它字母暂时不看〕,确定5,15,20 的最大公因数是5,确定系数是5 ,再查各项是否都有字母X,各项都有时,再确定X的最低次幕是几,至此确认提取X,同法确定提Y,最后确定提公因式5乂丫。
提取公因式后,再算出括号内各项。
解:5x2y 15x3y2 20x2 y35x2 y(1 3xy 4y2)=〔2〕3x2 y 12x2 yz 9x3y2 评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为3,且一样字母最低次的项是X2Y2 23 2解: 3x2 y 12x2 yz 9x3y2(9x3y2 12x2yz 3x2y)=3(3x3y2 4x2yz x2y)=23x2 y(3xy 42 1)=〔3〕(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a) 评析:在此题中, y-x 和x-y 都可以做为公因式,但应防止负号过多的情况出现,所以应提取y-x 解:原式=(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a) =(y-x)(c-b-a+2a+b-c+b-2a) =(y-x)(b-a)3 4 3(4)〔4〕把32x y 2x分解因式评析:这个多项式有公因式2x3,应先提取公因式,剩余的多项式16y4-1 具备平方差公式的形式解:32x3y4 2x3=2x3(16y4 1)=2x3(4y2 1)(4y2 1) =2x3(2y 1)(2y 1)(4y2 1)7 2 8(5)〔5〕把xy xy分解因式评析:首先提取公因式xy2,剩下的多项式x6-y6可以看作3 2 3 2(x ) (y )用平方差公式分解,最后再运用立方和立方差公式分解。
对于x6-y6也可以变成(x2)3(y2)3先运用立方差公式分解,但比较麻烦。
72 8解:x7y2 xy82 6 6 23 2 3 2 2 3 3 3 3=xy (x -y )= xy [ (x ) (y ) ]= xy (x y )(x y )= xy2(x y)(x2 xy y2)(x y)(x2 xy y2)2 2〔6〕把(x y) 12(x y)z 36z 分解因式评析:把(x+y)看作一个整体,那么这个多项式相当于(x+y)的二次三项式,并且为降幕排列,适合完全平方公式。
2015年中考复习专题复习第四讲因式分解(含参考答案)
![2015年中考复习专题复习第四讲因式分解(含参考答案)](https://img.taocdn.com/s3/m/0fa3401710a6f524ccbf855d.png)
第四讲 因式分解【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点二:因式分解例2 (2014•六盘水)分解因式:m 3-2m 2n+mn 2= .思路分析:首先提取公因式m ,进而利用完全平方公式分解因式得出即可.考点三:因式分解的应用例3(2014•大连)当a=9时,代数式a 2+2a+1的值为 .思路分析: 直接利用完全平方公式分解因式进而将已知代入求出即可.( ) ( )【备考真题过关】一、选择题1.(2014•金华)把代数式2x2-18分解因式,结果正确的是()A.2(x2-9)B.2(x-3)2C.2(x+3)(x-3)D.2(x+9)(x-9)2.(2014•常德)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B.(x2-4)x=x3-4xC.ax+bx=(a+b)x D.m2-2mn+n2=(m+n)23.(2014•攀枝花)因式分解a2b-b的正确结果是()A.b(a+1)(a-1)B.a(b+1)(b-1)C.b(a2-1)D.b(a-1)2二、填空题第四讲因式分解答案【重点考点例析】考点一:因式分解的概念例1解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴555n mn+=⎧⎨=⎩,∴16nm=⎧⎨=⎩,故答案为6,1.考点二:因式分解例2解:m3-2m2n+mn2=m(m2-2mn+n2)=m(m-n)2.故答案为:m(m-n)2.考点三:因式分解的应用例3解::∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.【备考真题过关】一、选择题1.D2.C3.A二、填空题4.x(x-3)5.(x+2)(x-2)6.a(a+2)(a-2).7.a(a-2)28.2m(m+5)9.(x-2)210.2(x+2)(x-2)11.2a(a-3)13.Ab(a+1)(a-1)14.2(a-1)215.(3a+1)(a+1)16.3(m-n)217.1518.1219.-31。
因式分解-提公因式法(含答案)
![因式分解-提公因式法(含答案)](https://img.taocdn.com/s3/m/0ea096c8c9d376eeaeaad1f34693daef5ef7139b.png)
因式分解-提公因式法(含答案)1.因式分解是指将一个多项式拆分成两个或多个较简单的多项式的过程。
其中,选项A、C、D属于因式分解,选项B不属于因式分解。
2.只有选项B不属于因式分解,其余选项都属于因式分解。
3.(1)属于整式乘法,(2)属于因式分解,(3)属于因式分解,(4)属于因式分解。
4.公因式是7ab。
5.公因式是x2y。
6.正确的选项是A。
7.分解后为(x-2)(a2-a)。
8.错误的选项是C。
9.(1)3ac(2b-c),(2)a3(b-c)+a3,(3)-2(2a-5)(a-2),(4)(m-x)(m-y)。
10.XXX×11×29.11.结果是A,即2.12.(1)0.0396,(2)2044.71,(3)3x2y(x+y+z)。
14.如果3x^2 - mxy^2 = 3x(x - 4y^2),求m的值。
15.写出下列各项的公因式:1) 6x^2 + 18x + 6;2) -35a(a+b)与42(a+b).16.已知n为正整数,试判断n^2+n是奇数还是偶数,并说明理由。
17.试说明817-279-913能被45整除。
知能点分类训练】1.-b^2 + a^2 = _________。
9x^2 - 16y^2 = ___________.2.下列多项式(1) x^2 + y^2.(2) -2a^2 - 4b^2.(3) (-m)(-n)。
(4) -144x^2 + 169y^2.(5) (3a)^2 - 4(2b)^2中,能用平方差公式分解的有:A。
1个B。
2个C。
3个D。
4个3.一个多项式,分解因式后结果是(x^3 + 2)(2-x^3),那么这个多项式是:A。
x^6 - 4B。
4 - x^6C。
x^9 - 4D。
4 - x^94.下列因式分解中错误的是:A。
a^2 - 1 = (a+1)(a-1)B。
1 - 4x^2 = (1+2x)(1-2x)C。
81x^2 - 64y^2 = (9x+8y)(9x-8y)D。
八年级数学下册《因式分解》常见题型例析(含答案)
![八年级数学下册《因式分解》常见题型例析(含答案)](https://img.taocdn.com/s3/m/5aca7e0f7fd5360cba1adbef.png)
《因式分解》常见题型例析因式分解是中学数学的重要内容之一,是学习分式、根式、和一元二次方程的重要基础,是解决许多数学问题的重要“工具”,也是各级考试的一个热点,现将关于这部分知识的常见题型介绍如下。
题型一:分解因式的意义此类考题多数以选择题的形式出现。
解决此类问题需要对分解因式的概念正确的理解。
例1 下列从左到右的变形是分解因式的是( )(A )(x-4)(x+4)=x 2-16 (B)x 2-y 2+2=(x+y)(x-y)+2(C)2ab+2ac=2a(b+c) (D)(x-1)(x-2)=(x-2)(x-1).分析:根据多项式分解因式的概念:把一个多项式化成几个整式积的形式,叫做分解因式.所以要判断从左道右的变形是否是分解因式,关键是看左边是否是多项式,右边是否是整式的积.解:选(C).练习:下面由左边到右边的变形中,是分解因式的是( ).(A)a(x-y)=ax-ay (B)x 2-2x+4=(x-1)2+3(C)8x 2-4x=4x·2x (D)y 2-y+41=(y-21)2 答案: (D)题型二、直接提公因式分解此类题大多以选择或填空题的形式出现,其中找出公因式是关键。
求解时应按照提公因式法则将公因式提出即可。
例2 分解因式2a(b-c)-3c(b-c).分析:把(b-c)看作一个整体,则(b-c)就是此多项式的公因式.解: 2a(b-c)-3c(b-c)=(b-c)(2a-3b).练习:分解因式: (2x-3y)(a+b)+(a+b)(3x-2y).答案:5(a+b)(x-y).题型三、直接利用公式因式分解求解此类题掌握所学的几个公式的特点是关键,求解时应根据题目的特点选择合适的公式求解。
例3、分解因式:a 2-1=_______.析解:本题符合平方差公式的特点,故可直接利用平方差公式求解。
其结果为:(a -1)(a +1).练习:分解因式:224x y -=________.答案:(x -2y )(x+2y )题型四、提公因式后再用公式此类题大多以填空或选择题的形式出现,求解时应首先将公因式提出,再选择有关公式求解。
第4章 因式分解-开放与探究:因式分解的六种常见方法习题课件
![第4章 因式分解-开放与探究:因式分解的六种常见方法习题课件](https://img.taocdn.com/s3/m/5aeca4c89a89680203d8ce2f0066f5335a8167f4.png)
分类训练 9.分解因式:x4+14. 【点拨】本题直接分解因式很困难,考虑到添加辅助项使其符合 公式特征,因此将原式添上 x2 与-x2 两项后,便可通过分组使 其符合平方差公式的结构特征,从而将原多项式进行因式分解.
浙教版 七年级下
第四章 因式分解
开放与探究(四) 因式分解的六种常见方法
习题链接
提示:点击 进入习题
1B 2C 3 见习题 4 见习题
5 见习题
6 见习题 7 见习题 8 见习题 9 见习题 10 见习题
答案显示
习题链接
提示:点击 进入习题
11 见习题 12 见习题 13 见习题 14 见习题
答案显示
分类训练 6.分解因式:(x+3)(x+4)+(x2-9).
解:原式=(x+3)(x+4)+(x+3)(x-3) =(x+3)[(x+4)+(x-3)] =(x+3)(2x+1).
【点拨】解此题时,表面上看不能分解因式,但通过局部分解后, 发现有公因式可以提取,从而将原多项式分解因式.
分类训练 7.把下列各式分解因式: (1)x(x+4)+4;
分类训练 13.分解因式:x2-y2-4x+6y-5.
【点拨】这里巧妙地把-5 拆成 4-9.“凑”成(x2-4x+4)和 (y2-6y+9)两个整体,从而运用公式法分解因式.
解:原式=(x2-4x+4)-(y2-6y+9) =(x-2)2-(y-3)2 =(x+y-5)(x-y+1).
分类训练
解:原式=(x+y)2-4(x+y)+4=(x+y-2)2.
(完整版)因式分解(竞赛题)含答案
![(完整版)因式分解(竞赛题)含答案](https://img.taocdn.com/s3/m/00a1cab14a7302768f993917.png)
因式分解1、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。
甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。
”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。
二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a 3+b 3+c 3-3abc . 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式(a+b)3=a 3+3a 2b+3ab 2+b 3 的正确性,现将此公式变形为a 3+b 3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c 3-3abc =[(a+b)3+c 3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -bc -ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a 3+b 3+c 3-3abc 显然,当a+b+c=0时,则a 3+b 3+c 3=3abc ;当a+b+c >0时,则a 3+b 3+c 3-3abc≥0,即a 3+b 3+c 3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a 3≥0,y=b 3≥0,z=c 3≥0,则有 等号成立的充要条件是x=y=z .这也是一个常用的结论.※※变式练习 1分解因式:x 15+x 14+x 13+…+x 2+x+1. 分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解. 解 因为 x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x+1), 所以 说明 在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式.的二次三项式,也可以用十字相乘法,分解为 对于常数项而言,它是关于y 即:-22y2+35y-3=(2y-3)(-11y+1).的二次三项式分解 再利用十字相乘法对关于x 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1).(2) 原式=(x+y+1)(x-y+4).来分解. (3)原式中缺x2项,可把这一项的系数看成0 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x 2-2x+2). 说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x 4-3x 3+7x 2-3x-2. 分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1) 说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有有 由bd=7,先考虑b=1,d=7 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。
2020年初升高数学衔接辅导之分解因式(含答案)
![2020年初升高数学衔接辅导之分解因式(含答案)](https://img.taocdn.com/s3/m/a54abcdd844769eae109ed6e.png)
02 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项2 pq c 2式x2bx c ,若存在,则x2bx c x p x q .p q b要点诠释:(1)在对x2bx c 分解因式时,要先从常数项c的正、负入手,若c 0,则p、q同号(若c 0,则p、q异号),然后依据一次项系数b 的正负再确定p、q的符号(2)若x2bx c中的b、c 为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为 1 的十字相乘法2在二次三项式ax2bx c(a≠0中),如果二次项系数a可以分解成两个因数之积,即a a1a2 ,常数项c可以分解成两个因数之积,即c c1c2 ,把a1,a2,c1,c2 排列如下:按斜线交叉相乘,再相加,得到a1c2 a2c1 ,若它正好等于二次三项式ax2bx c 的一次项系数b ,即a1c2 a2c1 b ,那么二次三项式就可以分解为两个因式a1x c1与a2x c2之2积,即ax bx c a 1x c 1 a 2x c 2 .要点诠释:( 1)分解思路为 “看两端,凑中间 ”(2)二次项系数 a 一般都化为正数,如果是负数,则提出负号,分解里面的二次三项式,最后结果不要忘记把提出的负号添上典型考题【典型例题】阅读与思考:将式子 分解因式. 法一:整式乘法与因式分解是方向相反的变形 . 由 ,; 分析:这个式子的常数项 ,一次项系数,所以 . 解: .请仿照上面的方法,解答下列问题: (1)用两种方法分解因式: ;(2)任选一种方法分解因式:.【变式训练】阅读材料题:在因式分解中,有一类形如 x 2+(m+n )x+mn 的多项式,其常数项是两个因数 的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成 x 2+( m+n )x+mn =(x+m )(x+n ).例如: x 2+5x+6=x 2+(2+3) x+2×3=( x+2)( x+3). 运用上述方法分解因式: (1)x2+6x+8; (2)x 2﹣x ﹣6;(3)x2﹣5xy+6y2;(4)请你结合上述的方法,对多项式x3﹣2x2﹣3x 进行分解因式.【能力提升】由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8;(2)应用请用上述方法解方程:x2-3x-4=0.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
因式分解(一)提公因式法(含习题及答案)
![因式分解(一)提公因式法(含习题及答案)](https://img.taocdn.com/s3/m/dd615411e97101f69e3143323968011ca300f76a.png)
因式分解(一)——提公因式法教学目标:因式分解的概念,和整式乘法的关系,公因式的相关概念,用提公因式法分解因式,学会逆向思维,渗透化归的思想方法.教学重点和难点:1. 因式分解;2. 公因式;3. 提公因式法分解因式.教学过程:一、提出问题,感知新知1.问题:把下列多项式写成整式的乘积的形式(1)x2+x =_________ (2)x2−1 =_________ (3)am+bm+cm =_ _学生思考,得出结果.2.分析特点:根据整式乘法和逆向思维原理(1)x2+x = x(x+1);(2)x2−1 = (x+1)(x−1);(3)am+bm+cm = m(a+b+c)分析特点:等号的左边:都是多项式等号的右边:几个整式的乘积形式.3.得到新知总结概念:像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.与整式乘法的关系:是整式乘法的相反方向的变形.注意:因式分解不是运算,只是恒等变形.形式:多项式 = 整式1×整式2×…×整式n4.分析例题:(1)x2+x =_________ (2)am+bm+cm =_ _(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m.因此,我们把每一项都含有的因式叫做公因式.5.认识公因式例:多项式 14m3n2+7m2n−28m3n3的公因式是?7m2n教师分析,学生解答二、学生动手,总结方法1.我们已经学习了公因式,下面请大家根据自己的理解完成下列的因式分解.把8a3b2−12ab3c分解因式.2.学生动手.3.分析过程:①先确定公因式:4ab2;②然后用每一项去除以公因式;③结果:4ab2(2a2b−3bc).4.总结方法:以上①②③的分解过程的方法叫做提公因式法.5.加强练习例:因式分解:① 2a(b+c)−3(b+c) ②3x3−6xy+x ③−4a3+16a2−18a ④6(x−2)+x(2−x)解:① 2a(b+c)−3(b+c) = (b+c)(2a−3)②3x3−6xy+x = x(3x2−6y+1)③−4a3+ 16a2−18a = −2a(2a2−8a+9)④6(x−2)+x(2−x) = (x−2)(6−x)三、小结:1.因式分解的概念;2.公因式;3.提公因式法.因式分解(二)——公式法教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x2−25和9x2−y2它们有什么共同特征?学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2−b2 = (a+b)(a−b)如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2 = ( )2②b2 = ( )2③ 0.16a4 =( )2④1.21a2b2 = ( )2⑤2x4 = ( )2⑥5x4y2 = ( )2解答:① 4a2 = ( 2a)2;②b2 = (b)2;③ 0.16a4 = ( 0.4a2)2;④ 1.21a2b2 = (1.1ab)2;⑤2x4 = (x2)2;⑥5x4y2 = (x2y)2.例2:下列多项式能否用平方差公式进行因式分解①−1.21a2+0.01b2②4a2+625b2③16x5−49y4④−4x2−36y2解答:①−1.21a2+0.01b2能用②4a2+625b2不能用③16x5−49y4不能用④−4x2−36y2不能用问题:根据学习用平方差公式分解因式的经验和方法,分析和推测运用完全平方公式分解因式吗?能够用完全平方公式分解因式的多项式具有什么特点?分析:整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.即:a2±2ab+b2 = (a±b)2公式特点:多项式是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数.例:分解因式:①16x2+24x+9 ②−x2+4xy−4y2解答:①16x2+24x+9 = (4x)2+2•3•(4x)+32 = (4x+3)2②−x2+4xy−4y2 = −[x2−2•x•2y+(2y)2] = −(x−2y)2随堂练习:三、小结:1.平方差公式;2.完全平方公式.典型例题1.如果a(a−b)2−(b−a) = (a−b)·M,那么M等于( )A.a(a−b) B.−a(a−b) C.a2−ab−1 D.a2−ab+1答案:D说明:因为a(a−b)2−(b−a) = a(a−b)2+(a−b) = (a−b)[a(a−b)+1] = (a−b)(a2−ab+1),所以M = a2−ab+1,答案为D.2.下列各项的两个多项式中没有公因式的一组是( )A.6xy+8yx2与−4x−3 B.(a+b)2与−a−bC.a−b与−a2+ab D.ax+y与x+y答案:D说明:选项A,6xy+8yx2= 2xy(3+4x),与−4x−3有公因式4x+3;选项B,(a+b)2与−a−b 有公因式a+b;选项C,−a2+ab = −a(a−b),与a−b有公因式a−b;选项D,ax+y与x+y没有公因式,所以答案为D.3.下列式子中,不能用平方差公式分解因式的是( )A.−m4−n2 B.−16x2+y 2 C.−x4 D.(p+q)2−9答案:A说明:选项A不能用平方差公式分解因式;选项B,−16x2+y2= (y+4x)(y−4x),可以用平方差公式分解因式;选项C,−x4 = (+x2)(−x2),可以用平方差公式分解因式;选项D,(p+q)2−9 = [(p+q)+3][(p+q)−3],也可以用平方差公式分解因式;所以正确答案为A.4.下列多项式中,能用公式法进行因式分解的是( )A.x2−xy+y2 B.x2+2xy−y2 C.x2+xy+y2 D.−x2+2xy−y2答案:D说明:观察四个选项中多项式的形式,不难得出A、B、C三个选项中的多项式不能用公式法进行因式分解,选项D,−x2+2xy−y2 = −(x2−2xy+y2) = −(x−y)2,可以用完全平方公式进行因式分解,所以答案为D.习题精选选择题:1.若多项式3x2+mx−4分解因式为(3x+4)(x−1),则m的值为( )A.7 B.1 C.−2D.3答案:B说明:因为因式分解并不改变多项式的值,所以(3x+4)(x−1) = 3x2+mx−4,而(3x+4)(x−1) = 3x2+4x−3x−4 = 3x2+x−4,因此,m = 1,答案为B.2.下列各式的分解因式中,正确的是( )A.3a2x−6bx+3x = 3x(a2−2b) B.xy2+x2y =xy(y+x) C.−a2+ab−ac = −a(a+b−c) D.9xyz−6x2y2= 3xyz(3−2xy)答案:B说明:选项A,3a2x−6bx+3x = 3x(a2−2b+1)≠3x(a2−2b),A错;选项B正确;选项C,−a2+ab−ac = −a(a−b+c)≠−a(a+b−c),C错;选项D,9xyz−6x2y2 = 3xy(3z−2xy)≠3xyz(3−2xy),D错;答案为B.3.若9x2−kxy+4y2是一个完全平方式,则k的值为( )A.6 B.±6 C.12 D.±12答案:D说明:由已知可设9x2−kxy+4y2 = (mx+ny)2 = m2x2+2mnxy+n2y2,所以m2 = 9,n2 = 4,2mn = k,由m2 = 9,n2 = 4可得m2n2 = 36,即(mn)2 = 36,则有mn =±6,所以k = 2mn =±12,答案为D.4.分解因式的结果为(x−2)(x+3)的多项式是( )A.x2+5x−6 B.x2−5x−6 C.x2+x−6D.x2−x−6答案:C说明:因为(x−2)(x+3) = x2−2x+3x−6 = x2+x−6,所以分解因式的结果为(x−2)(x+3)应该是x2+x−6,答案为C.5.下列从左边到右边的变形,是因式分解的是( )A.(x+1)(x−1) = x2−1 B.x2−1+x = (x+1)(x−1)+xC.x2−1 = (x+1)(x−1) D.2x·3x = 6x2答案:C说明:因式分解是把一个多项式化成几个整式的积的形式,则因式分解的结果首先应该是积的形式,因此,A、B都不正确;而选项D左边是两个单项式的乘积,它的变形过程只是简单的单项式乘以单项式的过程,不是因式分解,正确的答案应该是C.6.多项式5a3b3+ 15a2b−20a3b3的公因式是( )A.5a3b B.5a2b2 C.5a2b D.5a3b2答案:C说明:这个多项式中有三项,这三项的系数分别是5,15,−20,系数所含的公因式为5;第一项有因式a3,第二项中含因式a2,第三项中含因式a3,公因式则是a2,同样道理这三项还有公因式b,即这个多项式的公因式应该是5a2b,答案为C.7.下列分解变形中正确的是( )A.2(a+b)2−(2a+b) = 2(a+b)(a+b−1) B.xy(x−y)−x(y−x) =x(x−y)(y+1)C.5(y−x)2+3(x−y) = (y−x)(5x−5y+3) D.2a(a−b)2−(a−b) =(a−b)(a−b−1)答案:B说明:选项A,2a+b中没有a+b这个因式,因此,A中的变形是错误的;选项B,xy(x−y)−x(y−x) = (x−y)(xy+x) = x(x−y)(y+1),B正确;选项C,5(y−x)2+3(x−y) =(y−x)[5(y−x)+3] = (y−x)(5y−5x+3),C错误;选项D,2a(a−b)2−(a−b) = (a−b)[2a(a−b)−1] = (a−b)(2a2−2ab−1),D错误;答案为B.8.下列式子中,能用平方差公式分解因式的是( )A.a2+4 B.−x2−y2 C.a3−1 D.−4+m2答案:D说明:根据平方差公式的形式,不难得到能用平方差公式分解因式的应该是−4+m2 = (m+2)(m−2),答案为D.9.下列各题中,因式分解正确的是( )①(x−3)2−y2 = x2−6x+9−y2;②a2−9b2 = (a+9b)(a−9b);③4x6−1 = (2x3+1)(2x3−1);④(3x+2y)2−4y2 = 3x(3x+4y)A.①②③ B.②③④ C.③④ D.②③答案:C说明:①中的变形不是因式分解;②a2−9b2 = (a+3b)(a−3b)≠(a+9b)(a−9b),②中因式分解错误;③4x6−1 = (2x3+1)(2x3−1),③中因式分解正确;④(3x+2y)2−4y2 =(3x+2y+2y)(3x+2y−2y) = 3x(3x+4y),④中因式分解正确,所以答案为C.解答题:1.把下列各式分解因式:①9(x+y)2−4(x−y)2;②−8a4b3+2a2b;③4(a+b)−(a+b)2−4;④(a−2)(a−3)+ 5a−42.答案:①(5x+y)(x+5y);②2a2b(1+2ab)(1−2ab);③−(a+b−2)2;④(a+6)(a−6)说明:①9(x+y)2−4(x−y)2 = [3(x+y)+2(x−y)][3(x+y)−2(x−y)] =(3x+3y+2x−2y)(3x+3y−2x+2y) = (5x+y)(x+5y)②−8a4b3+2a2b = 2a2b(−4a2b2+1) = 2a2b(1+2ab)(1−2ab)③4(a+b)−(a+b)2−4 = −[(a+b)2−4(a+b)+4] = −[(a+b)−2]2 = −(a+b−2)2④(a−2)(a−3)+5a−42 = a2−3a−2a+6+5a−42 = a2−36 = (a+6)(a−6)2.已知a、b、c为三角形的三条边,且满足:a2+b2+c2−ab−bc−ac = 0,试判断△ABC 的形状,并说明理由.答案:a = b = c,等边三角形说明:因为2(a2+b2+c2−ab−bc−ac) = 2a2+2b2+2c2−2ab−2bc−2ac= (a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2) = (a−b)2+(a−c)2+(b−c)2再由已知a2+b2+c2−ab−bc−ac = 0,知2(a2+b2+c2−ab−bc−ac) = (a−b)2+(a−c)2+(b−c)2 = 0因为(a−b)2≥0,(a−c)2≥0 ,(b−c)2≥0,所以(a−b)2 = 0,(a−c)2 = 0,(b−c)2 = 0即a = b = c,所以该三角形为等边三角形.3.已知矩形面积是(x+2)(x+3)+x2−4(x>0),其中一边长是2x+1,求矩形的另一边长.答案:x+2说明:因为(x+2)(x+3)+x2−4 = (x+2)(x+3)+(x+2)(x−2) = (x+2)(x+3+x−2) =(x+2)(2x+1),即该矩形的面积是(x+2)(2x+1),而它的一边长为2x+1,所以它的另一边长为x+2.4.已知x3+x2+x+1 = 0,求1+x+x2+x3+…+x2003的值.答案:0说明:1+x+x2+x3+…+x2003 = (1+x+x2+x3)+(x4+x5+x6+x7)+…+(x4n+x4n+1+x4n+2+x4n+3)+…+(x2000+x2001+x2002+x2003) = (1+x+x2+x3)+x4(1+x+x2+x3)+...+x4n(1+x+x2+x3)+...+x2000(1+x+x2+x3) = (1+x+x2+x3)(1+x4+...+x4n+ (x2000)∵1+x+x2+x3 = 0,∴1+x+x2+x3+…+x2003 = (1+x+x2+x3)(1+x4+…+x4n+…+x2000) = 0。
用分组分解法进行因式分解(含答案)
![用分组分解法进行因式分解(含答案)](https://img.taocdn.com/s3/m/3f4788475bcfa1c7aa00b52acfc789eb172d9e13.png)
用分组分解法进行因式分解(含答案)知识精读】分组分解法是一种因式分解的方法,其原则是分组后可以直接提公因式,或者可以直接运用公式。
分组分解法的关键在于分组适当,而在分组时,必须有预见性,能预见到下一步能继续分解。
因此,细致的观察和分析多项式的特点是非常重要的。
分组分解法不仅可以用于因式分解,还可以在代数式的化简、求值以及一元二次方程和函数的研究中发挥重要作用。
分类解析】1.在数学计算、化简、证明题中的应用例 1.将多项式2a(a2+a+1)+a4+a2+1分解因式。
先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。
解:原式=2a((a2+a+1)+a4+a2+1)=a4+2a3+3a2+2a+1=(a4+2a3+a2)+(2a2+2a)+1=(a+a)2+2(a+a)+1=(a2+a+1)2,因此选择C。
例2.分解因式x5-x4+x3-x2+x-1.此题可将x5-x4+x3和-x2+x-1分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;或者将x5-x4、x3-x2和x-1分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。
解法1:原式=(x5-x4+x3)-(x2-x+1)=(x3-1)(x2-x+1)=(x-1)(x2+x+1)(x2-x+1)解法2:原式=x4(x-1)+x2(x-1)+(x-1)=(x-1)(x4+x2+1)=(x-1)[(x4+2x2+1)-x2]=(x-1)(x2+x+1)(x2-x+1)2.在几何学中的应用例:已知三条线段长分别为a、b、c,且满足a>b,a2+c2<b2+2ac。
证明:以a、b、c为三边能构成三角形。
构成三角形的条件是“两边之和大于第三边,两边之差小于第三边”。
证明:a2+c2-b2-2aca-c-b,因此a-c-b<0,即a<b+c,因此以a、b、c为三边能构成三角形。
1.分解因式:$a^2-3a-b^2+3b=$解:原式$=(a^2-3a)+(3b-b^2)=(a-3)(a+b-3)$。
因式分解-提公因式法(含答案)
![因式分解-提公因式法(含答案)](https://img.taocdn.com/s3/m/d39ae088cd22bcd126fff705cc17552707225e26.png)
因式分解 - 提公因式法【知能点分类训练】知能点 1因式分解的意义1.以下从左到右的变形,属于因式分解的是().A.( x+3)(x- 3) =x2- 9B. x2- 9+x=( x+3)( x- 3)- x C. xy2- x2y=xy(y-x)D. x2 +5x+4=x( x+5+)2.以下变形不属于分解因式的是().A.x2- 1=( x+1)( x- 1)B. x2+x+1=( x+1) 242C. 2a5- 6a2=2a2( a3- 3)D. 3x2-6x+4=3x( x- 2) +43.以下各式从左到右的变形中,哪些是整式乘法哪些是因式分解哪些二者都不是(1) ad+bd+cd+n=d( a+b+c) +n(2)ay2-2ay+a=a(y-1)2( 3)( x- 4)( x+4) =x2- 16(4)x2-y2+1=(x+y)(x-y)+1知能点 2提公因式法分解因式4.多项式- 7ab+14abx- 49aby 的公因式是 ________.5. 3x2y3, 2x2y,- 5x3y2z 的公因式是 ________.6.以下各式用提公因式法分解因式,此中正确的选项是().A.5a3+4a2- a=a( 5a2+4a)B. p( a- b)2+pq ( b- a)2=p( a-b )2(1+q)C.- 6x2( y- z)3+x( z- y)3=- 3x( z- y)2( 2x- z+y)D.- x n- x n+1- x n+2 =- x n( 1- x+x2)7.把多项式 a2( x- 2) +a( 2- x)分解因式等于().A.( x- 2)(a2+a)B.( x-2 )( a2- a)C. a( x-2)( a-1)D. a( x- 2)( a+1)8.以下变形错误的选项是().A.( y- x)2=( x- y)2B.- a- b=-( a+b)C.(a- b)3=-( b -a)3D.- m+n=-( m+n)9.分解以下因式 :( 1) 6abc- 3ac2( 2)- a3c+a4b+a3( 3)- 4a3+16a2- 26a(4)x(m-x)(m-y)-m(x-m)(y-m)知能点 3 利用因式分解解决问题10. 9992+999=__________=_________.11.计算(- 2)2007+(- 2)2008的结果是().A.2B.- 2C. 2007D.- 1 12.计算以下各题 :( 1)-× ;( 2)× +×-×13.先分解因式,再求值:xyz2+xy2z+x2yz,此中 x= 2, y=7,z=1.5204【综合应用提升】14.假如 3x2- mxy2 =3x( x- 4y2),那么 m 的值为 ________.15.写出以下各项的公因式 :( 1) 6x2+18x+6;( 2)- 35a( a+b)与42( a+b).16.已知 n 为正整数,试判断n2+n 是奇数仍是偶数,说明原因.17.试说明817- 279- 913能被 45 整除.因式分解 -公式法【知能点分类训练】知能点 1用平方差公式分解因式1.- b2+a2=___________________;9x 2- 16y2=________________________ .2.以下多项式(1) x2+y2;( 2)- 2a2- 4b2;(3)(-m)2-(-n)2;(4)-144x2+169y2;( 5)( 3a)2- 4( 2b)2中,能用平方差公式分解的有()A.1 个B.2 个C.3 个D.4 个3.一个多项式,分解因式后结果是(x3+2)( 2-x3),那么这个多项式是().A. x6-4B. 4- x6C. x9- 4D. 4- x94.以下因式分解中错误的选项是()A. a2- 1=( a+1)( a- 1)B.1- 4x2=( 1+2x)( 1- 2x)C. 81x2- 64y2=( 9x+8y)( 9x- 8y) D.(- 2y)2- x2=(- 2y+x)( 2y+x)5.分解因式 :(1) a2-( 2) 25( m+n)2- 16( m- n)244- 64x22-9y2(3)x( 4)( x+y)9知能点 2 用完整平方公式分解因式6. 4a2+______+81=( 2a- 9)2.7.多项式 a2- 4b2与 a2+4ab+4b2的公因式是().A.a2- 4b2B. a+2b C. a- 2b D.没有公因式8.以下因式分解中正确的选项是().A.x4- 8x2+16=( x-4)2B.- x2+x-1=-1(2x- 1)244C. x( m-n )- y( n- m)=( m-n)(x- y) ; D. a4- b4=( a2+b2)( a2-b2)9.以下各式:①-2212122222x - xy- y;② a +ab+2b;③- 4ab- a +4b;④ 4x +9y-12xy;2⑤ 3x2- 6xy+3y2. ?此中能用完整平方公式分解因式的有().10.分解以下因式 :( 1)- x 2+12xy - 36y 2( 2)25x 2-10x+1( 3)- 2x 7+36x 5- 162x 3( 4)( a 2+6a ) 2+18( a 2+6a ) +81知能点 3 利用因式分解解决问题11.计算: 2 0072 -72 =_____________;992+198+1=___________. 12.假如 ab=2, a+b=3,那么 a 2+b 2=________.13.若 a 2+2( m - 3) a+16 是完整平方式,则 m 的值为().A .- 5B .- 1C .7D .7 或- 114.已知 a=22, b=25,求( a+b ) 2-( a - b ) 2 的值.754415.利用因式分解计算 :( 1) 9×- 4× ;( 2) 80× +160×× +80×(3) 1812 6123012 1812【综合应用提升】16.分解以下因式:( 1) 9x2( a- b) +y2( b- a)(2)4a2b2-(a2+b2)2( 3) x4- 81(4)1-x2+6xy-9y217.已知 x- y=- 2,求( x2 +y2)2- 4xy( x2+y2) +4x2y2的值.【开放探究创新】18.已知 a, b, c 是△ ABC的三条边.(1)判断( a- c)2- b2的值的正负 ;(2)若 a, b, c 知足 a2+c2+2b (b -a- c) =0,判断△ ABC的形状.【中考真题实战】19.(沈阳)分解因式:2x2- 4x+2=________.20.(成都)把 a3+ab2- 2a2b 分解因式的结果是 ________.21.(衡阳)分解因式x3- x,结果为().A. x( x2- 1)B.x( x-1)2C.x( x+1)2D. x( x+1)( x-1)22.(北京)分解因式a2-4a+4- b2.因式分解阶段性复习一、阶段性内容回首1.把多项式化成几个整式_______的形式叫做因式分解,也叫________.2.多项式中每一项都含有_________的因式叫公因式.3.把一个多项式中各项的________提出来进行因式分解的方法叫提公因式法.4.运用多项式的 _________ 进行因式分解的方法叫做公式法.5 . a2- b2=_______, ?即两个数的平方差等于这两个数的________?乘以这两个数的_______.6. a2± 2ab+b2=________,即两个数的平方和加上(或减去)这两个数的积的2?倍等于这两个数的 ________.7.分解因式的一般步骤:假如多项式各项有_______,则先把 _______提出来, ?而后再考虑用 ________,最后 _________ .二、阶段性稳固训练1.(福州)分解因式: x3-4x=_____________.2.(贵阳)分解因式: 2x2-20x+50=____________ .3.以下变形属于因式分解的是().A.(x+1)( x- 1) =x2- 1B. a2-1(a1)22a b2b bC. x2+x+ 1=( x+1)2D. 3x2- 6x+4=3x2(x-2) +4 42x4.以下多项式加上 4x2后,能够成为完整平方式的是().A. a2+2ax B.- a2+2axC.- 2x+1D. x4+45.① 4xy;② 12xy2;③- 2y2;④ 4y.此中能够作为多项式-28x2y+12xy2-24y 3的因式的是().A.④B.②④C.①③D.③④6.用因式分解的方法计算 +× +的值为().A.5 730B.2 500C. 250 000D.100 0007.分解以下多项式 :( 1) 5ax2- 10axy+5ay2( 2)4x2-3y( 4x- 3y)( 3)( x2-1)2+6( 1- x2) +9(4)1-x2+6xy-9y2( 5)( a 2- 1a ) 2+(a 2- a )+ 12 168.假如 x 2+mxy+9y 2 是完整平方式,求代数式 m 2+4m+4 的值.1 1 1 12 ) .9.计算( 1-2 )(132 )(1 2 )ggg(1102410.假如 m , n 知足│ m+2│ +( n - 4) 2=0,那么你能将代数式( x 2+y 2)-( mxy+n )?分解因式吗11.已知 a 2+b 2+c 2=20, ab+bc+ac=10,试求出( a+b+c ) 2 的值.12.已知 a ,b ,c 为△ ABC 的三边,且知足条件a 2 -c 2+ab - bc=0,试说明△ ABC?为等腰三角形.13.察以下各式:32- 12=4× 2, 42- 22=4× 3,52-3 2=4×4,⋯(1)猜想( n+2)2- n2的果.(2)你的猜想.14.已知 a+b= 2,ab=1,求 a3b+2a2b2+ab3的.3215.(1)假如 x2+2x+2y+y2 +2=0,求 x2007+y2008的.(2)已知 m+n= 3, m- n=1,求 m2- 2mn+3m+3n+n 2的.44。
因式分解(含答案)
![因式分解(含答案)](https://img.taocdn.com/s3/m/0c30ae0c6d175f0e7cd184254b35eefdc8d3158b.png)
1.4 因式分解◆赛点归纳因式分解是中学数学的一种重要的恒等变形,也是解决许多数学问题的重要途径和方法.在初中数学竞赛中,常用的方法除教材中介绍的提取公因式法、公式法、分组分解法外,还有十字相乘法、折(添)项法、换元法和待定系数法等.◆解题指导例1 (2001,重庆市竞赛)因式分解:4x2-4x-y2+4y-3=______.【思路探究】这是一个二次五项式,显然没有公因式可以提取,这就要用其他因式分解法,经观察可用分组分解法.如何分组呢?例2 (2001,大连市第八届“育英杯”)分解因式x(x-1)+y(y+1)-2xy•的结果是_________.【思路探究】显然没有公因式可以提取,所以必须先运用整式乘法将它展开,展开后的多项式与例1相似,故宜用分组分解法.例3 (2002,北京市竞赛)a4+4分解因式的结果是().A.(a2+2a-2)(a2-2a+2)B.(a2+2a-2)(a2-2a-2)C.(a2+2a+2)(a2-2a-2)D.(a2+2a+2)(a2-2a+2)【思路探究】本题不可分组,又无法直接运用公式法,但这两项都是完全平方数,因此可通过添项利用公式法分解.例4分解因式:x3-3x2+4.【思路探究】这是一个关于x的三次式,直接运用分组分解法是难以完成的,•可以先将二次项或常数项进行拆项,再进行恰当的分组分解.例5 分解因式:x2+xy-6y2+x+13y-6.【思路探究】这是二次六项式,运用分组分解法有困难.根据整式乘法可知,这个二次六项式可分解为两个一次三项式,且前三项二次项x2+xy-6y2可分解为(x+3y)(x-2y).由此可知,这两个一次式的常数项待定,因此,可用待定系数法分解.例6 (2000,“五羊杯”,初三)分解因式:(x4+x2-4)(x4+x2+3)+10=______.【思路探究】这是一道八次多项式因式分解题,在展开它时,要有目标,即在运用整式乘法将它展开后,必须考虑下一步能否分解因式.由观察可知,这两个四次三项式结构相同,因此,将四次项与二次项的和作为一个整体展开可分解因式.【拓展题】分解因式:(x2+xy+y2)2-4xy(x2+y2).◆探索研讨提取公因式法、公式法和分组分解法是因式分解的基本方法.对于一些较为复杂的多项式因式分解,就需用到换元法、拆(添)项法、待定系数法.请结合本节的例题,总结拆(添)项法、换元法可分别化归为哪些基本方法?待定系数法实质是化归为解什么问题?◆能力训练1.下列四个从左到右的变形中,是因式分解的是().A.(x+1)(x-1)=x2-1 B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1)D.m2-2m-3=m(m-2-3m)2.把多项式x2-y2-2x-4y-3因式分解之后,正确的结果是().A.(x+y+3)(x-y-1)B.(x+y-1)(x-y+3)C.(x+y-3)(x-y+1)D.(x+y+1)(x-y-3)3.将多项式x2-4y2-9z2-12yz分解成因式的积,结果是().A.(x+2y-3z)(x-2y-3z)B.(x-2y-3z)(x-2y+3z)C.(x+2y+3z)(x+2y-3z)D.(x+2y+3z)(x-2y-3z)4.下列五个多项式:①a2b2-a2-b2-1;②x3-9ax2+27a2x-27a3;③x(b+c-d)-y(d-b-c)-2c+2d-2b;④3m(m-n)+6n(n-m);⑤(x-2)2+4x.其中在有理数范围内可以进行因式分解的有().A.①,②,③B.②,③,④C.③,④,⑤D.①,②,④5.已知二次三项式21x2+ax-10可分解成两个整系数的一次因式的积,那么().A.a一定是奇数B.a一定是偶数C.a可为奇数也可为偶数D.a一定是负数6.将a4+b4+c4-2a2b2-2b2c2-2c2a2分解因式得().A.(a2-b2-c2)2B.(a2-b2-c2+2bc)(a2-b2-c2-2bc)C.(a+b-c)(a-b+c)(a+b+c)(a-b-c)D.(a+b-c)(b+c-a)(c+a-b)(a+b+c)7.分解因式3a2-7a-6=______.8.分解因式x2+4xy-4+4y2=_______.9.把代数式(x+y-2xy)(x+y-2)+(xy-1)2分解成因式的乘积,应当是______.10.分解因式(x2-1)(x+3)(x+5)+12=_______.11.分解因式x5+x+1=_______,x5+x-1=______.12.(2000,“五羊杯”,初二)分解因式(x-2)3-(y-2)3-(x-y)3.13.(2001,“五羊杯”,初二)分解因式(2x-3y)3+(3x-2y)3-125(x-y)3.14.(2002,“五羊杯”,初二)分解因式(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6.15.分解因式(x+1)4+(x+3)4-272.16.分解因式6x2-5xy-6y2-2xz-23yz-20z2.答案:解题指导例1 (2x+y-3)(2x-y+1).[提示:4x2-4x-y2+4y-3 =(4x2-4x+1)-(y2-4y+4)=(2x-1)2-(y-2)2=(2x+y-3)(2x-y+1).]例2 (x-y)(x-y-1).[提示:x(x-1)+y(y+1)-2xy =x2-x+y2+y-2xy=(x-y)2-(x-y)=(x-y)(x-y-1).]例3 D [提示:a4+4=a4+4a2+4-4a2=(a2+2)2-(2a)2 =(a2+2a+2)(a2-2a+2).]例4 (x+1)(x-2)2.解法1 x3-3x2+4=x3+x2-4x2+4=x2(x+1)-4(x+1)(x-1)=(x+1)(x-2)2.解法2 x3-3x2+4=x3+1-3x2+3=(x+1)(x2-x+1)-3(x+1)(x-1)=(x+1)(x2-4x+4)=(x+1)(x-2)2.解法3 x3-3x2+4=x3+x2-4x2-4x+4x+4=x2(x+1)-4x(x+1)+4(x+1)=(x+1)(x2-4x+4)=(x+1)(x-2)2.例5 设x2+xy-6y2+x+13y-6=(x+3y+m)(x-2y+n)=x2-2xy+nx+3xy-6y2+3ny+mx-2my+mn=x2+xy-6y2+(n+m)x+(3n-2m)y+mn.比较左、右两边对应项系数,得1,2,3213, 3.6.m n m n m n mn +=⎧=-⎧⎪-=⎨⎨=⎩⎪=-⎩解得 ∴x 2+xy -6y 2+x+13y -6=(x+3y -2)(x -2y+3).例6 (x 2+2)(x+1)(x -1)(x 2+x+1)(x 2-x+1).[提示:(x 4+x 2-4)(x 4+x 2+3)+10=(x 4+x 2)2-(x 4+x 2)-12+10=(x 4+x 2)2-(x 4+x 2)-2=(x 4+x 2-2)(x 4+x 2+1)=(x 2+2)(x 2-1)[(x 4+2x 2+1)-x 2]=(x 2+2)(x 2-1)[(x 2+1)2-x 2]=(x 2+2)(x+1)(x -1)(x 2+x+1)(x 2-x+1).]【拓展题】 设a=x+y ,b=xy ,则(x 2+xy+y 2)2-4xy (x 2+y 2)=[(x+y )2-xy] 2-4xy[(x+y )2-2xy]=(a 2-b )2-4b (a 2-2b )=a 4-6a 2b+9b 2=(a 2-3b )2=(x 2+2xy+y 2-3xy )2=(x 2-xy+y 2)2.能力训练1.C [提示:根据因式分解的概念判断.]2.D [提示:x 2-y 2-2x -4y -3=(x 2-2x+1)-(y 2+4y+4)=(x -1)2-(y+2)2=[(x -1)+(y+2)][(x -1)-(y+2)]=(x+y+1)(x -y -3).]3.D [提示:x 2-4y 2-9z 2-12yz=x 2-(4y 2+9z 2+12yz )=x 2-(2y+3z )2=[x+(2y+3z )][x -(2y+3z )]=(x+2y+3z)(x-2y-3z).]4.B [提示:②式=(x-3a)3;③式=x(b+c-d)+y(b+c-d)-2(b+c-d)=(b+c-d)(x+y-2);④式=(m-n)(3m-6n)=3(m-n)(m-2n).所以②、③、④式合乎要求.]5.A [提示:利用十字相乘法可推断.]6.C [提示:原式=a4-a2b2-2a2bc-a2c2-a2b2+2a2bc -a2c2+b4-2b2c2+c4=a4-a2(b2+2bc+c2)-a2(b2-2bc+c2)+(b2-c2)2 =a4-a2(b+c)2-a2(b-c)2+(b+c)2(b-c)2=[a2-(b+c)2][a2-(b-c)2]=(a+b+c)(a-b-c)(a+b-c)(a-b+c).]7.(3a+2)(a-3).8.(x+2y+2)(x+2y-2).[提示:x2+4xy-4+4y2 =(x2+4xy+4y2)-4=(x+2y)2-4=(x+2y+2)(x+2y-2).]9.(x-1)2(y-1)2.[提示:(x+y-2xy)(x+y-2)+(xy-1)2.=(x+y)2-2xy(x+y)-2(x+y)+4xy+x2y2-2xy+1 =(x+y)2-2(x+y)(xy+1)+(xy+1)2=(x+y-xy-1)2=(x-1)2(y-1)2.]10.(x2+4x-3)(x2+4x+1).[提示:(x2-1)(x+3)(x+5)+12=(x+1)(x+3)(x-1)(x+5)+12=(x2+4x+3)(x2+4x-5)+12=(x2+4x)2-2(x2+4x)-15+12=(x2+4x-3)(x2+4x+1).]11.(x3-x2+1)(x2+x+1);(x3+x2-1)(x2-x+1).[提示:x5+x+1=x2(x3-1)+(x2+x+1)=(x2+x+1)[x2(x-1)+1]=(x3-x2+1)(x2+x+1);x5+x-1=x2(x3+1)-(x2-x+1)=(x2-x+1)[x2(x+1)-1]=(x3+x2-1)(x2-x+1).] 12.(x-2)3-(y-2)3-(x-y)3=[(x-2)-(y-2)][(x-2)2+(x-2)(y-2)+(y-2)2]-(x-y)=(x-y)[(x-2)2+(x-2)(y-2)+(y-2)2-(x-y)2]=3(x-y)(xy-2y-2x+4)=3(x-2)(y-2)(x-y).13.A3+B3+C3-3ABC=(A+B+C)(A2+B2+C2-BC-CA-AB).若A+B+C=0,便有A3+B3+C3=3ABC.令A=2x-3y,B=3x-2y,C=5y-5x,则符合上述条件,易得A3+B3+C3=3ABC,即(2x-3y)3+(3x-2y)3-125(x-y)3=15(2x-3y)(3x-2y)(y-x).14.设(t+1)3=x,y=2+t+t2,则原式=[(4+2t+2t2)-3(1+3t+3t2+t3)][(2+t+t2)-(1+3t+3t2+t3)]-[(t+1)3] 2=(2y-3x)(y-x)-x2=2x2-5xy+2y2=(2x-y)(x-2y)=[2(t3+3t2+3t+t)-(t2+t+2)][(t3+3t2+3t+1)-2(t2+t+2)]=(2t3+5t2+5t)(t3+t2+t-3)=t(2t2+5t+5)(t-1)(t2+2t+3).15.令y=(1)(3)2x x+++=x+2,则原式=(y -1)4+(y+1)4-272=2(y 4+6y 2+1)-272=2(y 4+6y 2-135)=2(y 2-9)(y 2+15)=2(y+3)(y -3)(y 2+15)=2(x+5)(x -1)(x 2+4x+19).16.5-422-33由上面的双十字相乘法,得2×5-3×(-4)=10-12=-2.∴6x 2-5xy -6y 2-2xz -23yz -20z 2=(2x -3y -4z )(3x+2y+5z ).。
北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)
![北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)](https://img.taocdn.com/s3/m/d143864eda38376baf1faea3.png)
因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
专题4 因式分解方法的应用(含答案)
![专题4 因式分解方法的应用(含答案)](https://img.taocdn.com/s3/m/a4ee7b2111661ed9ad51f01dc281e53a58025186.png)
专题4 因式分解方法的应用知识解读在一定的条件下,把一个代数式变换成另一个与它恒等的代数式称为代数式的恒等变形,它是研究代数式、方程和函数的基础.因式分解是代数变形的重要工具.在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础.现阶段,因式分解在数值计算、代数式的化简求值、不定方程(组)的求解、代数等式的证明等方面有广泛的应用.同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力及探究能力得到提高.因此,有人说因式分解是学好代数的基础之一.培优学案典例示范一、因式分解在代数式化简中的应用例1 (希望杯试题)若0=++c b a ,则3223b c b abc c a a ++-+的值是 . 【提示】将3223b c b abc c a a ++-+变形,设法凑c b a ++. 【技巧点评】本题已知0=++c b a ,在对3223b c b abc c a a ++-+变形的时候,需要设法凑c b a ++,凑得的c b a ++就用0代替. 跟踪训练11.已知2=+b a ,则b b a 422+-的值是 ( ) A.2 B.3 C.4 D.6 二、利用因式分解进行简便计算 例2 计算下列各题:(1))220162013()2107)(285)(263)(241()220172014()2118)(296)(274)(252(+⨯⋅⋅⋅+⨯+⨯+⨯+⨯+⨯⋅⋅⋅+⨯+⨯+⨯+⨯;(2)20162015201520132015220152323-+-⨯-【提示】观察分子、分母数字间的特点,用字母表示数,从一般情形考虑,通过分解变形,寻找复杂数值下隐含的规律. 【解答】【技巧点评】当计算的式子中数值较大,且彼此有联系的时候,常考虑用字母代替这些较大的数值进行计算,这样做的目的是简化运算过程.跟踪训练2 2.计算: (1))201611)(201511()411)(311)(211(22222--⋅⋅⋅---; (2)(华杯赛试题))6435)(6427)(6419)(6411)(643()6439)(6431)(6423)(6415)(647(4444444444++++++++++.三、应用因式分解推理证明例3 若ABC ∆的三边长分别是a ,b ,c .(1)当ac c ab b 2222+=+时,试判断ABC ∆的形状; (2)判断代数式ac c b a 2222-+-值的符号.【提示】(1)由边长判断三角形形状,这个三角形可能是等腰(等边)三角形,也可能利用勾股定理逆定理,证明这个三角形是直角三角形.可将右边的各项移到方程的左边,然后因式分解;(2)先考虑将ac c b a 2222-+-因式分解. 【解答】【技巧点评】因式分解是代数变形的有力工具.跟踪训练33.(北京市竞赛试题)已知0)()()(222=-+-+-b a c a c b c b a .证明:a ,b ,c 三个数中至少有两个相等. 拓展延伸例4 两个小孩的年龄分别是x ,y ,且992=+xy x ,试求这两个小孩的年龄.【提示】本题的突破口是两个小孩的年龄应该是正整数,且xy x +2可因式分解为)(y x x +,由于x ,y 是正整数,因此x ,)(y x +也是正整数,且x <)(y x +,接下去只需考虑99可分解成哪两个正整数的乘积即可. 【解答】【技巧点评】当已知条件中出现一个方程两个未知数,常需考虑将这个方程化成两个方程,或者分类讨论所有可能,化一个方程为两个方程,常用的办法就是因式分解. 跟踪训练44.设a 是一个无理数,且a ,b 满足1=-+b a ab ,则b = . 竞赛链接例5(1)(上海竞赛试题)求方程07946=--+y x xy 的整数解;(2)(希望杯试题)设y x ,为正整数,096422=-++y y x ,求xy 的值. 【提示】(1)结合方程的特点对其因式分解,将不定方程转化为方程组求解; (2)将等式左边适当变形后进行配方,利用y x ,为正整数的特点,结合不等式求解。
七年级数学尖子生培优竞赛专题辅导第三讲 因式分解的应用(含答案)
![七年级数学尖子生培优竞赛专题辅导第三讲 因式分解的应用(含答案)](https://img.taocdn.com/s3/m/affeef9a6137ee06eef91848.png)
第三讲 因式分解的应用趣题引路】考考你:333311111222231*********++等于多少? 想一想立方和公式,设a =22223,b =11112,a -b =11111,故原式=3333)(b a a b a -++=))(2())((2222b ab a b a b ab a b a +--+-+=b a b a -+2=11112444461111222223-+=3333433335.这是因式分解的魔力!想知道因式分解在哪些方面有用吗?怎样用好这个工具?本讲将告诉你答案.知识拓展】因式分解是代数变形的重要工具.它在数值计算、代数式的化简、恒等式的证明、不定方程、几何证明等方面都有广泛应用.下面举例说明. 一、利用因式分解化简求值例1 若a 是方程x 2-3x +1=0的一个根,试求2a 5-5a 4+2a 3-8a 2+3a 的值.解析 依题意有a 2-3a +1=0,设法弄清所求代数式与a 2-3a +1的联系,通过分解可使原式变成包含a 2-3a +1的代数式.解:∵a 是x ²-3x +1=0的根, ∴a 2-3a +1=0.原式=2a 3(a 2-3a +1)+a 4-8a 2+3a=2a 3(a 2-3a +1)+a 2(a 2-3a +1)+3a (a 2-3a +1) =0.点评:本题也可将a ²-3a =-1反复代入原式化简求之.例2 化简: 200019981998200022-+·420011998199719972-⨯-.解析 式子中出现1997,1998,2000,2001,如设其中一个为x ,则其余三个均用含x 的式子表示,从而将问题转化为含x 的代数式化简问题. 解:设1998=x ,则原式=)43)(2()23)(45(2222-+--+-++x x x x x x x x =)4)(1)(2)(1()2)(1)(4)(1(+--+--++x x x x x x x x =1.点评:这是一种换元的思想.换元时通常取几个数(或式)的算术平均数较为简单.二、利用因式分解证明等式(不等式)例3 设a ,b ,c ,d 满足a ≤b ,c ≤d ,a +b =c +d ≠0,a 3+b 3=c 3+d 3,求证;a =c ,b =d . 解析 由a 3+b 3=c 3+d 3使人想起立方和公式,展开后两边约去a +b 和c +d ,问题简化. 证明:由a 3+b 3=c 3+d 3得(a +b )(a 2-ab +b 2)=(c +d )(c 2-cd +d 2). 由于a +b =c +d ≠0, 故a 2-ab +b 2=c 2-cd +d 2. 配方(a +b )2-3ab =(c +d )2-3cd . 从而ab =cd .于是(a 2-ab +b 2)-ab =(c 2-cd +d 2)-cd . 即(a -b )2=(c -d )2. 而a ≤b ,c ≤d ,故b -a =d -c ,与已知式a +b =c +d 比较得b =d ,a =c .例4 设a 、b 、c 是三角形三条边,求证:a 2-b 2-c 2-2bc <0.解析 利用因式分解将所证不等式左边进行变形从而得到三边的易判断的关系. 证明:∵a 2-b 2-c 2-2bc =a 2-(b +c )2=(a +b +c )(a -b -c ). ∴需证(a +b +c )(a -b -c )<0. 又∵a ,b ,c 是三角形三条边,∴a +b +c >0,a <b +c .∴(a +b +c )(a -b -c )<0,原式得证.三、利用因式分解解方程(组)例5 (2001年北京初二竞赛试题)已知实数x ,y 满足方程组⎪⎩⎪⎨⎧=++=++623222y x y xy x ,则:|x +y +1|= .解析 方程中出现x +y ,xy ,x 2+y 2,使人想到完全平方公式,将x +y 看作整体处理,消去xy ,分解因式得x +y .通常:若ab =0,则a =0或b =0.解:由x 2+y 2=6得(x +y )2=6+2xy . ① 由x +xy +y =2+32得xy =2+32-(x +y ). ② 将②代人①得(x +y )2+2(x +y )-(10+62)=0. 即(x +y )2+2(x +y )-(4+2)(2+2)=0. 故(x +y +4+2)(x +y -2-2)=0. ∴x +y =-4-2或x +y =2+2∴|x +y +1|=3+2.点评:10+62=8+62+2=(4+2)(2+2)很关键.例6 (上海竞赛题)求方程6xy +4x -9y -7=0的整数解.解析 利用整数性质,将方程左边化成两个因式的乘积再分情况讨论. 解:方程可化为 2x (3y +2)-3(3y +2)-1=0, (2x -3)(3y +2)=1.∴⎩⎨⎧=+=-123132y x 或⎩⎨⎧-=+-=-123132y x .解得x =1,y =-1.四、利用因式分解研究整除问题例7 (1999年全国联赛试题)某校在向“希望工程”捐款活动中,甲班的m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是(mn +9m +11n +145)元,已知每人的捐款数相同,且都是整数,求每人的捐款数.解析 涉及整数问题常常要对已知式进行因式分解. 解 依题意mn +9m +11n +145=(m +11)(n +9)+46 可知:(m +11)整除(mn +9m +11n +145), (n +9)整除(mn +9m +11n +145)且m +11=n +9, 故 m +11和n +9均整除46, 而46=46×1=23×2.所以,m +11=n +9=46或m +11=n +9=23 由此可得每人捐款数为47元或25元. 好题妙解】佳题新题品味例1 (江苏第17届初二竞赛试题)已知a ,b ,c 是正整数,a >b ,且a 2-ab -ac +bc =7,则a -c 等于( )A.-1B.-1或-7C.1D.1或7解析 将已知等式分解为(a -b )(a -c )=7,因a >b ,故a -b 和a -c 均为正整数,因而a -c 等于1或7,选D.例2 (2003年太原市竞赛试题)已知m 2+2mn =384,3mn +2n 2=560.则2m 2+13mn +6n 2-444的值是( )A.2001B.2002C.2003D.2004解析 采用局部分解:2m 2+13mn +6n 2-444=2(m 2+2mn )+3(3mn +2n 2)-444=2×384+3×560-444=2004,选D.例3 计算20052-20042+20032-20022+…+32-22= .解析 反复运用平方差公式展开得(2005+2004)×1+(2003+2002)×1+…+(3+2)×1=(20052)20042011014.2+⨯=例4 (2002年黄冈题)观察:1×2×3×4+1=52 2×3×4×5+1=112 3×4×5×6+1=192 …(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000×2001×2002×2003+1的结果(用一个最简式子表示).解析 注意到给定式子均为四个连续整数之积,右边为完全平方数,且5=1×4+1,11=2×5+1,19=3×6+1…恰好是第一和第四个整数之积加1,第n 个式子应为n (n +3)+1.解 (1)对于自然数n ,有n (n +1)(n +2)(n +3)+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.(2)由(1)得2000×2001×2002×2003+1=(20002+3×2000+1)2=40060012中考真题欣赏例1 (北京)观察下列顺序排列的等式: 9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 …猜想第n 个等式(n 为正整数)应为 .解析 注意第n 个式子与式子中数字间的关联.9不变,第二个数比n 小1,第三个数等于n ,第四个数为10(n -1)+1,故第n 个式子为:9(n -1)+n =10n -9.例2 (2003年北京崇文区)观察下列每组算式,并根据你发现的规律填空:4520,3618,⨯=⎧⎨⨯=⎩ 5630,4728,⨯=⎧⎨⨯=⎩6742,5840.⨯=⎧⎨⨯=⎩已知122×123=15006,则121×124= .解析 15004,注意到121×124与122×123仅有末位数字不同,因而结果仅末位不同竞赛样题展示例1 (奥林匹克训练题)适合(y -2)x 2+yx +2=0的非负整数对(x 、y )的个数是( ) A.1 B.2 C.3 D.4解析 由题设得y (x 2+x )-2(x ²-1)=0,即(x +1)[yx -2(x -1)]=0 因为x ≥0,故有yx =2(x -1),显然x ≠0,所以x >0,2(1)22x y x x-==-,于是x =1或2,即只有两组解,选B.例2 (2003年全国初中联赛试题)满足等式2003的正整数对(x ,y )的个数是( )A.1B.2C.3D.4解析 由-2003=0可得0=.00.故xy =2003.又因为2003为质数,因此必有12003x y =⎧⎨=⎩ 20031x y =⎧⎨=⎩或 故选B.例3 (希望杯竞赛题)已知n 是正整数,且n 4-16n 2+100是质数,求n 的值. 解析 利用质数的因数只有1和本身,将已知式分解因式讨论求解.解 n 4-16n 2+100=n 4+20n 2+100-36n 2=(n 2+10)2-36n 2=(n 2+6n +10)(n 2-6n +10). 因n 2+6n +10≠1,而n 4-16n 2+100为质数且n 为正整数. 故n 2-6n +10=1,即(n -3)2=0,得n =3.例4 按下面规则扩充新数:已有两数a 、b ,可按规则c =ab +a +b 扩充一个新数,在a 、b 、c 三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4(1)求按上述规则操作三次得到扩充的最大新数; (2)能否通过上述规则扩充得到新数1999,并说明理由.解析 (1)第一次只能得到1×4+4+1=9,因为要求最大新数,所以,第二次取4和9,得到4×9+4+9=49,同理,第三次取9和49,就得到扩充三次的最大数为499.(2) 因c =ab +a +b =(a +1)(b +1)-1,故c +1=(a +1)(b +1),取数a 、c ,可得新数d =(a +1)(c +1)-1=(a +1)(b +1)(a +1)-1=(a +1)2(b +1)-1,即d +1=(a +1)2(b +1);取数b 、c 同理可得e =(b +1)(c +1)-1=(b +1)(a +1)(b +1)-1,e +1=(b +1)2(a +1).设扩充后的新数为x ,则总可以表示为x +1=(a +1)m ·(b +1)n ,又因1999+1=2000=24×53,故1999可以通过上述规则扩充得到.过关检测】A 级1.已知724-1可被40至45之间的两个整数整除,这两个整数是( ) A.41,48 B.45,47 C.43,48 D.41,472.已知a 、b 、c 、d 为非负整数,且ac +bd +ad +bc =1997,则a +b +c +d = .3.已知两个不同的质数p 、q 满足下列关系:p 2-2001p +m =0,q 2-2001q +m =0,m 是适当的整数,那么p 2+q 2的数值是( )A.4004006B.3996005C.3996003D.40040044.计算3322782278782222+=-⋅+ . 5.求证:对于任何自然数n ,323122n n n ++都是3的倍数.6.已知:x ²-x -1=0,则-x 3+2x 2+2002的值为 .7.设方程x 2-y 2=1993的整数解为,αβ,则αβ= .8.整数a 、b 满足6ab =9a -10b +303,则a +b = .B 级1.设a <b <c <d ,如果x =(a +b )(c +d ),y =(a +c )(b +d ),z =(a +d )(b +c ),那么x 、y 、x 的大小关系为( )A.x <y <zB.y <z<xC.z<x <yD.不能确定2.在方程组33336x y z x y z ++=⎧⎨++=-⎩中x 、y 、z 是互不相等的整数,那么此方程组的解的个数为( ) A.6 B.3 C.多于6 D.少于33.设y =x 4-4x 3+8x 2-8x +5,其中x 为任意数,则y 的取值范围是( ) A.一切数 B.一切正数C.一切大于或等于5的数D.一切大于或等于2的数4.一个自然数a 恰好等于另一个自然数b 的平方,则称自然数a 为完全平方数,如64=82,64就是一个完全平方数,若a =19982+19982×19992+19992,求证:a 是一个完全平方数.5.设a 、b 、c 、d 是4个整数,且使得m =(ab +cd )2-14(a 2+b 2-c 2-d 2)2是个非零整数,求证:m 一定是个合数.6.求证:存在无穷多个自然数k ,使得n 4+k 不是质数.7.解方程组:33323,2().x y z xyz x y z ⎧--=⎪⎨=+⎪⎩()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解的应用与探究【温馨提示】《分解因式》一章中,我们主要学习了分解因式的概念、会用两种方法分解因式,即提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数)。
具体要求有:1、经历探索分解因式方法的过程,体会数学知识之间的整体(整式乘法与因式分解)联系。
2、了解因式分解的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数)。
3、通过乘法公式:(a +b )(a -b )=a 2-b 2,(a ±b )2=a 2±2ab +b 2的逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理思考及语言表达能力。
在中考中,除了考查对一个整式进行分解因式等常规题型外,因式分解作为一种重要的解题方法和工具,经常出现于各种题型中,以下几种就值得引起注意。
★ 范例精讲例1【构造求值型】【山西04】已知x +y =1,那么221122x xy y ++的值为 ;分析:通过已知条件,不能分别求出x 、y 的值,所以要考虑把所求式进行变形,构造出x +y 的整体形式,即221122x xy y ++=12(x 2+2xy +y 2)=12(x +y )2=12.在此过程中,我们先提取公因式12,再用完全平方公式对原式进行因式分解,产生x +y 的整体形式,最后将x +y =1代入求出最终结果.例2【构造求值型】已知x 2+2x +y 2+6y +10=0,求xy 的值. 答:xy =3例3【构造求值型】已知:a =10000,b =9999,求a 2+b 2-2ab -6a +6b +9的值。
解:a 2+b 2-2ab -6a +6b +9=(a -b )2-2×(a -b )×3+32=(a -b -3)2=4例4【构造求值型】【广西桂林04】计算:=+--⋅⋅⋅---20191832222222 ;分析:为了便于观察,我们将原式“倒过来”,即 原式=22222223181920+--⋅⋅⋅--- =2222)12(2231819+--⋅⋅⋅---=22222231819+--⋅⋅⋅-- =222)12(22318+--⋅⋅⋅-- =22222318+--⋅⋅⋅- =……=22+2=4+2=6此题的解题过程中,巧妙地用到了提公因式法进行分解因式,使结构特点明朗化,规律凸现出来。
此题解法很多,比如,我们还可以采用整体思想,把原式看作一个整体,利用方程与提公因式法分解因式相结合的方法解答此题。
设M =20191832222222+--⋅⋅⋅---,则 -M =20191832222222-++⋅⋅⋅+++-)]2222(1[2)22221(2M 1918219182-+⋅⋅⋅++-=+-⋅⋅⋅---=62)]222-4M (1[22019-=+⨯+--=M ,即6-2M M =,解得M =6.例5【探索规律型】观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,……你发现了什么规律?请用含有n (n 为正整数)的等式表示出来,并说明其中的道理。
例6【探索规律型】阅读下列因式分解的过程,再回答所提出的问题: 1+x +x (1+x )+x (1+x )2=(1+x )[1+x +x (1+x )] =(1+x )2(1+x ) =(1+x )3⑴上述分解因式的方法是 ,共应用了 次;⑵若分解1+x+x(1+x)+x(1+x)2+…+x(1+x)2004,则需应用上述方法次,结果是;⑶分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)n(n为正整数).例7【开放创新型】【四川03】多项式9x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是(填上一个..你认为正确的即可);分析:根据完全平方公式a2±2ab+b2=(a±b)2的特点,若9x2+1表示了a2+b2的话,则有a=3x,b=1,所以,缺少的一项为±2ab=±2·3x·1=±6x,此时,9x2+1±6x=(3x±1)2;如果认为9x2+1表示了2ab+b2的话,则有a=4.5x2,b=1,所以,缺少的一项为a2=(4.5x)2=20.25x4,此时,20.25x4+9x2+1=(4.5x2+1)2.从另外一个角度考虑,“一个整式的完全平方”中所指的“整式”既可以是上面所提到的多项式,也可以是单项式.注意到9x2=(3x)2,1=12,所以,保留二项式9x2+1中的任何一项,都是“一个整式的完全平方”,故所加单项式还可以是-1或者-9x2,此时有9x2+1-1=9x2=(3x)2,或者9x2+1-9x2=12.综上分析,可知所加上的单项式可以是±6x、20.25x4、-1或者-9x2.例8【开放创新型】【福建南平03】请你写出一个三项式,使它能先提公因式,再运用公式来分解.分析:利用整式乘法与因式分解的互逆关系,可以先利用乘法公式中的完全平方公式,写出一个等式,在它的两边都乘一个因式,比如:2m(m+n)2=2m(m2+2mn+n2)=2m3+4m2n+2mn2;3a(2x-5y)2=3a(4x2-20xy+25y2)=12ax2-60axy+75ay2,等等.于是编写的三项式可以是2m3+4m2n+2mn2,分解因式的结果是2m(m+n)2;或者编写的三项式可以是12ax2-60axy+75ay2,分解因式的结果是3a(2x-5y)2,等等.例9【数形结合型】【陕西02,桥西02~03】如图,在边长为a的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( A ) (A )))((22b a b a b a -+=- (B )2222)(b ab a b a ++=+ (C )2222)(b ab a b a +-=- (D )222))(2(b ab a b a b a -+=-+例10【数形结合型】【福建福州05】如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 a 2-b 2=(a +b )(a -b ) ;例11【数形结合型】【济南02】请你观察右下方图形,依据图形面积间的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是 (x +y )(x -y )=x 2-y 2或x 2-y 2=(x +y )(x -y )或(x -y )2=x 2-2xy +y 2 ;例12【数形结合型】【山西03】有若干张如图所示的正方形和长方形卡片,则表中所列四种方案能拼成边长为(a +b )的正方形的是( A )分析:此题的本意就是判断哪些卡片的面积之和是(a +b )2.因为a 2+2ab +b 2=(a +b )2,对照如图所示的正方形和长方形卡片,可知三种卡片的面积分别为a 2、b 2和ab ,它们分别需要1张、1张、2张,由此可选出正确答案为(A ).b xyyx -yx -yaa⑴b b ⑵ba ⑶例13【数形结合型】【山西太原03】如图是用四张全等的矩形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式 (a +b )2-4ab =(a -b )2 ;分析:外框围成的大正方形面积为(a +b )2,4个矩形的面积之和为4ab ,中间的空白部分的面积为(a -b )2.于是,可以列出等式(a +b )2-4ab =(a -b )2.对于它的正确性,可以用因式分解的方法证明:(a +b )2-4ab =a 2+2ab +b 2-4ab =a 2-2ab +b 2=(a -b )2.例14【数形结合型】给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,下载相应的种类和数量的卡片,拼成一个矩形,使它的面积等于a 2+5ab +4b 2,并根据你拼成的图形分解多项式a 2+5ab +4b 2.解:由a 2+5ab +4b 2知,可用1张大正方形,5张长方形,4张小正方形,拼成的矩形如下图所示,根据图形的面积可得 a 2+5ab +4b 2=(a +b )(a +4b )ba babbbb优化训练一、选择题:1. 计算100101)2()2(-+-结果为( )(A )2100 (B )-2 (C )0 (D )-21002. 已知m x x +-24是一个关于x 的完全平方式,则m 的值为( ) (A )4 (B )±4 (C )161(D )16 3. 已知mx x ++142是一个关于x 的完全平方式,则m 的值为( ) (A )4 (B )-4 (C )16 (D )±44. 设m =2002+2001×2002+2001×20022+…+2001×20022000,n =20022001,则正确的关系是( )(A )m =n ×2001 (B )m =n (C )m =n ÷2002 (D )m =n +2002 二、填空题:5. 已知x 、y 为正整数,且x 2=y 2+37,则x = ; 6. 方程x 2-y 2=29的整数解为 ; 7. 有若干个大小相同的小球一个挨一个摆放,刚好摆成一个等边三角形(如图1);将这些小球换一种摆法,仍一个挨一个摆放,又刚好摆成一个正方形(如图2),则这种小球最少有 个;三、解答题: 图1 图28. 计算:20032002200220002002220022323-+-⨯-;9.求x2-4xy+5y2-2y+2004的最小值.10.观察:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,…⑴请写出一个具有普遍性的结论,并给出证明;⑵根据⑴,计算2000×2001×2002×2003+1的结果(用一个最简式子表示).11.一个自然数a恰等于另一个自然数b的平方,则称自然数a为完全平方数,如64=82,64就是一个完全平方数.若a=20022+20022×20032+20032,求证:a是一个完全平方数,并写出a的平方根.12.公园长椅上坐着两位白发苍苍的老人,旁边站着两个年轻人,他们在交谈,老人说:“我们俩的年龄的平方差是195……”不等老人说完,青年人就说:“真巧,我们俩年龄的平方差也是195。