光纤导光的基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤导光的基本原理
1. 光的全反射
根据光的反射定律,反射角等于入射角。而对应于折射角等于90的入射角叫做临界角,很容易可以得到临界角:
当光在光纤中发生全反射现象时,由于光线基本上全部在纤芯区进行传播,没有光跑到包层中去,所以可以大大降低光纤的衰耗。早期的阶跃光纤就是按这种思路进行设计的。
2. 光在阶跃光纤中的传播
阶跃型光纤折射率是沿径向呈阶跃分布,在轴向呈均匀分布,是包层折射率,是纤芯折射率。假设图中的阶跃型光纤为理想的圆柱体,光线若垂直于光纤端面入射,并与光纤轴线重合,或平行,这时光线将沿纤芯轴线方向向前传播。若光线以某一角度入射到光纤端面时,光线进入纤芯会发生折射。当光线到达纤芯与包层的界面上时,发生全反射或折射现象。
若要使光线在光纤中实现长距离传输,必须使光线在纤芯与包层的界面上发生全反射,即入射角大于临界角。由前面分析已知光纤的临界角为:
数值孔径 NA :
假设是n1包层折射率,n2是纤芯折射率,且n1> n2,n1和n2的差值大小直接影响光纤的性能。故引入相对折射率差Δ表示其相差程度。n1约等于n2
对于渐变型光纤,若轴心处(r=0)的折射率为n(0),则相对折射率差定义为:
)arcsin(
12n n c =θ22210sin n n NA -==θ2122
212n n n -=∆121n n n -=∆222
2)0(2)0(n n n -=∆
得:
可见,光纤的数值孔径与纤芯与包层直径无关,只与两者的相对折射率差有关。若纤芯和包层的折射率差越大,NA 值就越大,即光纤的集光能力就越强。
对于阶跃型光纤,由于纤芯折射率均匀分布,纤芯端面各点的数值孔径都相同,即各点收光能力相同。对于渐变型光纤,纤芯折射率分布不均匀,光线在其端面不同点入射,光纤的收光能力不同,因此渐变型光纤数值孔径定义为:
五个激光在生活中的应用案例
1. 公路无损检测
利用激光测距功能可以检测路面的断面特性,如平整度、构造深度、车辙、路面变形和裂缝等。平整度是行驶舒适性的重要指标,路面激光平整度仪应用激光测距及加速度传感器修正技术,在检测车高速行驶的过程中,通过测量路面的纵断面高程变化值,可直接计算出平整度。构造深度是路面宏观粗糙度指标,高速行驶时起抗滑作用,激光构造深度仪使用高精度激光位移传感器,通过检测该传感器与路面不同形状骨料间的深度,在显示器上直接读出路面的构造深度。车辙是车辆长时间在路面上行驶后留下的车轮永久压痕,路面车辙深度直接反映了车辆行驶的舒适度及路面的安全性和使用期限。路面激光车辙仪分为两类,一类为一个横梁上有多个激光测距仪,直接测试路面横断面高程并计算路面车辙深度;另一类为应用线激光和高速数字高分辨图像采集技术,通过获得的激光线的变形,计算路面车辙深度。路面激光视频病害检测系统,是应用三维成像激光束、强光或日光光源、高速数字摄像技术,检测分析路面变形和裂缝的设备。
2. 激光雷达
激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,天线是光学望远镜,接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多远探测器件等。激光雷达的作用是能够准确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。
3. 激光粒度仪
激光粒度仪是基于光衍射现象而设计的,当颗粒通过激光光束时,颗粒表面会衍射光,而衍射光的角度与颗粒的粒径成分享的变化关系,即大颗粒衍射光的角度小,小颗粒衍射光的角度大。也就是说,不同各大小的颗粒在通过激光光束时其衍射光会落在不同的位置,位置信息反映颗粒大小,如果同样大的颗粒通过激光光束时,其衍射光会落在相同的位置,即在该位置上的衍射光的强度叠加后就比较高,所以衍射光强度的信息反映出样品中相同大小的颗粒所占的百分比多少。这样,如果能够同时测量和获得衍射光的位置和强度的信息,就可得到粒度分布的结果
4. 激光焊接
∆=21n NA ∆=-=
2)()()(222r n n r n r NA
汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有金运YAG激光器,金运CO2激光器和半导体泵浦激光器
5.激光切割
汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。
6.激光打标
在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器。
光纤传感
1.简介
光纤传感技术始于1977年,伴随光纤通信技术的发展而迅速发展起来的,光纤传感技术是衡量一个国家信息化程度的重要标志。光纤工作频带宽,动态范围大,适合于遥测遥控,是一种优良的低损耗传输线;在一定条件下,光纤特别容易接受被测量或场的加载,是一种优良的敏感元件。
2.分类
光纤传感器的分类:根据光受被测对象的调制形式可以分为强度调制型、偏振态制型、相位制型、频率制型;根据光是否发生干涉可分为干涉型和非干涉型;根据是否能够随距离的增加连续地监测被测量可分为分布式和点分式;根据光纤在传感器中的作用可以分为:一类是功能型(FunctionalFiber,缩写为FF)传感器,又称为传感型传感器;另一类是非功能型(NonFunctionalFiber缩写为NFF),又称为传光型传感器。
3.工作原理
光纤传感器工作原理是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测物理量。具体表现为将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量。
在光纤传感器中,由于光纤不仅可以作为光波的传播媒质,并且在光纤中传播的光波因外界因素的变化而改变,同时也可将光纤作为传感元件来探测如振幅、相位、偏振态、波长等物理量。
1)物性型光纤传感器原理
物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。这类传感器又被称为敏感元件型或功能