数列求和专题.

合集下载

专题数列求和的几种方法.ppt

专题数列求和的几种方法.ppt
求: bn 的前n项和
1 1(1 1 ) an an1 d an an1
}
满足
Sn b1 b2 b3 bn
1 ( 1 1 ) 1 ( 1 1 ) 1 ( 1 1 )
d a1 a2 d a2 a3
d an an1
1(1 1 1 1 d a1 a2 a2 a3
1 1 ) an an1
数 列 求和
1运用公式法
等差或等比数列直 接应用求和公式
2 分组求和法 3 错位相减法 4 裂项相消法 5 倒序相加法
化归思想转化 成等差、等比 数列求
1 2 2 3 3 4 n(n 1)
分析:设数列的通项为bn,则
bn

n(n 1)
6( 1 n
1) n 1
Sn
b1
b2
bn
6[(1
1) 2
(1 2
1) 3
(1 n
1 )] n 1
6(1 1 ) 6n n1 n1
例4、设{1an bn anan1
解: bn
}是公差d 不为零的等差数列 ,{bn
1(1 1 ) n .
d a1 an1
a1an 1

an
( An
1 B)(
An
C)
,则求Sn用 裂项相消法
.
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
1.公式法:
即直接用求和公式,求数列的前n和Sn
①等差数列的前n项和公式:
Sn
n(a1 2

高考数学专题复习题:数列求和

高考数学专题复习题:数列求和

高考数学专题复习题:数列求和一、单项选择题(共8小题)1.某旅游景区计划将山脚下的一片荒地改造成一个停车场,根据地形,设计7排停车位,靠近山脚的第1排设计9个停车位,从第2排开始,每排设计的停车位个数是上一排的2倍减去8,则设计的停车位的总数是( ) A .172B .183C .286D .3112.在数列{}n a 中,已知112a =,1(2)n n n a na ++=,则它的前30项的和为( ) A .1929B .2829C .2930D .30313.已知{}n a 是递增的等比数列 ,且34528++=a a a ,等差数列{}n b 满足23b a =,542b a =+,85b a =.如果m 为正整数,且对任意的*n ∈N ,都有12231nn b b b m a a a +≥+++,那么m 的最小值为( ) A .8B .7C .5D .44.数列{}n a 的前n 项和为n S ,11a =−,*(1)(N )n n na S n n n =+−∈,设(1)n n n b a =−,则数列{}n b 的前51项之和为( ) A .149−B .49−C .49D .1495.已知递推数列{}n a 满足11a =,()*121n n a a n +=+∈N ,如果n S 是数列{}n a 的前n 项和,那么9S =( ) A .9210−B .9211−C .10210−D .10211−6.如图,某地毯是一系列正方形图案,在4个大正方形中,着色的小正方形的个数依次构成一个数列{a n }的前4项. 记12100111S a a a =++⋅⋅⋅+,则下列结论正确的为( )A .87S >B .87S =C .87S <D .S 与87的大小关系不能确定7.已知首项为2的数列{}n a 满足114522n n n n a a a a ++−−=,当{}n a 的前n 项和16n S ≥时,则n 的最小值为( ) A .40B .41C .42D .438.如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层4个球,其中第1层有1个球,第2层有3个球;依次递推;第n 堆有n 层共n S 个球,第1层有1个球,第2层有3个球,第3层有6个球,依次递推.已知201540S =,则2021n n ==∑( )A .2290B .2540C .2650D .2870二、多选题(共3小题)9.已知函数()f x 满足22()()()()f x y f x y f x f y +−=−,(1)1f =,(2)0f =,下列说法正确的是( ) A .(3)1f =−B .(2024)0f =C .21()x k k =+∈Z 时,()(1)kf x =−D .20241()2024k f k ==∑10.利用不等式“ln 10x x −+≤,当且仅当x =1时,等号成立”可得到许多与n (2n ≥且*n ∈N )有关的结论,则下列结论正确的是( ) A .111ln 1231n n <+++⋅⋅⋅+− B .1111ln 4562n n>+++⋅⋅⋅+C .()()()()12121412e 2n n n+++⋅⋅⋅+>⋅D .e12e 1n n n n n ++⋅⋅⋅+<⋅− 11.“杨辉三角”是二项式系数在三角形中的一种几何排列,从第1行开始,第n 行从左至右的数字之和记为n a ,如{}12112,1214,,n a a a =+==++=⋅⋅⋅的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,...,记为{b n },{b n }的前n 项和记为n T ,则下列说法正确的有( )A .101022S =B .12n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和21122n a +−− C .5766b =D .574150T =三、填空题(共3小题)12.在数列{}n a 中,11a =且1n n a a n +=,当20n ≥时,1231112n n na a a a a λ+++⋅⋅⋅+≤+−,则实数λ的取值范围为__________.13.已知数列{}n a 满足111,21n n a a a n +=+=+,则其前9项和9S =__________,数列1n S ⎧⎫⎨⎬⎩⎭的前2024项的和为__________. 14.函数()[]f x x =称为高斯函数,其中[]x 表示不超过x 的最大整数,如][2.32, 1.92⎡⎤=−=−⎣⎦,已知数列{}n a 满足121,5a a ==,2145n n n a a a +++=,若[]21log ,n n n b a S +=为数列18108n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,则[]2025S =__________.四、解答题(共5小题)15.已知数列{}n a ,{}n b 中,14a =,12b =−,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式. (2)求数列{}n b 的前n 项和n T . 16.已知数列{}n a 满足122n n a a n +−=+. (1)证明:数列{}2n a n −是等差数列.(2)若12a =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是递增的等差数列,它的前三项和为9,前三项的积为15. (1)求数列{}n a 的通项公式. (2)记b n =1(an+1)2,设数列{}n b 的前n 项和为n T ,求证:14n T <.18.已知{}n a 是等差数列,{}n b 是等比数列,且{}n b 的前n 项和为n S ,1122a b ==,()5435a a a =−,在①()5434b b b =−,②12n n b S +=+这两个条件中任选其中一个,完成下面问题的解答.(1)求数列{}n a 和{}n b 的通项公式.(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .19.已知2()cos 2x f x a x =+.(1)若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,求a 的取值范围.(2)证明:()2*11112111tan1212tan 3tantan 23n nn n n n−++++>∈+N . 参考答案12.(],1−∞13.45,4048202514.202515.(1)23nn b n =−− (2)n T 217222n n n+−−− 16.(1)通过构造()()22111n n a n a n +⎡⎤−+−−=⎣⎦证明即可 (2)1n nS n =+. 17.(1)21n a n =− (2)先求数列{}n b 的通项,放缩后再裂项求和即可证明。

数列与级数的8种求和方法专题讲解

数列与级数的8种求和方法专题讲解

数列与级数的8种求和方法专题讲解简介本文将介绍数列和级数的8种常见求和方法,包括递推公式、几何级数、等差数列求和、等比数列求和、伪等差数列求和、伪等比数列求和、特殊级数求和和无穷级数求和。

1. 递推公式递推公式是通过前一项和该项之间的关系来逐项求和的方法,通常用于求解迭代式数列的和。

递推公式可以通过给定的初始项以及递推关系进行求和。

2. 几何级数几何级数指的是一个数列中的各项与其前一项之比保持恒定的数列。

求解几何级数的和可以通过使用几何级数公式来进行计算。

3. 等差数列求和等差数列是一个数列中的各项与其前一项之差保持恒定的数列。

求解等差数列的和可以通过等差数列求和公式进行计算。

4. 等比数列求和等比数列是一个数列中的各项与其前一项之比保持恒定的数列。

求解等比数列的和可以通过等比数列求和公式进行计算。

5. 伪等差数列求和伪等差数列是一个数列中的各项与其下标之差保持恒定的数列。

求解伪等差数列的和可以通过伪等差数列求和公式进行计算。

6. 伪等比数列求和伪等比数列是一个数列中的各项与其下标之比保持恒定的数列。

求解伪等比数列的和可以通过伪等比数列求和公式进行计算。

7. 特殊级数求和特殊级数指的是具有特殊性质的级数,如调和级数、斐波那契级数等。

求解特殊级数的和需要根据其特定的性质和规律进行计算。

8. 无穷级数求和无穷级数是指一个无穷多项的级数。

求解无穷级数的和需要使用极限的概念,并根据级数的收敛性和发散性进行判断和计算。

以上是数列与级数的8种常见求和方法的专题讲解。

每种求和方法都有其适用的情况和特点,在实际问题中需要选择合适的方法进行求解。

希望本文能为读者提供一些有用的参考和指导。

专题十一数列求和的常用方法

专题十一数列求和的常用方法

专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。

四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)
n 1
)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:

1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数

(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)

数列求和常用方法(含答案)

数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。

数列求和(23张PPT)

数列求和(23张PPT)
n 1 n 1 n 1 n 1 (1 6n 5) (a1 an ) 2 2 4 ( 1 4 ) a ( 1 4 ) 2 2 2 2 1 4 2 1 4

2
n2
9n 3n 14 6
2
例2. (天津卷)已知数列
问题解决
a n 的通项公式如下:
0 n 1 n 2 n
n n ,
则 Sn
(n 1)C nC
n n 0 n
n1 n 1 n
3C 2C C
2 n 1 n n 2 n
0 n n n
(n 1)C nC 3C
Sn (n 2) 2
0 n n1 1 n 3 n
2C
n n
n1 n
n b a x n (2)令 n
( x R) ,求知数列
a n 的通项公式如下:

6n 5 an n 2
n为奇数 n为偶数

s 求数列的前 n 项的和 n

a n 1. (北京 卷) 已 知数列 是等差 数列, 且
1 Sn 3 2 k 3 k 2k 1 思考题.已知 k 1
n

1 Sn 4 求证:
问题解决
C 2 C 3 C ( n 1 ) C 例3.求和
0 n 1 n 2 n n n
C 2 C 3 C ( n 1 ) C S 【解析】设 n

6n 5 an n 2
n为奇数 n为偶数
n n (a1 an 1 ) n 3 2 2 2 9 n 15n 8 a ( 1 4 ) 2 2 Sn 6 2 1 4 n2 2 2 9n 3n 14 n为奇数 6

数列求和专题(必考必练,方法全面,有答案)

数列求和专题(必考必练,方法全面,有答案)

数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。

解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。

高中数学《数列》复习专题

高中数学《数列》复习专题
检验:当n 1时, a1 1 12 2 满足已知条件.
1 n 1 练1.若an an 1 1 ( ) , a1 0, 求通项公式. 2 解:
专题2:求通项公式 1.累加型 an an1 f ( n) 2.累乘型 an an1 f ( n)
n 1个 an 1 q an 2 an q a
例3.数列 {an }满足an 3an1 1, a1 1, 求 {an }的通项公式 .
解: 设 为待定系数, an 3an 1 1
1 1 n 1 那么an =(a1 )3 2 2 an 3an1 1 1 1 n 1 即an = 3 1 2 2 an 3(an 1 ) n 1 3 3 +1 也即an = 1 1 2 则 令 , 2 3 1 1 即an 3(an 1 ) 2 2 1 1 {an }是以a1 为首项, 2 2 3为公差的等比数列.
练1.an
1 4n 1
2
, 求S n .
1 1 练 2.an 2 , 证明Sn . 4n 4n 3 3
1 1 1 例2.求和: 2+ 3 3+ 4 4+ 5
1 99+ 100
1 1 1 练3.求和: + 1+ 3 2+ 4 3+ 5
1 n + n+2
2 an an1 an1
专题2:求通项公式 1.累加型 an an1 f ( n) 回顾:求等差数列的通 项公式:— —累加法
由递推公式 an an1 d (n 2)可知, a2 a1 d 当n 2时, a3 a2 d a4 a3 d n 1个 a n 1 a n 2 d a n a n 1 d

(完整版)数列求和合集例题与标准答案)

(完整版)数列求和合集例题与标准答案)

数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和地最基本最重要地方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 例1、已知,求地前n 项和.3log 1log 23-=x ⋅⋅⋅++⋅⋅⋅+++nx x x x 32解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得(利用常用公式)nn x x x x S +⋅⋅⋅+++=32===1-x x x n --1)1(211)211(21--n n 21练习:求地和.22222222123456...99100-+-+-+--+解:2222222212345699100-+-+-+--+ ()()()()2222222221436510099=-+-+-++- ()()()()()()()()2121434365651009910099=-++-++-++-+ 3711199=+++ +由等差数列地求和公式得()50503199S 50502+==二、错位相减法求和这种方法是在推导等比数列地前n 项和公式时所用地方法,这种方法主要用于求数列{a n ·b n }地前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:………………………①132)12(7531--+⋅⋅⋅++++=n n x n x x x S 解:由题可知,{}地通项是等差数列{2n -1}地通项与等比数列{}地通项之积1)12(--n xn 1-n x设……………………….②(设制错位)nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=①-②得(错位相减)n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--再利用等比数列地求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+练习:求数列前n 项地和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n解:由题可知,{}地通项是等差数列{2n}地通项与等比数列{}地通项之积n n 22n 21设…………………………………①n n nS 2226242232+⋅⋅⋅+++=………………………………②(设制错位)14322226242221++⋅⋅⋅+++=n n nS ①-②得(错位相减)1432222222222222211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列地前n 项和公式时所用地方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.)(1n a a +例3求地值89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++解:设………….①89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S 将①式右边反序得…………..②(反序)1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S 又因为1cos sin ),90cos(sin 22=+-=x x x x ①+②得(反序相加)=89)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S ∴S=44.52、求和:222222222222222101109293832921101++++++++++ 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见地数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122 ()1,1,0≠≠≠y x x 解:原式=()nx x x x ++++ 32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112=()yy y xx x n n 1111111-⎪⎪⎭⎫⎝⎛-+--=nn n n y y y x x x --+--++1111练习:求数列地前n 项和:, (231),,71,41,1112-+⋅⋅⋅+++-n aa a n 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得(分组))23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,=(分组求和)2)13(n n n S n -+=2)13(nn +当时,=1≠a 2)13(1111n n a a S nn -+--=2)13(11n n a a a n -+---练习:求数列地前n 项和.∙∙∙+∙∙∙),21(,,813,412,211nn 解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+∙∙∙+++++∙∙∙+++=++∙∙∙+++=五、裂项法求和这是分解与组合思想在数列求和中地具体应用.裂项法地实质是将数列中地每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和地目地.通项分解(裂项)如:例5求数列地前n 项和.⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 解:设(裂项)n n n n a n -+=++=111则(裂项求和)11321211+++⋅⋅⋅++++=n n S n =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n 练习:求13,115,135,163之和.解:94911(21)9171()7151()5131()311(21)9171(217151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和针对一些特殊地数列,将某些项合并在一起就具有某种特殊地性质,因此,在求数列地和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:,求S 2002.n n n a a a a a a -====++12321,2,3,1解:设S 2002=2002321a a a a +⋅⋅⋅+++由可得n n n a a a a a a -====++12321,2,3,1,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵(找特殊性质项)0665646362616=+++++++++++k k k k k k a a a a a a ∴S 2002=(合并求和)2002321a a a a +⋅⋅⋅+++=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5练习:在各项均为正数地等比数列中,若地值.103231365log log log ,9a a a a a +⋅⋅⋅++=求解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列地性质(找特殊性质项)q p n m a a a a q p n m =⇒+=+和对数地运算性质得N M N M a a a ⋅=+log log log (合并求和))log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++==)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列地通项求和先根据数列地结构及特征进行分析,找出数列地通项及其特征,然后再利用数列地通项揭示地规律来求数列地前n 项和,是一个重要地方法.例7、求5,55,555,…,地前n 项和.解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)=59[(10+102+103+……+10n )-n]=(10n +1-9n-10)练习:求数列:1,,,地前n 项和.解:=e an dAl l h i ng si nt h er be ng ae od =版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX74J0X用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.LDAYtRyKfEUsers may use the contents or services of this article forpersonal study, research or appreciation, and other non-commercialor non-profit purposes, but at the same time, they shall abide bythe provisions of copyright law and other relevant laws, and shallnot infringe upon the legitimate rights of this website and itsrelevant obligees. In addition, when any content or service ofthis article is used for other purposes, written permission andremuneration shall be obtained from the person concerned and the relevant obligee.Zzz6ZB2Ltk转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

数列求和专题

数列求和专题

数列求和专题一、公式法法求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、乘公比错项(位)相减法求和(等差⨯等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⨯的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。

[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S[例1]:求数列}{1-n nq (q 为常数)的前n 项和。

专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

专题08数列求和-倒序相加、绝对值、奇偶性求和◆倒序相加法求和等差数列的求和公式()12n n n a a S +=,其过程正是利用倒序相加的原理.这类题之所以能够利用倒序相加来求和,是因为其自身具备明显的特征,那就是首项与末项相加为定值.一般题中出现12x x k +=(k 为常数),()()12f x f x m +=(m 为常数)时,可以采用倒序相加的方法进行求和.【经典例题1】已知函数()f x 对任意的x ∈R ,都有()()11f x f x +-=,数列{}n a 满足()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫+ ⎪⎝⎭.求数列{}n a 的通项公式.【答案】12n n a +=【解析】因为()()11f x f x +-=,∴111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.故()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫++ ⎪⎝⎭.①∴()121n n n a f f f n n --⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()01f n f ⎛⎫++ ⎪⎝⎭.②∴①+②,得21n a n =+,∴12n n a +=.所以数列{}n a 的通项公式为12n n a +=.【练习1】已知正数数列{}n a 是公比不等于1的等比数列,且120191a a =,试用推导等差数列前项和的方法探求:若24()1f x x=+,则()()()122019f a f a f a +++= ()A .2018B .4036C .2019D .4038【答案】D 【解析】120191a a ⋅=,∵函数24()1f x x =+∴222214444()41111+⎛⎫+=+== ⎪++⎝⎭+x f x f x x x x,令122019()()()T f a f a f a =++⋅⋅⋅+,则201920181()()()T f a f a f a =++⋅⋅⋅+,∴()()()()()()120192201820191242019T f a f a f a f a f a f a =++++⋅⋅⋅++=⨯,∴4038T =.故选:D.【练习2】已知函数1()1f x x =+,数列{}n a 是正项等比数列,且101a =,则()()()()()1231819f a f a f a f a f a +++⋅⋅⋅++=__________.【答案】192【解析】函数1()1f x x =+,当0x >时,1111()()111111xf x f x x x x x+=+=+=++++,因数列{}n a 是正项等比数列,且101a =,则2119218317101a a a a a a a ===== ,119111()()()()1f a f a f a f a +=+=,同理2183171010()()()()()()1f a f a f a f a f a f a +=+==+= ,令()()()()()1231819S f a f a f a f a f a =+++++ ,又()()()()()19181721S f a f a f a f a f a =+++++ ,则有219S =,192S =,所以()()()()()1231819192f a f a f a f a f a +++⋅⋅⋅++=.故答案为:192【练习3】已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】1005.【解析】因为()442xx f x =+,所以()1144214242442x x x xf x ---===++⨯+,所以()()11f x f x +-=.令12200920102011201120112011S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相加得22010S =,故1005S =.【练习4】函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=.(I)求12f ⎛⎫⎪⎝⎭的值;(II)若数列{}n a 满足11(0)(1)n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,数列{}n a 是等差数列吗?【解析】(I)令12x =,得1124f ⎛⎫= ⎪⎝⎭.(II)已知函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=,可得11(0)(1)11(1)(0)nn n a f f f f n n n a f f f f n n ⎧-⎛⎫⎛⎫=++++ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎛⎫⎛⎫⎪=++++ ⎪ ⎪⎪⎝⎭⎝⎭⎩由两式相加可得11(1)112(2)244n n n n n a a a n -++==⇒-=故数列{}n a 是等差数列.◆数列绝对值求和(1)对于首项小于0而公差大于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为{},n n S a 的前n 项和为n T ,数列{}n a 的第k 项小于0而从第1k +项开始大于或等于0,于是有,;2,n n nk S n k T S S n k -⎧=⎨->⎩(2)对于首项大于0而公差小于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为{},n n S a 的前n 项和为n T ,数列{}n a 的第k 项大于0而从第1k +项开始小于或等于0,于是有,2,nn kn S n k T S S n k ⎧=⎨->⎩ 。

高考专题复习数学数列求和 PPT课件 图文

高考专题复习数学数列求和 PPT课件 图文

设 n N * , xn 是曲线 y x2n2 1 在点 (1,2)
处的切线与 x 轴交点的横坐标.
(1)求数列 {xn} 的通项公式;
(2)记Tn x12x32
x2 2n1
,证明
Tn

1 4n
.
在数 1 和 100 之间插入 n 个实数,使得这 n 2 个数 构成递增的等比数列,将这 n 2 个数的乘积记作Tn , 再令 an lg Tn, n≥1.
(2)求数列an 的通项公式;
(3)是否存在实数 a ,使不等式
(1 1 )(1 1 ) (1 1 ) 2a2 3
a1
a2
an 2a 2n 1
对一切正整数 n 都成立?若存在,
求出 a 的取值范围;若不存在,请说明理由.
设数列an 的前 n 项和为 Sn ,满足
2Sn an1 2n1 1 , n N* ,
则数列

1

的前10
项和为_________
an
设数列an,其前 n 项和 Sn 3n2 ,
bn为单调递增的等比数列, b1b2b3 512 , a1 b1 a3 b3
(1)求数列an, bn的通项公式;
(2)若 cn

bn

bn
2 bn

1 n
bn

bn1
1(n

N* )
.
(1)求 an 与 bn ;(2)记数列{anbn} 的前 n 项和为Tn ,求Tn .
已知数列an ,bn , an 3n 1,bn 2n
记 Tn anb1 an1b2 a1bn , n N * ,求:Tn

数列求和-高考复习

数列求和-高考复习
索引

1 n+1+
= n
n+1-
n,
1 a+
b=a-1 b(
a-
b);
④(2n-1)1(2n+1)=212n1-1-2n1+1;
⑤若{an}为等差数列,d 为公差,其中 an≠0 且 d≠0,则ana1n+1=1da1n-an1+1.
索引
类型三 错位相减法求和 例3 已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
索引
类型四 倒序相加法
例4 已知定义在R上的函数f(x)的图象的对称中心为(1 011,2),数列{an} 的前n项和为Sn,且满足an=f(n),n∈N*,则S2 021=___4_0_4_2__.
解析 由条件得f(2×1 011-x)+f(x)=2×2, 即f(2 022-x)+f(x)=4,于是有a2 022-n+an=4(n∈N*). 又S2 021=a1+a2+a3+…+a2 020+a2 021, S2 021=a2 021+a2 020+…+a2+a1, 两式相加得2S2 021=(a1+a2 021)+(a2+a2 020)+…+(a2 020+a2)+ (a2 021+a1)=2 021(a1+a2 021)=2 021×4. 故S2 021=2 021×2=4 042.
索引
思维升华
如果一个数列的前 n 项中,距首末两项“等距离”的两项之和都相等,则可 使用倒序相加法求数列的前 n 项和.
索引
索引
② 由①得 1+q2=5,解得 q=±2. 当 q=2 时,a1=13,所以 an+1=43×2n-1=2n3+1; 当 q=-2 时,a1=-5, 所以 an+1=(-4)×(-2)n-1=-(-2)n+1. 所以 an=2n3+1-1 2)若 an>0,设 bn=log2(3an+3),求数列bnb1n+1的前 n 项和. 解 因为 an>0,所以 an=2n3+1-1, 所以 bn=log2(3an+3)=n+1, 所以bnb1n+1=(n+1)1(n+2)=n+1 1-n+1 2, 所以数列bnb1n+1的前 n 项和为12-13+13-14+…+n+1 1-n+1 2=12-n+1 2=

数列求和题型及解题方法

数列求和题型及解题方法

数列求和题型及解题方法
数列求和是数学中的一个重要概念,其题型和解题方法有很多种。

以下是一些常见的数列求和题型及其解题方法:
1. 等差数列求和
等差数列是一种常见的数列,其相邻两项的差是常数。

等差数列的求和公式为:S = n/2 (a1 + an),其中n是项数,a1是首项,an是尾项。

例如:1+2+3+...+n=n(n+1)/2
2. 等比数列求和
等比数列是一种常见的数列,其相邻两项的比是常数。

等比数列的求和公式为:S = a1 (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。

例如:1+2+4+...+2^(n-1)=2^n-1
3. 错位相减法
对于一些等差数列和等比数列的混合数列,可以使用错位相减法来求和。

具体做法是将原数列的每一项都乘以一个适当的常数,使得新数列成为等差数列或等比数列,然后使用相应的求和公式进行计算。

例如:100+101+102+...+999=99/2=44550
4. 分组求和法
对于一些项数较多、难以直接求和的数列,可以将它们分成若干组,每组有有限项,然后分别求每组的和,最后将各组的和相加即可。

例如:(1+2+3)+(4+5+6)+(7+8+9)=9+18+27=54
5. 倒序相加法
对于一些奇偶项相间的数列,可以将正序和倒序分别求和,再将两个和相加,即可得到原数列的和。

例如:(1+2+3+4)+(3+2+1)=8+6=14
以上是一些常见的数列求和题型及其解题方法,掌握这些方法对于解决数列求和问题非常有帮助。

数列专题:数列求和的6种常用方法(原卷版)

数列专题:数列求和的6种常用方法(原卷版)

数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。

第六章 数列-专题突破11 数列求和

第六章 数列-专题突破11 数列求和
解:①设{ }的公差为 ≠ 0 .由题意,得52 = 2 6 ,即
1 + 4
2
= 1 + 1 + 5 ,化简得21 + 11 2 = 0.又1 = 11,所以 = −2或
= 0(舍去).故 = −2 + 13.
②由①知当 ≤ 6时, > 0;当 ≥ 7时, < 0.
23
2
+ 208
例1(1) 已知数列 = ቊ
则其前21项和为__________.
2 − 1, 为偶数,
3
5
解:21 = 3 2 + 2 + 2 + ⋯ + 2
10× 3+39
2
21
+ 3 + 7 + 11 + ⋯ + 39 = 3 ×
2 1−411
1−4
+
= 223 + 208.故填223 + 208.
=
1
3
1
+ 2
3
所以 =
3
4
1
+ 3
3
1−
则2 − = 2
+
2
32
+
3
33
1
32
+
2
33
+
+
1
⋯+
3
1
+ 4
3
1
3

3
4
2+3
4×3


2×3
+ ⋯+
3
34
3
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

**教育五环教学案日期:授课人:学生:科目:数学今日格言:柏拉图说:“数学是一切知识中的最高形式”课题数列求和专题教学目标高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件,求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.知识点及重难点梳理1.数列求和的方法技巧(1)分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n+1的数列的前n项和,其中{a n}若为等差数列,则1a n a n+1=1d⎝⎛⎭⎫1a n-1a n+1.常见的拆项公式:①1n(n+1)=1n-1n+1;②1n(n+k)=1k(1n-1n+k);③1(2n-1)(2n+1)=12(12n-1-12n+1);④1n+n+k=1k(n+k-n).考点训练考点一分组转化求和法例1等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行讨论,最后再验证是否可以合并为一个公式.设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0. (1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n ,求数列{b n }的前n 项和S n .考点二 错位相减求和法例2 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .考点三 裂项相消求和法例3 设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.数列求和的方法:(1)一般地,数列求和应从通项入手,若无通项,就先求通项,然后通过对通项变形,转化为与特殊数列有关或具备适用某种特殊方法的形式,从而选择合适的方法求和得解.(2)已知数列前n 项和S n 或者前n 项和S n 与通项公式a n 的关系式,求通项通常利用a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).已知数列递推式求通项,主要掌握“先猜后证法”“化归法”“累加(乘)法”等.已知x ,f (x )2,3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3,此数列的前n 项和为S n ,对于所有大于1的正整数n 都有S n =f (S n -1).(1)求数列{a n }的第n +1项;(2)若b n 是1a n +1,1a n的等比中项,且T n 为{b n }的前n 项和,求T n .1. 数列综合问题一般先求数列的通项公式,这是做好该类题型的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).(2)递推关系形如a n +1-a n =f (n ),常用累加法求通项. (3)递推关系形如a n +1a n=f (n ),常用累乘法求通项.(4)递推关系形如“a n +1=pa n +q (p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p (a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列.(5)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1转为用迭加法求解.2. 数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解. (2)并项求和时,将问题转化为等差数列求和.(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解. 提醒:运用错位相减法求和时,相减后,要注意右边的n +1项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3. 数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.1.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么称这个数列为等积数列,称k为这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________. 2.秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{a n},已知a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则该医院30天入院治疗甲流的人数为________.3.已知公差大于零的等差数列{a n}的前n项和S n,且满足:a2·a4=65,a1+a5=18.(1)若1<i<21,a1,a i,a21是某等比数列的连续三项,求i的值;(2)设b n=n(2n+1)S n,是否存在一个最小的常数m使得b1+b2+…+b n<m对于任意的正思维拓展一、填空题1.已知数列112,314,518,7116,…,则其前n项和S n=________.2.在等差数列{a n}中,a1=-2 013,其前n项和为S n,若S1212-S1010=2,则S2 013的值等于________.3.对于数列{a n},a1=4,a n+1=f(a n),n=1,2,…,则a2 013=________.x 1234 5f(x)5431 24.设{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,记M n=ab1+ab2+…+ab n,则数列{M n}中不超过2 013的项的个数为________.5.在等差数列{a n}中,其前n项和是S n,若S15>0,S16<0,则在S1a1,S2a2,…,S15a15中最大的是________.6.数列{a n}满足a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,则1a1+1a2+1a3+…+1a2 012=________.7.已知函数f(n)=⎩⎪⎨⎪⎧n2(n为奇数),-n2(n为偶数),且a n=f(n)+f(n+1),则a1+a2+a3+…+a2 012=________.8.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则a21+a22+a23+…+a2n=________.9.已知数列{a n}满足3a n+1+a n=4(n≥1)且a1=9,其前n项之和为S n,则满足不等式|S n-n-6|<1125的最小整数n是________.二、解答题10.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n项和S n.学生对于本次课的评价:○ 特别满意 ○ 满意 ○ 需要优化学生课务确认签字:11.将函数f (x )=sin 14x ·sin 14(x +2π)·sin 12(x +3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2n a n ,数列{b n }的前n 项和为T n ,求T n 的表达式.12.已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1S n ≤136(n ∈N *).教师评定:1、学生上次作业评价:○非常好○好○需要优化2、学生本次上课情况评价:○非常好○好○需要优化教师课务确认签字:教师寄语:学案审核:___________日期: ___________**教育教务处。

相关文档
最新文档