数据结构_图(2)
数据结构(Java版)图2(最小生成树)
最小生成树举例
A
50 60 52 65 50
C
45 42 30 50
A
C
45
B
40
D
G
B
40 50
D
42 30
G
E
70
F
E
F
(a) 无向带权连通图G
(b) 无向带权图G 的最小生成树T
从最小生成树的定义可知,构造n个顶点的无向带权连 通图的最小生成树,必须满足如下三个条件: ① 必须包含n个顶点。 ② 有且仅有n-1条边。 ③ 没有回路。
)
将ej边加入到tree中;
}
实践项目
设计一个程序实现Prim和Kruskal算法.
表5-1 lowcost[ ]数组数据变化情况 表5-2 closest[ ]数组数据变化情况
扫描次数
closest[0]
closest[1]
closest[2]
closest[3]
closest[4]
closest[5]
求最小生成树算法
普里姆算法(Prim) (从点着手)
适合于求边稠密的最小生成树 适合于求边稀疏的最小生成树
克鲁斯卡尔算法(Kruskal)(从边着手)
普里姆算法(Prim)思想
1.
2.
3.
4.
令集合U={u0}(即从顶点u0开始构造最小生 成树),集合T={}。 从所有顶点u∈U和顶点v∈V-U的边权中选择最 小权值的边(u,v),将顶点v加入到集合U中,边 (u,v)加入到集合T中。 如此重复下去,直到U=V时则最小生成树构造完 毕。 此时集合U就是最小生成树的顶点集合,集合T 就是最小生成树的边集。
数据结构复习与习题解析(2)
按路径长度递增次序产生最短路径
1、把 V 分成两组: (1) S:已求出最短路径的顶点的集合。 (2) V - S = T:尚未确定最短路径的顶点集合。
2、将 T 中顶点按最短路径递增的次序加入到 S 中,保证: (1) 从源点 v0 到 S 中各顶点的最短路径长度都不大于 从 v0 到 T 中任何顶点的最短路径长度。 (2) 每个顶点对应一个距离值: S中顶点:从 v0 到此顶点的最短路径长度。 T中顶点:从 v0 到此顶点的只包括 S 中顶点作中间顶点的 最短路径长度。
例题解析
例已知某网的邻接(出边)表,请画出该网络。
当邻接表的存储 结构形成后,图 便唯一确定!
图的遍历
❖广度优先搜索
从图的某一结点出发,首先依次访问该结点的所有邻接顶点 V1, V2, …, Vn 再按这些顶点被访问的先后次序依次访问与它们 相邻接的所有未被访问的顶点,重复此过程,直至所有顶点均 被访问为止。
7 10 3
a10 16 16 0 ✓
a11 14 14 0 ✓
v2
v7
v5
v9
v3
v8
v4 a6=2 v6
顶点 ve vl
v1
00
v2
66
v3
46
v4
58
v5
77
v6
7 10
v7 16 16
v8 14 14
v9 18 18
有向图的应用 应用
无向图的应用
Dijkstra算法 最短路径 Floyd算法
条件:边数不等于 n-1时 边 动作 连通分量 (0,2) 添加 {0,2},{1},{3},{4},{5} (3,5) 添加 {0,2},{3, 5},{1},{4} (1,4) 添加 {0,2},{3, 5},{1,4} (2,5) 添加 {0,2,3,5},{1,4} (0,3) 放弃 因构成回路 (2,3) 放弃 因构成回路 (1,2) 添加 {0,2,3,5,1,4}
02地图数据结构
L-S
第二章 地 图 数 据 结 构
15
4.属性数据
即描述 属性数据是描述空间实体属性特征的数据,也称非几何数据,
地理现象或地理实体的定性或定量指标,包括
语义与统计数据,如类型、等级、名称、状态
等。有时也把描述时间特征的数据纳入该类。
属性数据中的定性(或定量)指标通常要经编码转换才能被计算机接受。为 了方便计算机存储、管理和使用这些编码,需要研究统一的分类系统和编 码。有关这方面的详细内容将在本书第3章中进行介绍。
根据地理要素的空间分布待征和空间实体分类,可以将地理空间数据分为 点、线、面三种类型。
第二章 地 图 数 据 结 构
10
(1)点类型
点类型可以描述如城乡居民地、工厂、学校、医院、机关、车站、山峰、隘口 等现象。这里,“点”是一个相对的抽象概念,即从较大的空间规模上来观测 这些地物,就能把它们都归结为点状分布的地理现象,因此能用一个点的坐标 (或栅格像元)来描述其空间位置。而如果从较小的空间尺度上来观察这些地理 现象,它们中的多数将可以用一个面状特征来描述。例如同一个城市,在小比 例尺地图上表现为点状分布,而在大比例尺地图上则可表现为面状分布,其内 部表示了十分详细的城市街道分布状况。
坐标对数n:构成该线的坐标对个数;
坐标串:是构成线的矢量坐标对序列,共有n对
标志码 属性码 坐标对数n 坐标串(x1,y1)……
标志码 坐标对数n
+ 坐标串(x1,y1)……
标志码 属性码
第二章 地 图 数 据 结 构
22
③面(多边形)数据结构形式
常见的两种形式
标志码 属性码 坐标对数n 坐标串(x1,y1)…… (x1,y1)
第二章 地 图 数 据 结 构
计算机学科专业基础综合数据结构-图(二)_真题-无答案
计算机学科专业基础综合数据结构-图(二)(总分100,考试时间90分钟)一、单项选择题(下列每题给出的4个选项中,只有一个最符合试题要求)1. 具有6个顶点的无向图至少应有______条边才能确保是一个连通图。
A.5 B.6 C.7 D.82. 设G是一个非连通无向图,有15条边,则该图至少有______个顶点。
A.5 B.6 C.7 D.83. 下列关于无向连通图特性的叙述中,正确的是______。
①所有顶点的度之和为偶数②边数大于顶点个数减1③至少有一个顶点的度为1A.只有① B.只有② C.①和② D.①和③4. 对于具有n(n>1)个顶点的强连通图,其有向边的条数至少是______。
A.n+1B.nC.n-1D.n-25. 下列有关图的说法中正确的是______。
A.在图结构中,顶点不可以没有任何前驱和后继 B.具有n个顶点的无向图最多有n(n-1)条边,最少有n-1条边 C.在无向图中,边的条数是结点度数之和 D.在有向图中,各顶点的入度之和等于各顶点的出度之和6. 对于一个具有n个顶点和e条边的无向图,若采用邻接矩阵表示,则该矩阵大小是______,矩阵中非零元素的个数是2e。
A.n B.(n-1)2 C.n-1 D.n27. 无向图的邻接矩阵是一个______。
A.对称矩阵 B.零矩阵 C.上三角矩阵 D.对角矩阵8. 从邻接矩阵可知,该图共有______个顶点。
如果是有向图,该图共有4条有向边;如果是无向图,则共有2条边。
A.9 B.3 C.6 D.1 E.5 F.4 G.2 H.09. 下列说法中正确的是______。
A.一个图的邻接矩阵表示是唯一的,邻接表表示也唯一 B.一个图的邻接矩阵表示是唯一的,邻接表表示不唯一 C.一个图的邻接矩阵表示不唯一,邻接表表示唯一 D.一个图的邻接矩阵表示不唯一,邻接表表示也不唯一10. 用邻接表存储图所用的空间大小______。
A.与图的顶点数和边数都有关 B.只与图的边数有关 C.只与图的顶点数有关 D.与边数的二次方有关11. 采用邻接表存储的图的深度优先搜索算法类似于二叉树的______,广度优先搜索算法类似于二叉树的层次序遍历。
第7章图_数据结构
v4
11
2013-8-7
图的概念(3)
子图——如果图G(V,E)和图G’(V’,E’),满足:V’V,E’E 则称G’为G的子图
2 1 4 3 5 6 3 5 6 1 2
v1 v2 v4 v3 v2
v1 v3 v4
v3
2013-8-7
12
图的概念(4)
路径——是顶点的序列V={Vp,Vi1,……Vin,Vq},满足(Vp,Vi1),
2013-8-7 5
本章目录
7.1 图的定义和术语 7.2 图的存储结构
7.2.1 数组表示法 7.2.2 邻接表 ( *7.2.3 十字链表 7.3.1 深度优先搜索 7.3.2 广度优先搜索 7.4.1 图的连通分量和生成树 7.4.2 最小生成树
*7.2.4 邻接多重表 )
7.3 图的遍历
连通树或无根树
无回路的图称为树或自由树 或无根树
2013-8-7
18
图的概念(8)
有向树:只有一个顶点的入度为0,其余 顶点的入度为1的有向图。
V1 V2
有向树是弱 连通的
V3
V4
2013-8-7
19
自测题
7. 下列关于无向连通图特性的叙述中,正确的是
2013-8-7
29
图的存贮结构:邻接矩阵
若顶点只是编号信息,边上信息只是有无(边),则 数组表示法可以简化为如下的邻接矩阵表示法: typedef int AdjMatrix[MAXNODE][MAXNODE];
*有n个顶点的图G=(V,{R})的邻接矩阵为n阶方阵A,其定 义如下:
1 A[i ][ j ] 0
【北方交通大学 2001 一.24 (2分)】
2024版《数据结构》全套课件
将电路中的元件和连线抽象为图中的顶点和 边,利用图算法进行电路分析和优化。
路由算法
生物信息学
利用图数据结构表示计算机网络中的拓扑结 构,利用最短路径算法进行路网络、 基因调控网络等复杂生物系统,进行生物信 息学分析和挖掘。
05
查找与排序
查找的基本概念与分类
选择排序算法
简单选择排序
每次从待排序的数据元素中选出最小(或最大)的一个 元素,存放在序列的起始位置,直到全部待排序的数据 元素排完。
堆排序
利用堆这种数据结构所设计的一种排序算法,是选择排 序的一种。可以利用数组来模拟堆的结构,通过构造大 顶堆或小顶堆来实现排序。
归并排序算法
归并排序的思想
将两个(或更多)有序表合并成一个新的有序表,即把 待排序序列分为若干个子序列,每个子序列是有序的。 然后再把有序子序列合并为整体有序序列。
开放寻址法、链地址法等。
排序的基本概念与分类
排序的定义
将一组无序的记录序列调整为有序的记录序 列。
排序的分类
内部排序和外部排序,内部排序包括插入排 序、交换排序、选择排序、归并排序等。
插入排序算法
要点一
直接插入排序
每次将一个待排序的元素插入到前面已经排好序的序列中, 寻找合适的位置。
要点二
希尔排序
二叉树的遍历算法
先序遍历
先访问根节点,然后遍 历左子树,最后遍历右
子树。
中序遍历
先遍历左子树,然后访 问根节点,最后遍历右
子树。
后序遍历
层次遍历
先遍历左子树,然后遍 历右子树,最后访问根
节点。
按照层次顺序从上到下、 从左到右遍历二叉树中
的所有节点。
树和森林的遍历算法
第7章图(2)-数据结构教程(Python语言描述)-李春葆-清华大学出版社
4/59
或者
def DFS1(G,v): print(v,end=' ') visited[v]=1 for p in G.adjlist[v]: w=p.adjvex if visited[w]==0: DFS1(G,w)
#邻接表G中从顶点v出发的深度优先遍历 #访问顶点v #置已访问标记 #处理顶点v的所有出边顶点 #取顶点v的一个邻接点w
图采用邻接矩阵为存储结构,其广度优先遍历算法如下:
from collections import deque
MAXV=100
#全局变量,表示最多顶点个数
visited=[0]*MAXV
def BFS(g,v):
#邻接矩阵g中顶点v出发广度优先遍历
qu=deque()
#将双端队列作为普通队列qu
print(v,end=" ")
#访问顶点v
visited[v]=1
#置已访问标记
qu.append(v)
#v进队
while len(qu)>0:
#队不空循环
v=qu.popleft()
#出队顶点v
for w in range(g.n):
if g.edges[v][w]!=0 and g.edges[v][w]!=INF:
#全局变量,表示最多顶点个数
#邻接表G中顶点v出发广度优先遍历 #将双端队列作为普通队列qu #访问顶点v #置已访问标记 #v进队
#队不空循环 #出队顶点v
#处理顶点v的所有出边 #取顶点v的第j个出边邻接点w #若w未访问 #访问顶点w #置已访问标记 #w进队
时间复杂度为O(n+e)。
11/59
数据结构-图
出发点,访问D,标注数字序号④;
(a)无向图 G9
(b)深度优先遍历
图的遍历
3.1图的深度优先遍历
接着到G,访问G, 标注数字序号⑤;G 相邻顶点都访问过了,顺着虚线箭头方向
回退到 D,D 相邻顶点都访问过了,顺着虚线箭头方向回退到C,C 相邻顶点也都访问过
图的基本概念
1.2图的操作定义
02
PART
图的存储结构
2.1邻接矩阵
首先介绍的是数组表示法,即用两个数组分别存储顶点的信息和顶点之间的关系。
用来存放图中 n 个顶点的数组称为顶点数组。我们可将图中顶点按任意顺序保存到顶点数组中,
这样按存放次序每个顶点就对应一个位置序号(简称位序),依次为0~n-1;接着用一个 n×n 的二维
称为有向图。例如,当V={v1,v2,v3,v4,v5},VR={<v1,v2>,
<v1,v4>,<v2,v4>,<v3,v1>,<v3,v5>,<v4,v3>,<v5,v4>},则顶点集合
V、关系集合VR 构成有向图G1=(V,VR),如图(a)所示。
图的基本概念
1.1图的定义与基本术语
无向图(Undirected Graph)。如果顶点间的关系是无
序号作为表结点的值,所以一条弧对应一个表结点。右图为有向图 G1
和无向图 G2的邻接表表示法存储示意图。
图的存储结构
2.2邻接表
对于有向网和无向网,由于表结点表示边或弧,因此需要对表结点扩充一个属性域,表
结点至少包含顶点序号、权值和下一表结点指针 3 个属性,由此构成网的邻接表。
数据结构图
所以:对于点多边少的稀疏图来说,采用邻接表 结构使得算法在时间效 率上大大提高。
16
3/12
广度优先搜索(Breadth First Search,简称BFS ) BFS类似于树的层序遍历; 用一个数组用于标志已访问与否,还需要一个工作队列。
【例】一个无向图的BFS
8
6
CD
4
7
HG
BA
邻接多重表(Adjacency Multilist)
9
边表
• 在某些应用中,有时主要考察图中边的权值以及所依附的 两个顶点,即图的结构主要由边来表示,称为边表存储结 构。
• 边表结构采用顺序存储,用2个一维数组构成,一个存储 顶点信息,一个存储边的信息。边数组的每个元素由三部 分组成:
– 边的起点下标 – 边的终点下标 – 边的权值
1
A [i][
j]
0
如果 (vi , v j ) 或 vi , v j G的边 其它
无权图的邻接矩阵表示示例
V1
V2
V0
3
V3
4 12/15
带权图的邻接矩阵的定义
A [i][ j] wij
如果 (vi , vj ) 或 vi , v j G的边 其它
带图权的图邻的接邻矩接阵矩表阵示表示示例示[例例6.9]
1
第一部分 图的定义和术语
2
图的定义
“图” G可以表示为两个集合:G =(V, E)。每条 边是一个顶点对(v, w) E ,并且 v, w V。
通常:用 |V| 表示顶点的数量(|V| ≥ 1), 用 |E| 表示边的数量(|E| ≥ 0)。
(1) 无向图(完全有向图边数与顶点数之间的 关系) (2) 有向图(完全有向图弧数与顶点数之间的 关系) (3) 简单图:没有重边和自回路的图 (4) 邻接 (5) 路径,路径长度 (6) 无环(有向)图:没有任何回路的(有向)图 (7) 度,入度,出度 (8) 无向图的顶点连通、连通图、连通分量 (9) 有向图的顶点强连通,强连通图、连通分量
《数据结构》课件
第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。
数据结构与算法 (2)
First started programming : have no ADT
–Writing the same code over and over
Data Sagtrauincture can be defined as:Exa•mAtpolemfiocr DADatTa: tahreecsoidneglteo arenadd the 1ea.Ak♠stcheWehcayAtebotoon•adohcmkAfAdwsoaafoanwtebrntwndinoadoatc-ihwha,ndmaiblsttatfiyetbauewcaihirspcstncahtheipaeotcdotaordeintimooaotniscforadnpcanofpnatoeotentaosdtprhidfriostmasaaetaheiatmystcahetlibopatokeidisrtlpcaenymedtatpogyeswedieepnesrdntaonanedhcadtttthaaapiiitesttsoneotayafai.ngaardndntresoseaeddt,,dthaaaaet.ar
bank toopdeertaetrimoninse tellers.
1-3 Model for an Abstract Data Type
In this section we provide a conceptual model for an Abstract Data Type (ADT).
t2rienyel.eApvwl–l♠adb3aiasqmoAene2raittsuehlbit7tevoeeo1ewa––s6{s•idauniut6rxdnFAt+Aens8mT123rneitetaboesuoasra,eegsn~s...th:r-mtinncefmhnanp,tti3DEDtaon*stcatoatyaeioipci,2ihtotpntgfeectc/ncisihotls,o…o7nnmeceuasccohiisienlfdmnn:6mtailliil(pneeaaeoscos}sgasg7ppruikrdhegrra:ioecfcattf}ssraaelaurhr,enadiaomintuiCcshmdudmttaalitsetrsaiipdagtleauooaatdtcfyabfrl:opncieetoieoiirannnnbtsaptvootatlioadmarrhaefuilgntte-ieotonnmoozeambinstnfrette.pntfhaisffheyhuetediwobdesto{tenrapdeo)eyoim-lenoneouasdgnbeapptfdtinfohricbamistotte.riedtainhahapaotteneotr.ipauthtkeaoetiagfrkathTltserndesretoaedlaeiahtsmniroapnyna.te,taenitepeatosanriasneusannod.t.ctfatsiohoatinoasnssa
数据结构(图)习题与答案
一、单选题1、设有5个结点的无向图,该图至少应有_________条边才能确保是一个连通图。
A.7B.8C.6D.5正确答案:A2、设图G=(V,VR),其中: V={A,B,C,D,G},VR={(A,C),(A,D),( B,C),(B,D) ,(G,C),(B,G)},则对应的图形为_________。
A.B.C.D.正确答案:C3、设某有向图中有n个顶点,则该有向图对应的邻接表中有_________个表头结点。
A.n-1B.n+2C.nD.n+1正确答案:C4、在一个无向图中所有顶点的度数之和等于所有边数的_________倍。
A.1B.2C.3D.1/2正确答案:B5、一个无向连通图的生成树是该连通图的_____。
A.极小连通子图B.强连通子图C.连通子图D.极大连通子图正确答案:A6、设某无向图中有n个顶点,则该无向图邻接矩阵的大小是_________。
A.n(n+1)/2B.(n-1)2C. n2D. (n+1)2正确答案:C7、设有n个顶点e条边的无向图,采用邻接矩阵作为物理结构,则删除与某顶点Vi 关联的所有边算法的时间复杂度为_________。
A.O(n2)B.O(n+e)C.O(n*e)正确答案:D8、设有n个顶点e条弧的有向图,采用邻接表作为物理结构,则求某顶点Vi度的算法的时间复杂度为_________。
A.O(n)B.O(n*e)C.O(n+e)D.O(n2)正确答案:C9、设无向图G=(V,E)和G'=(V',E'),如果G'是G的生成树,则下列说法中错误的是_____。
A.G'是G的连通分量B.G'是G的一个无环子图C.G'是G的极小连通子图且V=V'D.G'是G的子图正确答案:A10、设G是一个非连通的无向图,共有10条边,则该图至少有_____个顶点。
A.7B.6C.5D.8正确答案:B11、 n个顶点的有向图为强连通图时,至少含有________。
数据结构(C++)--图
一、图的概念 二、图的应用 三、图的基本术语 四、图的存储结构
难点
1
一、图的概念
(Graph) Graph)
定义:图是由顶点集合(vertex)及边的集合 定义:图是由顶点集合 及边的集合 组成的一种数据结构: 组成的一种数据结构: Graph= Graph=( V, R ) 其中: 某个数据对象} 其中: V = { x | x ∈ 某个数据对象} 是顶点的有穷非空集合; 是顶点的有穷非空集合; R = {(u, v) | u, v ∈ V } {(u 是顶点之间关系的有穷集合, 是顶点之间关系的有穷集合,也叫做 (edge)集合 集合。 边(edge)集合。
1, 如果 < i , j >∈ E 或者 (i , j ) ∈ E Matrix[i ][ j ] = 0, 否则
1 7 3 4 2 8 3 1 6 5 5 4 2
最小(生成 树 最小 生成)树 生成 也称为 最小(支撑 树 最小 支撑)树 支撑
5
二、图的应用举例
例2: 最短路问题(SPP-Shortest Path Problem) : 最短路问题( ) 一名货柜车司机奉命在最短的时间内将一车货物从 甲地运往乙地。从甲地到乙地的公路网纵横交错, 甲地运往乙地。从甲地到乙地的公路网纵横交错, 因此有多种行车路线,这名司机应选择哪条线路呢? 因此有多种行车路线,这名司机应选择哪条线路呢? 假设货柜车的运行速度是恒定的, 假设货柜车的运行速度是恒定的,那么这一问题相 当于需要找到一条从甲地到乙地的最短路。 当于需要找到一条从甲地到乙地的最短路。 5 A 7 C 4 B 6 4 F 5 3 E 1
5 (开始) A 开始) 7 4
项-6-2018-2_6非线性数据结构(2h)
V1
深度优先遍历
V3
V4 V2
V5
深度优先遍历G6所走过的序列: V1 V4 V6 V3 V5 V2
G6
V6
假设图有 n 个结点,采用数组a[][]存放图的邻 接矩阵各元素值,图的深度优先搜索遍历算法如下:
dfs(int a[][],int i,int n) { /*以i为出发点,按深度优先搜索遍历图*/ int j; printf("V=%4d",i); visited[i]=1; /*标识顶点vi被访问*/ for( j=0;j<n;j++ ) if(a[i][j]!=0 && visited[j]==0) dfs( a,j,n );/*递归调用函数dfs()*/ }
V1
广度优先遍历
V3
V4 V2
V5
深度优先遍历G6所走过的序列: V1 V4 V3 V2 V6 V5
G6
V6
bfs(int a[][],int i,int n) { int j,k,b1=-1, b2=0,b[n]; b[b2]=i; while(b1<b2) /*队列不空则循环*/ { b1=b1+1; k=b[b1]; /*队首顶点出队*/ visited[k]=1; /*置已被访问标识*/ printf("V=%4d",k++); for(j=0;j<n;j++) if (a[k][j]!=0 && visited[j]==0) { b2=b2+1;b[b2]=j; } 第 6章 图 第 29 页 2007-7-29 */ /*没有被访问的顶点进队 } }
数据结构_第六章_图_练习题与答案详细解析(精华版)
图1. 填空题⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。
【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。
⑵ 任何连通图的连通分量只有一个,即是()。
【解答】其自身⑶ 图的存储结构主要有两种,分别是()和()。
【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。
⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。
【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。
⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。
【解答】求第j列的所有元素之和⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。
【解答】出度⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。
【解答】前序,栈,层序,队列⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。
【解答】O(n2),O(elog2e)【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。
⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。
【解答】回路⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。
【解答】vi, vj, vk【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。
数据结构50:二分查找法(折半查找法)
数据结构50:⼆分查找法(折半查找法)折半查找,也称⼆分查找,在某些情况下相⽐于顺序查找,使⽤折半查找算法的效率更⾼。
但是该算法的使⽤的前提是静态查找表中的数据必须是有序的。
例如,在{5,21,13,19,37,75,56,64,88 ,80,92}这个查找表使⽤折半查找算法查找数据之前,需要⾸先对该表中的数据按照所查的关键字进⾏排序:{5,13,19,21,37,56,64,75,80,88,92}。
在折半查找之前对查找表按照所查的关键字进⾏排序的意思是:若查找表中存储的数据元素含有多个关键字时,使⽤哪种关键字做折半查找,就需要提前以该关键字对所有数据进⾏排序。
折半查找算法对静态查找表{5,13,19,21,37,56,64,75,80,88,92}采⽤折半查找算法查找关键字为 21 的过程为:图 1 折半查找的过程(a)如上图 1 所⽰,指针 low 和 high 分别指向查找表的第⼀个关键字和最后⼀个关键字,指针 mid 指向处于 low 和 high 指针中间位置的关键字。
在查找的过程中每次都同 mid 指向的关键字进⾏⽐较,由于整个表中的数据是有序的,因此在⽐较之后就可以知道要查找的关键字的⼤致位置。
例如在查找关键字 21 时,⾸先同 56 作⽐较,由于21 < 56,⽽且这个查找表是按照升序进⾏排序的,所以可以判定如果静态查找表中有 21这个关键字,就⼀定存在于 low 和 mid 指向的区域中间。
因此,再次遍历时需要更新 high 指针和 mid 指针的位置,令 high 指针移动到 mid 指针的左侧⼀个位置上,同时令 mid 重新指向 low 指针和 high 指针的中间位置。
如图 2 所⽰:图 2 折半查找的过程(b)同样,⽤ 21 同 mid 指针指向的 19 作⽐较,19 < 21,所以可以判定 21 如果存在,肯定处于 mid 和 high 指向的区域中。
所以令 low 指向 mid 右侧⼀个位置上,同时更新 mid 的位置。
数据结构-图
第七章 图一、写出如下有向图的邻接矩阵及图中各顶点的入度、出度和度。
【分析】有向图中顶点的度=顶点的入度+顶点的出度。
【参考答案】邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******010101000000110 顶点a;入度1,出度2,度3;顶点b;入度2,出度1,度3;顶点c;入度1,出度2,度3;顶点d;入度2,出度1,度3;顶点e;入度1,出度1,度2。
二、设如下有向网以邻接表形式存储,画出其存储结构示意图。
【分析】表结点中应含三个域:邻接到顶点的下标域、权值域和指向下一表结点的指针域。
【参考答案】三、写出对如下无向图从顶点a出发进行广度优先遍历可能得到的所有遍历序列。
【分析】广度优先遍历中应保证先被访问的顶点的邻接点先于后被访问的顶点的邻接点处理。
图中各顶点间并无必然的先后顺序。
各顶点的邻接点间也并无必然的先后顺序。
【参考答案】abcdefgabdcegfacbdfegacdbfgeadbcgefadcbgfe四、设有无向网如下,写出其邻接矩阵,并在此基础上按普里姆算法求最小生成树。
【分析】【参考答案】邻接矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞6456252363794567555553955434最小生成树:五、写出对如下有向无环图进行拓扑排序可能得到的所有拓扑序列。
【分析】每次输出一个入度为0的顶点。
【参考答案】abcdefgabcdfegabcfdeg六、设有AOE网如下,试求关键路径。
【分析】【参考答案】关键路径1:v1→v2→v5→v7关键路径2:v1→v3→v6→v7七、设有向网如下,用迪杰斯特拉算法求从顶点a出发到其余各顶点的最短路径。
【分析】【参考答案】ab:3af:5afe:7afec:8afecd:10八、编写算法,由依次输入的顶点数、弧数、各顶点信息和各条弧信息建立有向图的邻接表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V-U
U
普里姆(Prim)算法
v
克鲁斯卡尔 (Kruskal) 算法
u
第7章 图 普里姆算法 (Prim算法,又称边割法) 1957年由Prim提出
假设N=(V, {E})是连通网,TE为最小生成树中边的集合。
Step1: 初始U={u0}(u0∈V), TE=φ; Step2: 在所有u∈U, v∈V-U的边中选一条代价最小的边(u0, v0) 并入集合TE,同时将v0并入U; Step3: 重复Step2,直到U=V为止。
问题演化 要在n个城市间建立通信联络网 顶点——表示城市 边的权——城市间建立通信线路所需花费代价
问题分析 n个城市间,最多可设置n(n-1)/2条线路 n个城市间建立通信网,只需n-1条线路 如何在可能的线路中选择n-1条, 能把所有城市(顶点)均连起来, 且总耗费(各边权值之和)最小。
0
6
22
3 6
0 {1,3,6} {2, 4,5}
1 0 6 1 5 2 6 0 5 3
3 1 5 0 5 6 4 4 5 5 0 2 5 3 6 0 6 6 4 2 6 0
adjvex 3
3
{1,3,
lowcost 55 0 0 6 0 6,4}
{2, 5}
设计思路: ① 增设一辅助数组Closedge[ n ],以记录从U到V-U具有最小代价的边, 每 个数组分量都有两个域:
Colsedge[ i-1]
adjvex
lowcost
V-U中顶点vi
vi 在U中的邻接点u (u,vi)
u与vi之间对应的边权
要求:使Colsedge[ i-1].lowcost = min( ( u ,vi ) ) u U
第7章 图
第七章 图(2)
电子科技大学
第7章 图
第7章 图
7.1 图的定义与基本术语 7.2 图的存储结构 7.3 图的遍历 7.4 图的应用
--最小生成树 (无向图) --拓扑排序 (有向图,简介) --最短路径 (无向图或有向图)
第7章 图
7.4 图的应用—最小生成树
1. 无向图的生成树:回顾
一个连通图的生成树是一个极小连通子图,它含有图中全部顶点,但 只有构成一棵树的(n-1)条边。
e<n-1 → 非连通图 e>n-1 → 有回路 e=n-1 → 不一定都是图的生成树
V2
V2
V1
V4
V3
V6 V5
无向图G
V1
V4
V3
V6 V5
V2
V1
V4
V3
V6 V5
第7章 图
对于给定的连通网络,如何求得其生成树? 对含有n个顶点的连通图G,从任一顶点出发,作一次深度优先 或广度优先遍历,将遍历过程中经过的n-1条边和图中的n个顶 点连接起来构成一个极小连通子图,就是图G的一棵生成树。 用不同的遍历图的方法,可以得到不同的生成树;从不同的顶 点出发,也可能得到不同的生成树。一个连通图的生成树可能 不唯一。
u
v-u
u
v
含义:将顶点分为两个不相交的集合U和V-U,
若边(u,v)是连接这两个顶点集的最小权值
u’
v’
边,则边(u,v)必然是某最小生成树的边。
第7章 图 我们可以利用反证法来证明MST性质:
假设不存在这样一棵包含边(u , v)的最小生成树。任取一棵最 小生成树T,将(u , v)加入T中。根据生成树的性质,此时T中必形 成一个包含(u , v)的回路,且回路中必有一条边 (u’, v’)的权值大 于或等于( u, v)的权值。删除(u’, v’),则得到一棵代价小于等于T的 生成树T′,且T′为一棵包含边(u , v)的最小生成树。这与假设矛盾, 故该性质得证。
第7章 图
该问题等价于:
在n个顶点的连通网中,构造网的一棵最小生成树 (Minimum Cost Spanning Tree, MST) , 即:在 e 条带权的边中选取 n-1 条边 (不构成回路), 使“权值之和”为最小。
最小生成树有如下重要性质(MST性质):
设 N=(V, {E}) 是一连通网,U 是顶点集V的一个非空子集。 若(u , v)是一条具有最小权值的边, 其中u∈U, v∈V-U, 则存在一棵包含边(u , v)的最小生成树。
此时,TE中必含有n-1条边,则T=(V, {TE})为N的最小生 成树。
从一个平凡图开始,普利姆算法逐步增加U中的顶点, 可 称为“加点法”。
注意: 在第最7小章生成图树的生成过程中,所选的边都是一端在U中,另一端
在V-U中。选最小边的过程是一个向集合U中添加顶点的过程。
例
6
1
5
1
1
1
2
1
4
5
5
struct { VertexType adjvex; // u在U集中的顶点序号 VRType lowcost; // 边的权值
} closedge[MAX_VERTEX_NUM];
u从U(u1~un)中挑选,选择U 中到顶点vi边的权值最小的顶点
第7章 图
具体示例:
怎样完成这个算法? 可以采用双层for循环控制
所有生成树具有以下共同特点: 生成树的顶点个数与图的顶点个数相同(是连通图的极小连通 子图) 一个有n个顶点的连通图的生成树只有n-1条边 在生成树中再加一条边必然形成回路 生成树中任意两个顶点间的路径是唯一的
第7章 图
问题 (最小生成树) 的提出:
假设要在 n 个城市之间建立通讯联络网,则连通 n 个城市只需 要修建 n-1条线路,如何在最节省经费的前提下建立这个通讯网?
1
1
3
3 6
42
3
3
4
5
6
U={1} U={1,3}
6
U={1,3,6} 6
1
1
1
1
42
1
4
5
3 42
3 42
6
U={1,3,6,4}
6
U={1,3,6,4,2}
2
14533425
6
U={1,3,6,4,2,5}
第7章 图 计算机内怎样实现Prim(普里姆)算法?
Prime算法特点: 将顶点归并,与边数无关,适于稠密网。 故采用邻接矩阵作为图的存储表示。
起点 1
6
15
2 53 5 4
36
42
566
v
closedge
2
3
4
55
66
U
V-U
adjvex 1 1 1 1 1 lowcost 6 11 5 ∞ ∞
{1} {2,3,4, 5,6}
adjvex lowcost
3 5
0
1 5
3 6
3
44
{1, 3}
{2, 4, 5, 6}
adjvex 3 lowcost 5