光纤耦合模块激光器

合集下载

光纤耦合激光器原理

光纤耦合激光器原理

光纤耦合激光器原理
光纤耦合激光器原理基于将激光信号有效地传输到光纤中。

它通常由几个核心组件组成,包括激光二极管、起微透镜、光纤和耦合透镜。

首先,激光二极管(LD)产生和发射激光光束。

该光束经过起微透镜,用于调整和聚焦激光器的输出光。

然后,光束进一步通过耦合透镜,被聚焦到光纤的耦合端。

耦合透镜的作用是将激光器的输出光束调整为适合耦合到光纤中的形状和大小。

接下来,激光束进入光纤。

光纤是一根非常细的玻璃或塑料导光物品,可以有效地传输光信号。

最后,激光器的输出光通过光纤传输到需要的位置。

光纤的外层通常有一层保护材料,以确保光信号不受外部干扰或损坏。

整个系统通过聚焦光束、调整光束形状和聚焦光纤的过程,使激光器的输出光能够高效地耦合到光纤中,实现传输和传播。

这种光纤耦合激光器常用于光通信系统、光纤传感系统和光纤激光器系统等应用中。

三波长合束单管激光器光纤耦合模块设计

三波长合束单管激光器光纤耦合模块设计

三波长合束单管激光器光纤耦合模块设计刘翠翠;王鑫;井红旗;吴霞;王翠鸾;马骁宇【摘要】为了研究以单管半导体激光器为基本单元的高功率、高亮度波长合束光纤耦合模块,设计出新型光纤激光器泵浦模块,基于ZEMAX光学设计软件等设计了一种由30支单管半导体激光器组成、可输出3种波长光束的光纤耦合模块.将经快慢轴整形、空间合束、波长合束、光路转向及聚焦的光束耦合进入芯径105 μm、数值孔径0.22的普通光纤,最终得到尾纤输出端高于357.91 W的输出功率,光纤耦合效率为99.42%,光功率密度为27.24 MW/cm2-stras.为了验证模块的实际操作的可行性,分析了光纤端面法线与入射光束之间的夹角对耦合效率的影响,结果显示该夹角对模块的耦合效率影响较小.同时,应用ANSYS软件对模块散热情况的分析结果可知,模块散热性能良好.故该模块各项性能良好,可靠性较高,实现了高功率、高亮度、多波长的多单管半导体激光器光纤耦合模块的设计目的.%In order to develop a wavelengths ultiplexing fiber-coupled module of high output power and high power denisty on the basis of single emitter semiconductor laser diode,and design a kind of new pump laser for fiber laser,a new-type fiber-coupled module composed of 30 LDs was designed based on ZEMAX optical design software,which can output three kinds of wavelengths. After colli-mation by micro lens,including FACs and SACs,spatial multiplexing,wavelength multiplexing,di-version by special mirrors,focusing by focus lens and coupling to a fiber, the module can produce above 357.91 W output power from a standard fiber with core diameter of 105 μm and numerical ap-erture (NA) of 0.22. The total fiber coupling efficiency is about 99.42%, and the power density is 27.24MW/cm2. To test the practical feasibility of the module, analyzed the influence from the angle between the incident beam and the normals of optical fiber end face on the coupling efficiency, the results showed the effects from the angle is so tiny that can be neglected. At the sametime,the application of ANSYS software for the thermal analysis of this module shows that the cooling perform-ance of the module is pretty good. Therefore this module's performance is positive and of highreliability,which can meet the demand of single emitter semiconductor laser fiber-coupled module which is of high power, high brightness and multiple wavelengths. Additionally, this design is of great guiding significance for practical production.【期刊名称】《发光学报》【年(卷),期】2018(039)003【总页数】6页(P337-342)【关键词】半导体激光器;光纤耦合;合束技术;ZEMAX【作者】刘翠翠;王鑫;井红旗;吴霞;王翠鸾;马骁宇【作者单位】中国科学院半导体研究所,北京 100083;中国科学院大学,北京100049;中国科学院半导体研究所,北京 100083;中国科学院大学,北京 100049;中国科学院半导体研究所,北京 100083;中国科学院半导体研究所,北京 100083;中国科学院半导体研究所,北京 100083;中国科学院半导体研究所,北京 100083【正文语种】中文【中图分类】TN248.41 引言随着科技的发展,光电子产业已融入到医疗美容、电子通讯、工业加工及国防安全等各个领域,成为当今社会必不可少的产业之一。

激光二极管、激光模组、光纤耦合激光器模块的关系

激光二极管、激光模组、光纤耦合激光器模块的关系

激光二极管、激光模组、光纤耦合激光器模块的关系文章标题:深度探讨激光二极管、激光模组、光纤耦合激光器模块的关系在当今的科技发展中,激光技术已经成为了不可或缺的一部分。

激光二极管、激光模组和光纤耦合激光器模块是激光技术中的重要组成部分,它们之间的关系密不可分。

本文将从深度和广度的角度探讨这三者之间的关系,以帮助读者更好地理解激光技术的发展和应用。

一、激光二极管激光二极管是一种半导体激光器件,利用半导体材料的特性来产生激光。

激光二极管是激光技术中的基础部件,广泛应用于通信、医疗、材料加工等领域。

它的工作原理是通过注入电流使半导体材料发生电子和空穴复合,从而产生光子放大。

激光二极管具有体积小、功耗低、寿命长等优点,因此在激光技术中得到了广泛的应用。

二、激光模组激光模组是指将激光二极管和相关光学元件(如透镜、反射镜等)集成在一起的模块化组件。

激光模组的主要作用是对激光进行调控和整形,以满足不同应用场景的需要。

激光模组通常包括激光二极管驱动电路、温控系统、光学元件等部分。

通过激光模组的设计和优化,可以实现激光的稳定输出、调制和整形,从而满足不同行业对激光的特定需求。

三、光纤耦合激光器模块光纤耦合激光器模块是一种将激光通过光纤耦合传输的模块化组件。

光纤耦合激光器模块在激光通信、激光测量等领域有着重要的应用。

它的主要作用是将激光通过光纤进行传输,通过光纤的柔韧性和低损耗特性,可以将激光输送到远距离,实现高效的激光传输和耦合。

四、激光二极管、激光模组和光纤耦合激光器模块的关系激光二极管、激光模组和光纤耦合激光器模块之间存在着密切的关系。

激光二极管是激光技术的核心部件,它的稳定性和输出质量对整个激光系统的性能起着关键作用。

激光模组则是对激光进行整形和调控的关键环节,它可以根据具体的应用需求对激光进行调制和优化。

而光纤耦合激光器模块则是实现激光传输和耦合的关键部件,它可以将激光输送到远距离,并保持高效的传输质量。

个人观点和理解激光技术在现代科技中有着广泛的应用,激光二极管、激光模组和光纤耦合激光器模块作为激光技术的核心组成部分,在各自的领域都发挥着不可替代的作用。

绿光半导体激光器单管合束及光纤耦合技术研究

绿光半导体激光器单管合束及光纤耦合技术研究

绿光半导体激光器单管合束及光纤耦合技术研究摘要:近年来,随着我国经济的高速发展和科技的进步,光电器件与材料相关领域的研发不断取得新进展,性能得到明显强化,在各大领域得到广泛应用。

为进一步提高半导体激光功率,可以采用激光器单管合束及光纤耦合技术。

基于此,分析研究绿光半导体激光器单管合束及光纤耦合技术,对提高仪器总功率以及将其应用于更多领域有重要的现实意义。

关键词:绿光半导体激光器;单管合束;光纤耦合前言:利用合束技术可以使多个半导体激光器在光纤中进行耦合,由此形成半导体激光器的光学器件,保证激光的输出功率,提高激光束的质量。

目前,国内外已广泛使用多种红外波段的半导体激光器,广泛用于彩色显示、激光印刷、高密度光盘存储等领域,但目前对于可见光波段激光耦合模块尤其是绿光波段的研究还很少,因此,对绿光高功率半导体激光器光纤耦合模块进行深入研究,是当前光电器件与材料相关领域研发重点之一。

1半导体激光器光纤耦合模块研究半导体激光器技术已经相对成熟,由于其具有光束不均匀性、单元功率低等特点,在一定程度上限制其应用领域。

为保证半导体激光器的功率输出,需要对激光器进行多层叠加,这会一定程度上限制光束质量。

随着半导体耦合技术的不断发展和进步,通过使用半导体激光器进行合束,可以有效提升光束的质量,实现激光远距离柔性传输。

最早的光纤是20世纪50年代研制出来的,后来被人们逐渐推广使用。

在20世纪70年代,就有国外公司利用化学气相沉积法得到了损耗较低的光纤,随着半导体激光器的迅速发展和光纤耦合技术的发展,人们对不同类型的半导体激光器进行了大量的研究,并取得了大量的成果。

2半导体激光器非相干合束技术目前,半导体激光器的合束技术方法有两种:相干合束和非相干合束。

半导体激光器利用光束准直技术和聚焦耦合技术,使多个光束单元的耦合成为可能。

在相干合束技术的应用中,采用了相位控制方法,使激光阵列各发光元件产生同一波长的光束,从而达到相干合束。

光纤和半导体激光器耦合的实现方法

光纤和半导体激光器耦合的实现方法

光纤和半导体激光器耦合的实现方法光纤和半导体激光器的耦合是将光纤与半导体激光器的光输出进行有效地连接的过程。

光纤和半导体激光器的耦合技术对于实现高效率和高品质的光纤通信、光纤传感和光纤激光器应用非常重要。

下面将介绍光纤和半导体激光器耦合的几种基本实现方法。

1.朴素方法:一种最简单的方法是将光纤粗略地对准激光器的外圆,然后用胶水或其他适当的导光材料固定光纤。

这种方法的缺点是会引入大量的光耦合损耗和模式不匹配损耗,导致耦合效率较低。

2.渐变折射率耦合:渐变折射率耦合是一种改进的方法,该方法通过在光纤末端表面使用透镜或折射率均匀变化的介质来改善耦合效率。

这种方法可以通过将光纤端面与激光器外表面之间的折射率差最小化来减少反射和模式相位匹配的不匹配,从而提高光纤和激光器之间的功率转移效率。

3.FC/APC连接:FC/APC(Angled Physical Contact)是一种常见的连接器类型,其端面倾斜以减少反射。

在光纤和激光器之间使用倾斜的光纤连接器,可以减少反射损耗,并提高耦合效率。

4.GRIN透镜耦合:GRIN(Graded-Index)透镜是一种折射率渐变的透镜,其折射率从中心向外缓慢减小。

将适当长度的GRIN透镜嵌入光纤末端,并将其与半导体激光器的激光输出区域对准,可以有效地将激光通过透镜耦合到光纤中。

GRIN透镜耦合可以提高耦合效率和模式匹配。

5.V-形槽耦合:V-形槽耦合是一种使用槽形结构来改善光纤和激光器之间耦合的方法。

在光纤末端和激光器之间创建V形槽,然后将光纤放置在槽中,可以实现更高的耦合效率。

这种方法可通过优化V形槽的形状、深度和角度,来减少反射和提高光耦合效率。

以上是光纤和半导体激光器耦合的几种基本实现方法。

在实际应用中,根据具体需求和要求,可以选用合适的耦合方法。

此外,还可以通过优化耦合尺寸、使用适当的光纤补偿器、调整光纤和激光器之间的距离等方法,进一步改善光纤和半导体激光器的耦合效果。

光纤激光器研究报告

光纤激光器研究报告

光纤激光器研究报告近年来,随着信息技术的快速发展,光通信和光存储技术的需求不断增加,光纤激光器作为一种重要的光源设备,其研究和应用也越来越受到关注。

本文将从光纤激光器的基本原理、研究现状、应用前景等方面进行探讨。

一、光纤激光器的基本原理光纤激光器是一种利用光纤作为激光介质的激光器。

其基本结构包括光纤、光纤耦合器、泵浦光源、光纤光栅等。

泵浦光源通过光纤耦合器将能量输送到光纤中,光纤光栅则用于调制光纤中的光场,使其产生激光输出。

光纤激光器的输出波长和功率可以通过调节光纤光栅的参数来控制。

光纤激光器的工作原理是基于光纤的增益介质特性。

当泵浦光经过光纤时,会激发光纤中的掺杂物(如铒离子、钕离子等)发生跃迁,产生光子,并激发周围的光子参与共振反馈,形成光纤中的激光场。

光纤激光器具有波长可调、功率稳定、光斑质量好等优点,因此在光通信、激光加工、医学等领域有广泛的应用。

二、光纤激光器的研究现状目前,光纤激光器的研究主要集中在以下几个方面:1.光纤激光器的波长调制技术光纤激光器的波长调制技术是实现光纤激光器波长可调的关键技术之一。

目前,波长调制技术主要包括电光调制、热光调制、机械调制等。

其中,电光调制技术是最常用的一种技术,其原理是利用电场控制光纤光栅的折射率,从而调制激光的波长。

2.光纤激光器的高功率输出技术光纤激光器的高功率输出是实现光纤激光器广泛应用的必要条件之一。

目前,高功率输出技术主要包括多段光纤放大、光纤叠加等。

多段光纤放大技术通过将光纤分成多段进行放大,从而提高激光器的输出功率。

光纤叠加技术则是利用多根光纤叠加的方法,将多个低功率的激光器输出合并成一个高功率的激光器输出。

3.光纤激光器的光学降噪技术光学降噪技术是提高光纤激光器光斑质量的关键技术之一。

目前,光学降噪技术主要包括光纤光栅滤波、光纤光栅反馈等。

其中,光纤光栅滤波技术是将光纤光栅的带通滤波器替换为带阻滤波器,从而实现对光纤激光器输出波长的滤波。

光纤耦合半导体激光器原理

光纤耦合半导体激光器原理

光纤耦合半导体激光器原理光纤耦合半导体激光器是一种将光纤与半导体激光器相结合的器件,可将激光器器件与光纤相互耦合,实现高效的光纤传输和集成应用。

它不仅具备了半导体激光器的小尺寸、高效率、低功耗等特点,还能实现激光光束与光纤之间的高效耦合和传输。

首先,模式匹配是光束通过光纤耦合的关键环节。

激光器芯片的输出模式和光纤的模式必须匹配才能进行有效的耦合。

通常,半导体激光器芯片的输出模式为高斯模式,而光纤的传输模式也为高斯模式。

通过设计激光器芯片和光纤的参数,如直径、焦距等,使得两者的输出模式能够匹配,以确保较高的耦合效率。

其次,光束扩展过程将激光器芯片的较小直径的光束扩展到与光纤直径相匹配的尺寸。

这一过程可以通过使用透镜或光纤连接器等光学元件来实现。

透镜可以将光束进行聚焦和发散,从而实现光束尺寸的调整。

光纤连接器则通过其内部的光学结构来实现光束尺寸的调整和耦合。

最后,耦合效率是衡量光束传输和耦合质量的指标。

耦合效率取决于光纤与半导体激光器芯片之间的距离、角度和位置等因素。

一般情况下,为了最大程度地提高耦合效率,需要将激光器芯片的输出焦点与光纤的输入端对准,并保持二者的光轴一致。

此外,通过调整激光器芯片和光纤之间的距离和角度等,还可以进一步优化耦合效率。

除了以上原理,光纤耦合半导体激光器还需要注意温度的控制和光学元件的稳定性等问题。

激光器芯片的温度对其性能有很大影响,因此需要采用冷却措施来控制温度。

此外,光纤连接器和透镜等光学元件在使用过程中也需要保持稳定的性能,这对于长时间稳定的激光输出至关重要。

总之,光纤耦合半导体激光器通过将半导体激光器芯片与光纤相结合,实现了激光光束的高效耦合和传输。

它的原理涉及模式匹配、光束扩展和耦合效率等关键过程,并需要注意温度控制和光学元件的稳定性等问题。

光纤耦合半导体激光器在光通信、光传感和激光加工等领域具有广泛的应用前景。

光纤耦合激光器的原理

光纤耦合激光器的原理

光纤耦合激光器的原理
光纤耦合激光器是一种通过光纤传递激光信号的装置。

它的工作原理主要包括光纤输入、光纤耦合和激光器三个部分。

首先,光纤输入部分是将激光信号引入光纤的过程。

一般来说,使用光纤末端对准激光器的发射区域,通过一系列光学元件进行对准和调节,将激光信号引导入光纤中。

其次,光纤耦合是将激光信号从光纤中耦合至激光器的过程。

这一步骤中,需要使用一些特殊的光纤连接器或耦合器件,将光纤与激光器适当地连接起来,使得激光信号能够在光纤和激光器之间高效地传输。

最后,激光器是光纤耦合激光器的核心部分。

激光器可以通过注入电流或提供适当的输入能量来激发放大介质,产生一束高强度、单色、方向性良好的激光光束。

这个激光光束经过光纤耦合并传输到目标位置,实现了光纤耦合激光器的最终应用。

光纤耦合激光器具有结构紧凑、功率稳定、传输距离远等优点,被广泛应用于通信、医疗、材料加工等领域。

光纤耦合输出半导体激光器制作过程

光纤耦合输出半导体激光器制作过程

光纤耦合输出半导体激光器制作过程光纤耦合输出半导体激光器(Fiber-Coupled Output Semiconductor Laser)是一种利用光纤将激光输出的半导体激光器。

它能够有效地将激光器的输出束聚焦到光纤中,具有小尺寸、高功率输出、方便集成等特点。

本文将介绍光纤耦合输出半导体激光器的制作过程。

1. 材料准备光纤耦合输出半导体激光器的制作过程涉及到多种材料,包括半导体片、光纤、封装材料等。

在准备材料的过程中,需要确保材料的质量和稳定性,以保证后续工艺的可靠进行。

2. 半导体片生长首先,需要进行半导体片的生长。

半导体片是激光器的核心组件,其性能直接影响着后续激光器的性能。

常用的半导体材料包括GaAs (砷化镓)和InP(磷化铟)等。

通过分子束外延(MBE)或金属有机化学气相沉积(MOCVD)等技术,可以在半导体衬底上生长出具有所需能带结构的半导体片。

3. 制备激光器结构接下来,需要将半导体片加工成激光器的结构。

这个过程通常包括光刻、腐蚀、沉积等步骤。

通过光刻技术,可以在半导体片上定义出激光器的电极形状和波导结构。

然后,通过腐蚀和沉积等工艺,可以形成激光器的电极和波导结构。

4. 管芯封装激光器的制备需要将其封装到一个管芯中,以保证激光输出的稳定性。

在管芯封装的过程中,需要将半导体片与光纤粘合在一起,并对其进行定位和固定。

通常,采用光纤对准和焊接的方法,将光纤与激光器的输出端面精确耦合。

5. 板载封装最后一步是进行激光器的板载封装。

这一步是将激光器结构固定在一个电路板上,并与其他电路元器件进行连接。

板载封装需要考虑到激光器的热管理和电路连接等问题,以确保激光器的性能和可靠性。

通过以上几个步骤,光纤耦合输出半导体激光器的制作过程就完成了。

这种激光器具有输出功率高、稳定性好、尺寸小等优点,广泛应用于光通信、激光医疗、激光雷达等领域。

随着制备工艺和材料的不断改进,光纤耦合输出半导体激光器的性能还将不断提高,应用范围也将进一步扩大。

激光耦合器的工作原理

激光耦合器的工作原理

激光耦合器的工作原理
激光耦合器通常由两个或多个波导光栅组成,每个波导光栅都
与一个激光器相连。

当激光器发出光束时,光被耦合到波导光栅中,并在其中传播。

波导光栅之间的距离和光栅的参数被精确设计,以
实现光的干涉和耦合效果。

在激光耦合器中,激光器发出的光通过波导光栅耦合到光纤中。

波导光栅的设计使得光在不同波导之间发生干涉,从而实现了光的
耦合。

通过调节波导光栅的参数,可以实现不同激光器的光束在光
纤中的有效耦合,从而实现多个激光器的集成和耦合。

激光耦合器的工作原理基于精密的光学设计和控制,以实现高
效的光耦合效果。

它在光通信系统中起着至关重要的作用,可以实
现多个激光器的集成和耦合,从而提高光通信系统的性能和可靠性。

总之,激光耦合器的工作原理基于光的波导耦合和干涉效应,
通过精密的光学设计和控制,实现了多个激光器的光束在光纤中的
有效耦合,为光通信系统的高效运行提供了重要支持。

vcsel激光器与光纤的耦合

vcsel激光器与光纤的耦合

vcsel激光器与光纤的耦合
VCSel激光器(垂直腔面发射激光器)与光纤的耦合是光通信
和光传感应用中的重要技术。

VCSel激光器是一种垂直腔面发射激
光器,通常用于短距离高速数据传输和传感应用。

光纤是一种用于
传输光信号的柔性透明纤维。

VCSel激光器与光纤的耦合涉及将激
光器产生的光信号有效地耦合到光纤中,以便进行信号传输或传感。

首先,VCSel激光器与光纤的耦合可以通过透镜和光纤对准的
方式进行。

透镜可以用来聚焦激光器的光束,使其与光纤的输入端
对准,从而实现光的耦合。

此外,也可以使用光纤对准仪器来确保
激光器和光纤的对准精度,以提高耦合效率。

其次,耦合效率受到VCSel激光器和光纤之间的匹配程度的影响。

例如,激光器的发散角和光纤的模式匹配对耦合效率有重要影响。

为了提高耦合效率,可以采用适当设计的光耦合器件,如微透
镜阵列或光栅耦合器,以实现更好的模式匹配。

此外,耦合过程中的对齐精度和稳定性也是影响耦合效率的重
要因素。

对于高速数据传输应用,对齐精度要求高,需要采用精密
的自动对准系统来确保激光器和光纤的稳定对准。

最后,值得注意的是耦合过程中的光损耗问题。

由于光纤的损耗和反射等原因,耦合过程中会产生一定的光损耗,因此在实际应用中需要对耦合系统进行精确的优化,以最大限度地减小光损耗,提高耦合效率。

总的来说,VCSel激光器与光纤的耦合涉及到透镜对准、模式匹配、对齐精度和稳定性等多个方面的技术挑战,需要综合考虑这些因素并进行系统优化,以实现高效的光耦合。

认识光纤激光器

认识光纤激光器

04
光纤激光器优缺点及挑战
优点分析
高效率
01
光纤激光器具有高效率的能量转换,能够将大 部分输入电能转换为激光输出,降低了能源浪
费。
结构紧凑
03
光纤激光器采用光纤作为增益介质,使得整个 激光器的结构非常紧凑,方便集成和应用于各
种场合。
光束质量好
02
输出激光光束质量高,具有较小的发散角和较 高的亮度,使得光纤激光器在精密加工和远距
1 2
3
泵浦源类型
主要包括半导体激光器和光纤耦合激光器等,不同类型的泵 浦源具有不同的输出特性和适用范围。
泵浦方式
分为端面泵浦和侧面泵浦两种方式,端面泵浦效率高、光束 质量好,但热效应显著;侧面泵浦散热效果好、功率可扩展 ,但光束质量相对较差。
泵浦波长
泵浦源的波长需要与增益光纤的吸收峰相匹配,以实现高效 的能量转换。
$number {01} 汇报人:XX
认识光纤激光器
目录
• 光纤激光器基本概念与原理 • 光纤激光器关键技术与参数 • 光纤激光器应用领域与市场现状 • 光纤激光器优缺点及挑战 • 光纤激光器未来发展趋势与前景
01
光纤激光器基本概念与原理
光纤激光器定义及发展历程
光纤激光器定义
光纤激光器是一种利用掺杂稀土元素的光纤作为增益介质, 通过泵浦光的作用实现粒子数反转,进而产生激光输出的光 学器件。
表面处理
光纤激光器可用于金属、 非金属材料的表面处理, 如打标、雕刻、清洗等。
通讯传输领域应用
光纤通信
光纤激光器是光纤通信系统中的 关键器件,用于产生和放大光信 号,实现长距离、大容量的信息 传输。
激光雷达
光纤激光器可用于激光雷达的发 射光源,实现高精度、远距离的 测量和探测。

激光与光纤耦合技术

激光与光纤耦合技术

(2.6)
自聚焦透镜的焦距 f 为 :
8
f =
1 n0 g sin( gL)
(2.7)
L 为透镜长度, g 为聚焦常数。 当自聚焦光纤长度 L 为四分之一正弦波周期的奇数倍时(正弦波周期 f=1/n0 g,透镜的 聚焦能力最强;当 L 为四分之一正弦波周期的偶数倍时, 自聚焦光纤焦距为无穷大,没有聚 焦作用。 3、组合透镜耦合 最初的组合透镜耦合系统都是由多片常规透镜组合而成,由于进行了消球差和光束整 形设计,可以获得较低的耦合损耗。但其受到光学加工水平的限制,外形尺寸较大,无法 满足微型化的要求。当前的组合透镜一般由微球透镜和自聚焦透镜组合而成。为了进一步 降低耦合损耗,可将自聚焦透镜直接连在光纤端面,构成虚光纤结构。这种结构可以大大 提高 1dB 失调容差,并获得较低的耦合损耗。未加增透膜的情况下,耦合损耗达到 3dB, 加增透膜情况下,达到 2dB。几种典型系统结构如图 2.9 所示。
图 1. 1 光纤耦合的耦合条件
激光束的光束参数乘积(BBP)定义为:
BBP = Dlaser θlaser 4
(1.3)
根据赫姆霍兹不变量,在没有像差和光阑的情况下,对于一束激光来说光束参数乘积 是一个固定值,即光束参数乘积不会因为光学系统的改变而改变。从公式(1.1)、(1.2)、(1.3) 可以推出:
(2.2)
圆锥形微透镜光纤的数值孔径和平端光纤数值孔径之间满足下列关系 : sin θ c' sin γ 1 sin γ 1 sin γ 2 sin γ 3 sin γ n −1 = = ...... sin θ c sin γ n sin γ 2 sin γ 3 sin γ 4 sin γ n
图 2.3 球透镜端面耦合中光纤参数与等效接收角关系

炬光科技推出连续阵列半导体激光器光纤耦合模块(FC)系列

炬光科技推出连续阵列半导体激光器光纤耦合模块(FC)系列

该 产 品对 激 光 器 阵 列b r 产 生 的光 通 过 微 a条 小 光 学 系 统 进 行 准 直 后 高 效 耦 合 到 光 纤 阵 列 之
中 ,然后 将高 功率 激光 以光 纤形 式 输 出。F 系列 C
包括F 一 0 — 0 、F 一 0 — 5 C 88 3W C 8 8 3 W和F 一 0 — 0 . C 8 84W
满 足 国内外客 户需要 。
新浦东崛起光伏产业高地
日前 ,总 投 资 1 .5 元 、 占地 1 3 的 上 海 1 亿 9 2亩
WWW. m en o.o o i f t m
F b 2 1 e . 00
光侦 察与对抗 、激 光摧 毁等 。
凭借 雄厚 的研 发 和 生产 能力 ,炬 光科 技 开发
出了lws i  ̄艺 。对lws i ,窄光谱 高功 率激 o l _ me o l me 光 束进 行整 形后 ,通过 高效 率耦 合 工 艺实 现光 纤
高 功率 输 出 ,使 得 该产 品 的性 能指 标 能够 很好 地
测试 ,并认 可 尚德 实 验 室 的测试 数 据作 为 其 申请 I C认证 的技 术依 据 。 尚德公 司预计 , 将大 大节 E 这
省 申请 IC认证 的时 间 ,从7 月缩 短 至4 E 个 个月 以
内, 这将极 大提 高 尚德 公 司服务 市场 的快速反 应能

光器 或全 固态激 光器 等 的泵 浦源 、激光 制 导 、激
iቤተ መጻሕፍቲ ባይዱ


露黧
关 于炬光 科技
炬光 科技推 出连续 阵列半导体激 光器光纤耦合模块 ( C)系列 F
2 1 年 1 .西 安 炬 光 科 技 有 限公 司 在 国 内 00 月 首次 推 出连 续 半导 体 激 光器 光 纤耦 合 模 块F C (ie u ld Fb r o pe )系列 产 品 。这 是一 款 融 合 了炬 光 c

kW级光纤耦合输出二极管激光器模块

kW级光纤耦合输出二极管激光器模块

1 mii a 特 性 参 数 与 耦 合 设 计 n- r b
实 验使 用 的连 续 6 mii a 的发 光单元 宽度 为 1 0 0W n- r b 0 m,i h为 5 0 pt c 0 m, 腔长 为 4mm, 发光单 元, . ~4 3A。 由于其 与标 准 的 c b r m—a 在结 构尺 寸 上 的差异 , 计并 使 用针 对 mii a 的铜 微 设 nbr — 通 道冷却 器进 行封 装 , 图 1所示 。测得 其输 出功率 在 驱动 电流为 连续 6 时达 到 6 , 随 电流升高输 出 如 oA 0W 且 功 率呈线 性 变化 。电光转 换效 率最 大为 6 6功 率一 0/, 9 电流 ( ) DI 曲线 图如 图 2所 示 。驱 动 电流 为连续 6 时 , 0A
* 收 稿 日期 : 0 1 1 - 2 2 1—21 ; 修 订 日期 : 0 20 — 7 2 1 — 21 基 金 项 目 : 家 自然科 学 基 金 重 大 项 目( 0 9 2 1 国 6 8 00 ) 作者简介 : 谭 吴 ( 9 5 )男 , 士 研 究 生 , 1 8一 , 博 主要 从 事二 极 管 激 光 器 及 应 用 技 术 研究 ;a h o @ 1 3c r。 tn a mf 6 .o n
器、 材料 处理 和医疗 仪器等 领域 获得 了广泛 的应 用 。标准 线 阵二 极 管激 光器 (m— a) c b r 由于其 慢 轴 方 向 的光束
质 量较差 , 无法 直接 耦合进 入光 纤 。因此需 要对 其光 束进行 整形 , 即将 光束 沿慢 轴方 向切成 数段再 堆叠 至快 轴
方向, 以平衡快 慢轴 的光束 质量 , 并满 足光 纤芯 径与数 值 孔径 的要求 。但 如 此造 成 了耦 合 系统 整 体结 构 复 杂 ,

光模块耦合原理

光模块耦合原理

光模块耦合原理一、概述光模块耦合是指将光学信号从一个光学器件(如激光器或LED)传输到另一个光学器件(如接收器或其他光学设备)的过程。

它是现代通信和计算机技术中不可或缺的一部分。

本文将详细介绍光模块耦合的原理。

二、传输介质在进行光模块耦合时,需要使用一个传输介质来将光信号从一个器件传输到另一个器件。

常用的传输介质有两种:一种是光纤,另一种是自由空间。

2.1 光纤光纤是一根具有高折射率的玻璃或塑料材料制成的细长柔性管道,可以将光信号通过反射和折射在内部进行传输。

在进行光模块耦合时,通常使用单模或多模光纤来连接两个器件,以便实现高速、稳定和可靠的数据传输。

2.2 自由空间自由空间指无任何障碍物存在的空气或真空环境,在这种环境下可以通过直接发射和接收来实现两个器件之间的通信。

在进行自由空间耦合时,通常需要使用透镜、反射镜和光栅等光学元件来控制光束的传输和聚焦。

三、耦合方式在进行光模块耦合时,需要选择一种适当的耦合方式来实现两个器件之间的连接。

常用的耦合方式有两种:一种是直接耦合,另一种是间接耦合。

3.1 直接耦合直接耦合是指将两个器件直接连接在一起,以便实现光信号的传输。

在进行直接耦合时,需要将两个器件的输出端和输入端精确对准,并使用适当的夹具或支架来保持它们之间的距离和角度不变。

3.2 间接耦合间接耦合是指通过一个中介物来将两个器件连接起来。

中介物可以是一个透明材料(如玻璃或塑料)或一个反射表面(如金属或镜子)。

在进行间接耦合时,需要将中介物放置在两个器件之间,并使用适当的光学元件来控制光束的传输和聚焦。

四、影响因素在进行光模块耦合时,有许多因素会影响其性能和效率。

以下是其中几个主要因素。

4.1 准直度准直度是指光束的方向和角度是否正确。

如果光束的方向或角度偏离了正常值,将会导致信号损失和噪声增加。

4.2 聚焦度聚焦度是指光束的直径和形状是否正确。

如果光束的直径或形状不正确,将会导致信号强度减弱和失真。

光纤耦合激光器使用说明书

光纤耦合激光器使用说明书

光纤耦合激光器使用说明书一、产品概述光纤耦合激光器是一种高效、可靠的光电器件,广泛应用于通信、医疗、测量等领域。

本使用说明书将为您详细介绍光纤耦合激光器的特点、使用方法以及注意事项。

二、产品特点1. 高能量输出:光纤耦合激光器具备高能量输出能力,可满足各种应用需求。

2. 窄线宽:该激光器的激光线宽较窄,光束质量好,可实现高分辨率的光学成像。

3. 光纤耦合设计:采用光纤耦合设计,使激光器的输出更加稳定可靠,并可方便地集成到现有系统中。

4. 可调输出功率:用户可通过控制面板或远程控制方式,实现对激光器输出功率的调整。

三、使用方法1. 连接光纤:首先,将光纤的连接头与光纤耦合激光器的接口进行连接。

确保连接牢固,以避免纤芯错位或松动造成线路不稳定。

2. 接通电源:接通交流电源并确保稳定。

待激光器系统自检完成后,即可进行操作。

3. 调节功率:使用控制面板上的功率调节按钮或遥控器,调节激光器的输出功率至所需水平。

注意避免超载操作。

4. 发射激光:确认光纤连接和功率调节正确后,可按下激光发射按钮,使激光器开始工作。

5. 关闭激光:使用完毕后,按下关闭激光按钮,确保激光器处于停止工作状态。

6. 关闭电源:关闭交流电源,并断开光纤连接。

四、注意事项1. 请避免过度使用或连续使用时间过长,以免过热损坏激光器。

2. 当激光器长时间不使用时,请断开电源,以延长激光器的使用寿命。

3. 使用过程中,避免触摸激光器玻璃部分,防止污染或刮伤。

4. 在激光器运行时,不要将眼睛直视激光光束,以免损伤视力。

5. 当发现异常情况时,如激光器过热、光束异常等,请立即停止使用,并联系售后服务。

6. 请将激光器放置在稳定的工作台面上,避免因震动而影响激光的输出质量。

五、维护与保养1. 定期清洁:使用柔软干净的布擦拭激光器表面,确保无尘、无污物,以保证激光器工作质量。

2. 避免湿度过高:保持激光器的工作环境相对干燥,避免湿度过高,以减少设备故障的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fiber coupling module has high power, high brightness, light output, the output for the circular beam and small aperture shape and symmetry of light, can be widely used in medical, materials processing, solid state laser pump, industrial and aviation, aerospace and other fields. Fiber coupling module output wavelength can meet the solid laser pumped, medical diagnosis and treatment of the band. In industrial application can be absorbed by the metal and other materials effectively, can be used for laser welding, punching, and material handling. Small numerical aperture and small optical fiber core diameter effectively improved the output intensity and power density of laser and beam quali光和红外光半导体激光器都可以和 多模光纤耦合,通过光纤输出。光纤输出的优点是可以随意改变光路方向,此类激光器多用于探测仪器及医疗仪器等。光纤出口光斑大小和光纤长度可由客户选择。
光纤耦合模块具有大功率、高亮度请打零贰玖捌捌柒贰陆柒柒叁的连续光输出,其输出为圆光束、小孔径和对称的光斑形状,可广泛应用于医疗、材料处理、固体激光器泵浦、工业及航空、航天等诸多领域。光纤耦合模块的输出波长可满足固体激光器泵浦、医疗诊断及冶疗所需的波段。在工业应用上可被金属及其它材料有效地吸收,可用于激光焊接、打孔和材料处理。光纤的小数值孔径及小芯径有效地改善了激光器的输出亮度、功率密度和光束质量。
相关文档
最新文档