2-1结型场效应晶体管的工作原理
场效应管工作原理及应用
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
场效应晶体管的工作原理通俗解释
场效应晶体管的工作原理通俗解释
场效应晶体管是一种半导体器件,它广泛应用于电子电路中。
它
是一种三端管,由栅极 (Gate),漏极 (Drain) 和源极 (Source) 三
个极组成。
场效应晶体管的工作原理非常复杂,但是可以用通俗易懂
的语言来解释。
第一步:当 Vgs = 0 时,场效应晶体管处于关闭状态。
此时,
漏结区域的电势高于源结区域,导致电子从源到漏流动。
第二步:当 Vgs > Vth 时,场效应晶体管处于开启状态。
此时
栅结区域形成一个电场,能够吸引电子从源极流入栅极,同时通过栅
极--漏极结实现漏极区域加电压,从而使电子从源极向漏极流动。
第三步:当 Vgs < Vth 时,场效应晶体管仍然处于关闭状态。
此时,栅结区域不会形成足够的电场,无法吸引电子从源极流入栅极,而漏极区域仍然在电势高于源区域。
因此,电子仍然从源到漏流动。
总之,场效应晶体管的工作原理可以用控制门极电压来控制漏极
电流的方式来概括。
因为场效应晶体管的控制能力非常强,它能够更
有效地控制大功耗电路。
场效应管工作原理与应用通用课件
增强型场效应管是在正常工作状态下需要加正向栅极电压才能导通,而耗尽型场效应管则是加反向电 压导通。
详细描述
增强型场效应管在无电压时,半导体中没有导电沟道,需要加正向栅极电压后才会形成导电沟道;而 耗尽型场效应管在无电压时,半导体中已经存在导电沟道,加反向电压后可调节导电沟道的宽度。
绝缘栅双极晶体管(IGBT)
1 2
根据电路需求选择合适的类型
根据电路的电压、电流和频率要求,选择合适的 场效应管类型,如N沟道或P沟道。
考虑导通电阻和开关性能
选择导通电阻较小、开关速度较快的场效应管, 以提高电路性能。
3
考虑最大工作电压和电流
根据电路的最大电压和电流,选择能够承受的场 效应管。
场效应管使用注意事项
正确连接电源和信号线
效应管。
导通不良
02
如果场效应管导通不良,会影响电路性能,需要检查驱动信号
是否正常,以及场效应管本身是否有问题。
噪声干扰
03
如果电路中存在噪声干扰,会影响场效应管的正常工作,需要
采取措施降低噪声干扰。
05
场效应管封装与测试
场效应管封装形式
金属封装
采用金属外壳作为场效应管的封装,具有良好的 散热性能和电气性能。
场效应管工作原理与应用通 用课件
contents
目录
• 场效应管简介 • 场效应管工作原理 • 场效应管应用 • 场效应管选型与使用注意事项 • 场效应管封装与测试
01
场效应管简介
场效应管定义
场效应管(Field-Effect Transistor ,FET):是一种利用电场效应控制 电流的半导体器件。
电场效应:是指外加电场对导体内部 的电荷分布和运动状态产生影响的现 象。
场效应管工作原理 1
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
场效应管原理
场效应管原理来源:互联网作者:关键字:场效应管原理场效应管是较新型的半导体材料,利用电场效应来控制晶体管的电流,因而得名。
它的外型也是一个三极管,因此又称场效应三极管。
它只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。
从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。
从场效应三极管的结构来划分,它有结型场效应三极管和绝缘栅型场效应三极管之分。
1.结型场效应三极管(1) 结构N沟道结型场效应三极管的结构如图1所示,它是在N型半导体硅片的两侧各制造一个PN结,形成两个PN结夹着一个N型沟道的结构。
两个P区即为栅极,N型硅的一端是漏极,另一端是源极。
图1结型场效应三极管的结构(2) 工作原理以N沟道为例说明其工作原理。
当UGS=0时,在漏、源之间加有一定电压时,在漏源间将形成多子的漂移运动,产生漏极电流。
当UGS<0时,PN结反偏,形成耗尽层,漏源间的沟道将变窄,ID将减小,UGS继续减小,沟道继续变窄,ID继续减小直至为0。
当漏极电流为零时所对应的栅源电压UGS称为夹断电压UGS(off)。
(3)特性曲线结型场效应三极管的特性曲线有两条,一是输出特性曲线(ID=f(UDS)|UGS=常量),二是转移特性曲线(ID=f(UGS)|UDS=常量)。
N沟道结型场效应三极管的特性曲线如图2所示。
(a) 漏极输出特性曲线(b) 转移特性曲线图2N沟道结型场效应三极管的特性曲线2. 绝缘栅场效应三极管的工作原理绝缘栅场效应三极管分为:耗尽型→N沟道、P沟道增强型→N沟道、P 沟道(1)N沟道耗尽型绝缘栅场效应管N沟道耗尽型的结构和符号如图3(a)所示,它是在栅极下方的SiO2绝缘层中掺入了大量的金属正离子。
所以当UGS=0时,这些正离子已经感应出反型层,形成了沟道。
于是,只要有漏源电压,就有漏极电流存在。
当UGS>0时,将使ID进一步增加。
结型场效应管 原理
结型场效应管原理
场效应管是一种半导体器件,常用于放大、开关电路等应用。
结型场效应管(JFET)是其中一种常见的结构。
JFET的主要原理是利用PN结形成的场效应。
它由三个区域组成:中间是一个P型或N型的半导体材料,两侧分别是控制电极(Gate)和输出电极(Drain与Source)。
控制电极之间形成的PN结—反向偏置结(Reverse biased junction),形成一个可控制的电场区域,这个电场区域控制了从Source到Drain的电流。
在工作时,当Gate和Source之间的电压增加时,PN结的电导性减小,电场区域增宽。
这会导致Source到Drain的电流减小,即输出电流被控制。
这种控制过程是通过改变电场区域宽度而实现的,因此称为场效应。
JFET有两种常见的结构:N型JFET和P型JFET。
N型JFET 是由P型材料夹在两个N型材料之间形成的,而P型JFET则是由N型材料夹在两个P型材料之间形成的。
两者的工作原理基本相同,只是电流流动方向相反。
在实际应用中,JFET具有很多优点,比如体积小,可以工作在较高的频率范围内,具有较低的噪声,以及可以工作在宽温度范围内等。
因此,JFET被广泛应用于放大器、开关和稳压器等电路中。
场效应管
D (mA) 可变电阻区
i
uGS= 0V uGS = -1V uGS = -2V uGS= -3V
u
DS
时,iD 是 vDS 的线性函数,
管子的漏源间呈现为线
性电阻,且其阻值受 vGS
控制。 (2)管压降vDS 很小。
沟道未 夹断
用途:做压控线性电阻和无触点的、闭合状态
的电子开关。
gm
VDS
2、 极间电容: Cgs和Cgd约为1~3pF,和 Cds约为
0.1~1pF。高频应用时,应考虑极间电容的影响。
vDS 3、 输出电阻rd:rd iD
三、极限参数
VGS
1、 最大漏极电流IDM:管子正常工作时漏极电流 的上限值。
2、 最大耗散功率 PDM :决定于管子允许的温升。
3、当vGD< VGS(off)时,vGS对iD的控制作用
当vGD = vGS - vDS <VGS(off) 时,即vDS > vGS VGS(off) > 0,导电沟道夹断, iD 不随vDS 变化 ; 但vGS 越小,即|vGS| 越大,沟道电阻越大,对同 样的vDS , iD 的值越小。所以,此时可以通过改变
③ 场效应管的输入电阻远大于晶体管的输入电
阻,其温度稳定性好、抗辐射能力强、噪声系数小,
但易受静电影响。
④ 场效应管的漏极和源极可以互换,而互换后 特性变化不大;晶体管的集电极和发射极互换后特 性相差很大,只有在特殊情况下才互换使用。但要 注意的是,场效应管的某些产品在出厂时,已将衬 底和源极连接在一起,此时,漏极和源极不可以互 换使用。
JFET 结型
9.2 结型场效应管
一、结型场效应管的结构
场效应管
MOS管分为四种类型:N沟道耗尽型管、N沟道增强型管、P沟道耗尽型管和 P沟道增强型管。
MOS管的特点
输入阻抗高、栅源电压可正可负、耐高温、易 集成。
N沟道增强型绝缘栅场效应管 (1)结构与符号 增强型的特点
1. 工作原理
绝缘栅场效应管利用 UGS 来控制“感应电荷”
的多少,改变由这些“感应电荷”形成的导电沟道的
一、结型场效应管(JFET)
1 结构与工作原理 (1)构成 结型场效应管又有N沟道和P沟道两种类型。
N沟道结型场效应管的结构示意图
结型场效应管的符号
(a)N沟道管
(b) P沟道管
(2)工作原理 N· JFET的结构及符号
在同一块N型半导体上制作两 个高掺杂的P区,并将它们连 接在一起,引出的电极称为栅 极G,N型半导体的两端引出 两个电极,一个称为漏极D, 一个称为源极S。P区与N区交 界面形成耗尽层,漏极和源极 间的非耗尽层区域称为导电沟 道。
直流输入电阻 RGS :其等于栅源电压与栅极电流之比,结型管的 RGS 大于10^7 欧,而MOS管的大于10^9欧。
二、交流参数
1. 低频跨导 gm 用以描述栅源之间的电压 UGS 对漏极电流 ID 的控 制作用。 ΔI D gm ΔU GS U DS 常数 单位:ID 毫安(mA);UGS 伏(V);gm 毫西门子(mS)
绝缘栅
B端为衬底,与源极短接在一起。
N沟道耗尽型MOS管的结构与符号
(2)N沟道的形成 N沟道的形成与外电场对N沟道的影响 控制原理分四种情况讨论:
① uGS 0时,来源于外电场UGS正极的正电荷使SiO2中原有的正电荷数目增加, 由于静电感应,N沟道中的电子随之作同等数量的增加,沟道变宽,沟道电阻减 小,漏电流成指数规律的增加。
场效应管(建议看)
0V –1V –2V uGS = – 3 V
uDS
IDSS
可 变 电 阻 区
预夹断轨迹,uGD=UGS(off)
恒 流 区
击 穿 区
i D gm U GS
夹断电压
夹断区(截止区)
夹断电压为负
∴栅源电压越负,电流iD越小。
①夹断区: i D 0 UGS<UGS(off) ②可变电阻区(预夹断轨迹左边区域):
之间的函数关系,即
iD f (uGS ) |U DS 常数
N沟道结型场效应管UGS=0时,存在导电沟道,电流最大;
栅源之间加负向电压UGS<0直至沟道消失,电流为零。
UGS=0V -1V -2V -3V 夹断电压
U GS ( off ) 0
栅源电压越负,电流越小 恒流区条件:
U GS U GS (off )
3、特性曲线与电流方程
转移特性 输出特性曲线
N沟道增强型MOS管在UGS=0时,无导电沟道,电流为零。
UGS加正向电压至开启电压后,电流随UGS的增大而增大。
VDS 为正的
6V 5V 4V 3V 开启电压
U GS ( th ) 0
栅源电压越正,电流越大 恒流区条件:
U GS U GS (th )
增强型N沟道
耗尽型N沟道
增强型P沟道 耗尽型P沟道
说明:
1、栅极用短线和沟道隔开,表示绝缘栅; 2、箭头:由P区指向N区; 3、虚线:增强型MOS管; 实线:耗尽型MOS管。
二、N沟道增强型MOS管的工作原理
在通常情况下,源极一般都与衬底相连,即UBS=0。 为保证N沟道增强型MOS管正常工作,应保证: ① UGS=0时,漏源之间是两只背向的PN结,不管UDS 极性 如何,其中总有一个PN结反偏,所以不存在导电 沟道。UGS必须大于0(UGS>0)管子才能工作。 ②漏极对源极的电压UDS必须为正值(UDS>0)。这样在漏 极电压作用下,源区电子沿导电沟道行进到漏区,产 生自漏极流向源极的电流。
完整版对场效应管工作原理的理解
如何理解场效应管的原理,大多数书籍和文章都讲的晦涩难懂,给初学的人学习造成很大的难度,要深入学习就越感到困难,本人以自己的理解加以解释,希望对初学的人有帮助,即使认识可能不是很正确,但对学习肯定有很大的帮助。
场效应管的结构场效应管是电压控制器件,功耗比较低。
而三极管是电流控制器件,功耗比较高。
但场效应管制作工艺比三极管复杂,不过可以做得很小,至恸米级大小。
所以在大规模集成电路小信号处理方面得到广泛的应用。
对大电流功率器件处理比较困难,不过目前已经有双场效应管结构增加电流负载能力,也有大功率场管出现,大有取代三极管的趋势。
场效应管具有很多比三极管优越的性能。
结型场效应管的结构结型场效应管又叫JFET,只有耗尽型。
这里以N沟道结型场效应管为例,说明结型场效应管的结构及基本工作原理。
图为N沟道结型场效应管的结构示意图。
在一块N型硅,材料(沟道)上引出两个电极,分别为源极(S)和漏极(D)。
在它的两边各附一小片P型材料并引出一个电极,称为栅极(G)。
这样在沟道和栅极间便形成了两个PN结。
当栅极开路时,沟道相当于一个电阻,其阻值随型号而不同,一般为数百欧至数千欧。
如果在漏极及源极之间加上电压U DS,就有电流流过,I D将随U DS的增大而增大。
如果给管子加上负偏差U GS时,PN结形成空间电荷区,其载流子很少,因而也叫耗尽区(如图a中阴影区所示)。
其性能类似于绝缘体,反向偏压越大,耗尽区越宽,沟道电阻就越大,电流减小,甚至完全截止。
这样就达到了利用反向偏压所产生的电场来控制N型硅片(沟道)中的电流大小的目的。
注:实际上沟道的掺杂浓度非常小,导电能力比较低,所以有几百到几千欧导通电阻。
而且是PN结工作在反向偏置的状态。
刚开机时,如果负偏置没有加上,此时I D是最大的。
特点:1 , GS和GD有二极管特性,正向导通,反向电阻很大2: DS也是导通特性,阻抗比较大3: GS工作在反向偏置的状态。
4: DS极完全对称,可以反用,即D当做S , S当做D。
晶体管的结构和原理
晶体管的结构和原理
晶体管是一种电子器件,被广泛应用于现代电子技术中。
晶体管由三个区域构成,分别是P型半导体、N型半导体和一块绝缘层。
晶体管主要包括结型晶体管和场效应晶体管两种类型。
结型晶体管有两个PN结组成,其中一个PN结为基极区,另一个PN结为集电区。
这两个PN结之间的N型半导体区域为发射区。
当PN结接收到一些信号时,会在N型半导体区域内产生电子-空穴复合,使电子进入P型区域,发射区产生电流,最终进入集电区,因此实现了从基极到集电区的电流放大。
场效应晶体管包括源极、栅极和漏极。
源极和漏极之间有一段N型半导体通道,塞隆区通常用来控制源极和漏极之间的电流。
当栅极施加电压时,可以通过电子引入通道的电场来控制通道的导电性能。
这些技术可以实现信号放大以及在许多电子设备中完成控制和开关操作。
晶体管具有很多优点,例如占用空间小、高速度、低功耗、工作稳定、价格低廉等。
晶体管的应用范围非常广泛,包括计算机、计算器、电视、手机、电脑等电子设备,以及通信、医疗、航空航天、军事和科学研究等领域。
场效应晶体管的工作原理
由于栅极与P 区相连,所以,两个PN结都加上了反向电压,只有极微小电流流出栅极。由于漏极和源极都和N区相连,漏、源极之间加正向电压之后,在栅极电压负值不大时,源极之间有漏极电流,D流过,它是由N区中多数载流子(电子)形成的。
当PN结施加反向电压时(P接负极,N接正极),耗尽区就会向半导体内部扩展,使耗尽变宽,使耗尽区里的空间电荷增多。这种扩展,如果N区杂质浓度高于P区,主要在P区进行晶体管的工作原理如图73所示。它是在一块低掺杂的N型区两边扩散两个高掺杂的P型区,形成两个PN结,一般情况下N区比较薄。N区两端的两个电极分别叫做漏极(用字母D表示)和源极(用字母S表示),P 区引出的电极叫做栅极(用字母G表示)。
场效应晶体管的工作原理
场效应晶体管是受电场控制的半导体器件,而普通晶体管的工作是受电流控制的。场效应晶体管主要有结型场效应晶体管和金属氧化物半导体场效应晶体管(通常称MOS型)两种类型。两种管子工作原理不同,但特性相似。
1.结型场效应晶体管的工作原理
与普通结型晶体管一样,结型场效应晶体管的基本结构也是PN结。N型半导体与P型半导体形成PN结时,N区电子很多,空穴很少,而P区空穴很多,电子很少,因此在PN结交界处,N区电子跑向P区,P区空穴跑向N区。这样,在N区留下的是带正电的施主离子,在P区留下的是带负电的受主离子。这一区域内再也没有自由电子或空穴了,故称为“耗尽区”或“耗尽层”,又称空间电荷区
更多电子元件资料
由于P N结的耗尽区大部分在N区,当加上反向电压时,耗尽区主要向N区扩展。电压愈高,两个耗尽区之间电流可以通过的通道(常称为沟道)就愈窄,所以加在栅极与源极之间的负电压越大,两个耗尽区变得越厚,夹在中间的沟道就越薄,从而使沟道的电阻增大,漏电流ID减小;反之ID增大。漏极电流ID的大小会随栅、源之间的电压UGS大小而变,也就是说,栅、源电压US能控制漏电流ID,这就是结型场效晶体管的工作原理。需要着重指出的是,它是用电压来控制管子工作的。前面讲的是两个P 区夹着一个薄的N区形成的结型场效应晶体管,称为N沟道结型场效应晶体管。同样,用两个矿区夹着一个薄的P区就形成P沟道结型场效应晶体管,但是它的正常电压与N区沟道管子相反。
结型场效应晶体管的工作原理
结型场效应晶体管的工作原理《结型场效应晶体管的工作原理》结型场效应晶体管(JFET)是一种常用的半导体器件,其工作原理基于PN结的电子调制效应。
它由一个具有p型或n型半导体材料构成的管道连接两个掺杂相反类型材料的pn结构形成。
JFET的结构包括一个通道和两个掺杂相反类型的区域。
在p型材料构成的JFET中,通道是n型的,而在n型材料构成的JFET中,通道是p型的。
当没有外部电压施加在JFET的栅极和源极之间时,由于p和n结区域的电荷平衡,通道中的载流子数量很少,仅仅有少量的倾斜电荷。
这种状态下的JFET被称为“截止”状态。
当一个正电压施加在栅极和源极之间时,在p型JFET中,正电荷吸引这些小电荷在通道中聚集,形成一个表面层。
在n型JFET中,负电荷排斥这些小电荷离开通道。
这种情况下,通道中的载流子数量增加,电流得以通过,JFET处于“导通”状态。
当进一步增加栅极-源极电压时,载流子的数量进一步增加,导致通道电流增大。
然而,当达到某个阈值电压后,电流的增加速度放缓,通道电流趋于稳定。
这个阈值电压被称为JFET的饱和电压。
当栅极-源极电压达到饱和电压后,JFET无法再承受更大的电流。
JFET的主要优点是具有较高的输入阻抗和可控的电流放大特性。
它的输入阻抗是非常高的,因为JFET的通道中没有载流子流动,只有栅极电流流过。
此外,由于饱和电流取决于栅极电压,因此可以通过调整栅极电压来控制JFET的放大倍数。
总而言之,结型场效应晶体管利用栅极和源极之间的电压调制通道中的载流子数量。
通过调整这种电压,可以控制JFET的导通和截止状态,从而实现电流放大和开关操作。
场效应晶体管放大电路
N
N
G
P+ P+
UDS G
P+ P+
UDS
UGS
S
S
第3页/共34页
Sect
3.1.2 JFET特性曲线
1. 输出特性曲线:
iD f (U DS )∣ UGS const
可变电阻区 线性放大区 ID=gm UGS 击穿区
2. 转移特性曲线:
ID
I
DSS
(1
U GS UP
)
2
IDSS:饱和栅极漏极电流,
着源极、栅极的次序焊在电路上; • 电烙铁或测试仪表与场效应晶体管接触时,均
第15页/共34页
各种场效应管所加偏压极性小结
结型
N沟道(uGS<0) P沟道(uGS>0)
场效应管
绝缘栅型
增强型
耗尽型
PN沟沟道道((uuGGSS<>00)) N沟道(uGS极性任意) P沟道(uGS极性任意)
uo
u gs
g m u gs
u ds
S
GD
Id
RG
Ui
Ugs
gm Ugs RD
RL
Uo
R2
R1
S
第26页/共34页
动态分析:
G
电压放大倍数
Id
RL
D
RG
Ugs
Ui R2R1RD g源自 UgsRL Uo•
•
Ui Ugs
S
ri
•
ro
Au gm R'L
•
•
Uo gm Ugs (RD // RL )
ID(mA)
第8页/共34页
UGS=6V
第二章-场效应管
(4)击穿区 当UDS增大到一定 程度时,iD骤然增大,
晶体管将被击穿。
2. 转移特性曲线 iD f (uGS ) u DS C
iD /mA
I DSS
5
4 3 2
iD
为保证场效 应管正常工作, PN 结 必 须 加 反 向偏置电压
式中:
uGS 2 iD I DSS (1 ) U GSoff
i D几乎不变
D G
P
P UDS
UGS
S
uGD<UGSoff(预夹断后)
图3 UDS对导电沟道的影响 若uDS继续增大, 则uGD<UGSoff,耗尽层闭合部分(即夹断区)将 加长。 UDS的增大部分几乎全部降落在夹断区,沟道两端的压降几 乎不变,使得iD几乎不变,表现出iD的恒流特性。
3. uGD<uGSoff时,uGS对漏极电流iD的影响(转移特性曲线)
耗尽型: uGS =0 时,有沟道
1. 在uGS=0时,就存在导电沟道(称原始导电沟道)。
2. uGS>=0 uDS>0时,iD>0,且uGS↑→iD↑;
3. uGS减小为负值时,iD↓; 当uGS=UGSoff时,iD=0,管子进入截止状态。
iD
iD / mA +6 V 4 3 UG S=+ 3 V 0V -3V
在uGD<uGSoff的情况下,当uDS为一常量时,对应于确 定的uGS,就有确定的iD。此时,可以通过改变uGS来控制 iD的大小。由于漏极电流iD受栅-源电压uGS的控制,故称 场效应管为电压控制元件。
三、 结型场效应管的特性曲线
1. 输出特性曲线
i D / mA
iD f (u DS ) uGS C
4.1_MOS场效应晶体管的结构工作原理和输出特性
B
N沟道增强型MOSFET的符号如
左图所示。左面的一个衬底在内部与
S
源极相连,右面的一个没有连接,使
用时需要在外部连接。 动画2-3
4.1.2 N沟道增强型MOSFET的工作原理
对N沟道增强型MOS场效应三极管的工作原理,分两个方面进行
讨论,一是栅源电压UGS对沟道会产生影响,二是漏源电压UDS也会对 沟道产生影响,从而对输出电流,即漏极电流ID产生影响。
3. N沟道增强型MOSFET的特性曲线
N沟道增强型MOSFET的转移特性曲线有两条,转移特性曲线和漏
极输出特性曲线。
1.转移特性曲线 ID/ m A
N沟道增强型MOSFET的转移特 性曲线如左图所示,它是说明栅源电
U DS 10V
压UGS对漏极电流ID的控制关系,可
4
用这个关系式来表达,这条特性曲线
S iO 2
取一块P型半导体作为衬底,用 B表示。
用氧化工艺生成一层SiO2 薄膜 绝缘层。
然后用光刻工艺腐蚀出两个孔。
扩散两个高掺杂的N型区。从而 形成两个PN结。(绿色部分)
B
从N型区引出电极,一个是漏极
D,一个是源极S。
D
B
G
G
精选可编辑ppt
S
7
D
在源极和漏极之间的绝缘层上镀
一层金属铝作为栅极G。
⑥ 最大漏极功耗PDM
最大漏极功耗可由PDM= VDS ID决定,与双极型 三极管的PCM相当。
精选可编辑ppt
25
(2)场效应三极管的型号
场效应三极管的型号, 现行有两种命名方法。其一是与 双极型三极管相同,第三位字母J代表结型场效应管,O代 表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反 型层是N沟道;C是N型硅P沟道。例如, 3DJ6D是结型N沟 道场效应三极管,3DO6C是绝缘栅型N沟道场效应三管。
场效应晶体管的栅极和电极的四种类型
场效应晶体管的栅极和电极的四种类型
场效应晶体管(Field-Effect Transistor,FET)是一种常用的电子器件,其工作原理是通过电场来控制导电沟道的导电能力,从而实现信号的放大或开关。
根据结构和工作原理的不同,场效应晶体管可以分为四种类型,分别是:
1. 结型场效应晶体管(JFET):这种类型的场效应晶体管有两个 PN 结,分别形成导电沟道和反型层。
在栅极电压的作用下,导电沟道的宽度会发生变化,从而控制源极和漏极之间的电流。
2. 金属-氧化物-半导体场效应晶体管(MOSFET):这种类型的场效应晶体管在金属、氧化物和半导体之间形成电场,通过改变这个电场来控制导电沟道的导电能力。
MOSFET 是目前应用最广泛的场效应晶体管之一。
3. 绝缘栅双极晶体管(IGBT):这种类型的场效应晶体管结合了 FET 和BJT 的特点,由一个 FET 和一个 BJT 组成。
在栅极电压的作用下,IGBT 可以实现高速的开关和放大信号。
4. 高电子迁移率晶体管(HEMT):这种类型的场效应晶体管采用特殊的半导体材料,如 GaN 和 InGaAs 等,可以实现更高的电子迁移率。
HEMT 在高速和高频领域有广泛的应用。
以上是场效应晶体管的四种类型,每种类型都有其独特的特点和应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
iD f uGS uDS C
输出特性曲线:
iD f uDS uGS C
8
结型场效应管的大信号分析(特性曲线)
(1)转移特性曲线 iD f (uGS ) uDS C
I DSS
D
iD /mA 5
4
3
UDS
P
P
2
1
UGS UGSoff-3 -2 -1 0
S 问题:若UDS增大,转移特性曲线如何变化?
时,在靠漏极处夹断——预夹断。 ④UDS再↑,预夹断点下移。
6
结型场效应管的工作原理(2)
南京邮电大学 电子科学与工程学院
结型场效应管的大信号分析(特性曲线)
特性曲线是描述场效应管各极电流与极间电压关系的曲线。在JFET工作 时,通常将UGS、IG作为输入电压、电流,而UDS和ID看作输出电压和电流。
iD
I DSS (1
uGS UGSoff
)2
式中:IDSS——饱和电流,表示uGS=0时的iD值;
UGSoff——夹断电压,表示uGS=UGSoff时iD为零。
13
iD/mA
4 3
可 变
uDS= uGS-UGSoff
UGS=0V
电 阻
恒
-0.5V
击 穿
区 2
流
-1V
区
-1.5V
区
1
-2V
0
UGSoff
流
-1V
2
区
-1.5V
1
-2V
0
5
10截止区15
20
10
击 穿 区
UGSoff uDS /V
结型场效应管的大信号分析(2)
南京邮电大学 电子科学与工程学院
iD/mA
4 3
可 变
uDS= uGS-UGSoff
UGS=0V
电 阻
恒
-0.5V
区
流
-1V
2
区
-1.5V
1
-2V
0
5
10 15 20
截止区
击 穿 区
5
截止区
15
20 u DS/V
2. 可变电阻区:预夹断前。JFET看成受uGS控制的
可变电阻。
可变电阻区的等效直流电阻和交流电阻都很小,
UDS较小, 输出d和s端可以近似为短路。
14
iD/mA
4 3
可 变
uDS= uGS-UGSoff
UGS=0V
电 阻
恒
-0.5V
区
流
-1V
2
区
-1.5V
1
-2V
0
5
10 15 20
截止区
击 穿 区
UGSoff u DS/V
3. 截止区。UGS<UGS(off) ,截止区的输出电 流iD几乎为零,输出端可以近似为开路。
4. 击穿区。
15
绝缘栅场效应管IGFET
2
结型场效应管JFET的结构
D Drain 漏极
Gate栅极 N
G
P
型 沟
P
道
D
G S
S Source源极
(a)N沟道JFET
3
箭头方向表示栅源 间PN结正向偏置时 栅极电流的方向。
D
P
G
N
型 沟
N
道
D
G S
S
(b)P沟道JFET
4
结型场效应管的工作原理
(1)栅源电压UGS对沟道的控制作用 在栅源间加负电压UGS ,令UDS =0 ①当UGS=0时,为平衡PN结,导电沟道最宽。 ②当│UGS│↑时,PN结反偏,形成耗尽 层,导电沟道变窄,沟道电阻增大。 ③当│UGS│到一定值时 ,沟道会完全合 拢。
uGS /V
分析:UDS增大,多子形成的漂移电流增大,
ID增加,转移特性曲线上移。
9
输出特性曲线:iD f (uDS ) UGS 常数
预夹断前, UDS↑→ID ↑。 预夹断后, UDS↑→ID 几乎不变。
/ mi DA
可 变
u DS = uGS-UGSoff
电 4阻
UGS =0V
区 3
恒
-0.5V
UGSoff u DS/V
1. 恒流区: 预夹断后。iD几乎不受uDS的影响,体现 为一个恒流源的特性,且恒流源的电流受输入电压
uGS的控制。 因此,场效应管是一个电压控制器件。
特点: ID / UGS ≈常数= gm
12
(a) 输出特性曲线
(b) 转移特性曲线
恒流区的iD与uGS关系符合
第2章 场效应晶体管及其放大电路 2.1 场效应晶体管
南京邮电大学 电子科学与工程学院
场效应晶体管(Field Effect Transistor )在工作时,只有 一种载流子(多数载流子)起运载电流的作用,因此又称为单 极性晶体管(区别于第三章的双极型晶体管),也称为场效应 管。
结型场效应管JFET 场效应管FET
夹断电压UGS(off)——使导电沟道完全合 拢(消失)所需要的栅源电压UGS。
5
(2)漏源电压UDS对沟道的控制作用
在漏源间加电压UDS ,令UGS =0。 由于UGS =0,所以导电沟道最宽。 ①当UDS=0时, ID=0。 ②UDS↑→ID ↑ → 靠近漏极处的耗尽层加
宽,沟道变窄,呈楔形分布。 ③当UDS ↑,使UGD=UG S- UDS=UGS(off)