高中数学总复习函数的基本性质练习题

合集下载

数学高中必修一练习题及讲解

数学高中必修一练习题及讲解

数学高中必修一练习题及讲解### 数学高中必修一练习题及讲解#### 练习题一:函数的基本性质题目:已知函数 \(f(x) = 2x^2 - 3x + 1\),求其定义域和值域。

解答:函数 \(f(x) = 2x^2 - 3x + 1\) 是一个二次函数。

二次函数的定义域为全体实数,即 \(x \in (-\infty, +\infty)\)。

要找到值域,我们可以将函数转换为顶点形式。

首先,找到顶点的\(x\) 坐标:\[ x = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4} \]将 \(x = \frac{3}{4}\) 代入原函数,得到顶点的 \(y\) 坐标:\[ f\left(\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 -3\left(\frac{3}{4}\right) + 1 \]\[ f\left(\frac{3}{4}\right) = 2\left(\frac{9}{16}\right) -\frac{9}{4} + 1 = \frac{9}{8} - \frac{9}{4} + 1 = -\frac{1}{8} \]因此,函数的最小值为 \(-\frac{1}{8}\),由于开口向上,函数没有最大值,所以值域为 \([-\frac{1}{8}, +\infty)\)。

#### 练习题二:指数函数的运算题目:计算 \(2^3 \cdot 5^3\)。

解答:指数函数的乘法运算可以转换为基数相乘,指数相同的形式。

即:\[ 2^3 \cdot 5^3 = (2 \cdot 5)^3 \]计算基数的乘积:\[ 2 \cdot 5 = 10 \]将结果代入指数:\[ 10^3 = 1000 \]所以 \(2^3 \cdot 5^3 = 1000\)。

#### 练习题三:三角函数的图像和性质题目:已知 \(\sin(\alpha) = \frac{3}{5}\),\(\alpha\) 在第一象限,求 \(\cos(\alpha)\)。

完整版)高三函数的性质练习题及答案

完整版)高三函数的性质练习题及答案

完整版)高三函数的性质练习题及答案高三函数的性质练题一、选择题(基础热身)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A。

y=x^3B。

y=ln|x|C。

y=|x|D。

y=cosx2.已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)=()A。

1B。

2C。

3D。

43.函数f(x)=(2x+1)/(x-1)在[1,2]的最大值和最小值分别是()A。

3,1B。

1,0C。

3,3D。

1,34.若函数f(x)=(2x+1)(x-a)为奇函数,则a=()A。

2B。

3C。

4D。

1能力提升5.已知函数f(x)=(a-3)x+5(x≤1),2a(x>1),则a的取值范围是()A。

(0,3)B。

(0,3]C。

(0,2)D。

(0,2]6.函数y=f(x)与y=g(x)有相同的定义域,且都不是常值函数,对于定义域内的任何x,有f(x)+f(-x)=2f(x),g(x)·g(-x)=1,且当x≠0时,g(x)≠1,则F(x)=2f(x)/(g(x)-1)的奇偶性为()A。

奇函数非偶函数B。

偶函数非奇函数C。

既是奇函数又是偶函数D。

非奇非偶函数7.已知函数f(x)=ax+log_a(x)(a>0且a≠1)在[1,2]上的最大值与最小值之和为log_a(2)+6,则a的值为()A。

2B。

4C。

1/2D。

1/48.已知关于x的函数y=log_a(2-ax)在[0,1]上是减函数,则a的取值范围是()A。

(0,1)B。

(1,2)C。

(0,2)D。

[2,+∞)9.已知函数f(x)=sin(πx)(≤x≤1),log_2(x)(x>1),若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A。

(1,2010)B。

(1,2011)C。

(2,2011)D。

[2,2011]二、填空题10.函数f(x)对于任意实数x满足条件f(x+2)=f(x)/(1-f(x)),若f(1)=-5,则f[f(5)]=________.解:f(3)=f(1+2)=f(1)/(1-f(1))=5/6f(5)=f(3+2)=f(3)/(1-f(3))=-5f[f(5)]=f(-5)/(1-f(-5))=-5/611.f(x)是连续的偶函数,且当x>0时f(x)是单调函数,则满足f(x)=f(x+3)的所有x之和为________.解:因为f(x)是偶函数,所以f(0)=f(3),f(1)=f(2),f(4)=f(7),f(5)=f(6),所以要求的是x使得f(x)=f(x+3)的所有情况下的x之和。

函数的基本性质练习(含答案)

函数的基本性质练习(含答案)

函数的基本性质练习(含答案)基础训练A组1.若函数f(x)为偶函数,则f(-x)=f(x),代入函数f(x),得到:m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)(-x)^2+(m-2)(-x)+(m^2-7m+12)化简得到:(m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)x^2-(m-2)x+(m^2-7m+12)移项得到:4x=0,因此m=2,选B。

2.偶函数在[-∞,-1]上是增函数,说明在[1,+∞)上也是增函数,因此f(-3/2)<f(-1)<f(2),选A。

3.因为f(x)是奇函数,所以在[-7,-3]上也是增函数,最小值为-5,因此选A。

4.F(x) = f(x) - f(-x),代入f(-x)得到:F(x) = f(x) - (-f(x)) = 2f(x)因此F(x)是偶函数,选B。

5.对于y=x,有y'=1>0,在(0,1)上是增函数,选A。

6.化简得到f(x)=-x^2+x,因此在[0,1]上是减函数,但f(-x)=-f(x),因此是奇函数,选B。

填空题1.因为f(x)是奇函数,所以f(0)=0,不等式化简得到f(x)<0,解为(-5,0)U(0,5)。

2.值域为(-∞,+∞),因为2x+x+1可以取到任意大的值。

3.y=x+1,因此值域为(1,2]。

4.f(x)的导数为2(k-2)x+(k-1),当x(k-1)/(2(k-2))时导数小于0,因此f(x)的递减区间为(-∞,-(k-1)/(2(k-2)))U((k-1)/(2(k-2)),+∞)。

5.命题(1)和(2)正确,命题(3)和(4)错误,因此正确的命题个数为2.解答题1.一次函数y=kx+b的单调性取决于k的符号,当k>0时单调递增,当k0时单调递减,当k0时开口向上,单调递增,当a<0时开口向下,单调递减。

2.因为定义域为(-1,1),所以f'(x)=2x-1<0当x<1/2时,f(x)单调递减,因此f(x)在(-1/2,1/2)上取得最大值,最小值为f(1)=3.x0时,f(x)为正数。

高中数学函数性质综合题库

高中数学函数性质综合题库

高中数学函数性质综合题库题一:已知函数 f(x) = x^2 + 3x - 2,求:1. 函数的定义域;2. 函数的值域;3. 函数的最小值点及最小值。

解析:1. 函数的定义域:由于函数f(x) 是一个二次函数,对于任意实数x,函数都是定义的。

因此,函数 f(x) 的定义域为一切实数集合,即定义域为 R。

2. 函数的值域:为了确定函数 f(x) 的值域,我们可以先求函数的极值点,然后确定函数在极值点处的取值范围,即找到函数的最大值和最小值。

首先,我们求函数的导数 f'(x):f'(x) = 2x + 3令 f'(x) = 0,解方程得到极值点 x = -1.5。

接下来,我们通过求二次函数的凹凸性,来确定 x = -1.5 是极小值点还是极大值点。

二次函数 f(x) 的二阶导数 f''(x) = 2,为正数,说明函数的凹性,即函数在 x = -1.5 处取得极小值。

代入 x = -1.5 到 f(x) 中计算,得到函数的最小值 f(-1.5) = -5.75。

所以,函数 f(x) 的最小值为 -5.75。

综上,函数 f(x) 的值域为 (-∞,-5.75]。

题二:已知函数 g(x) = 2^(3x + 1),求:1. 函数的定义域;2. 函数的值域;3. 函数的奇偶性。

解析:1. 函数的定义域:指数函数 g(x) 中的底数为 2,对于任意实数 x,g(x) 都存在定义,因此函数 g(x) 的定义域为一切实数集合,即定义域为 R。

2. 函数的值域:为了确定函数 g(x) 的值域,我们需要观察底数为 2 的指数函数的性质。

当指数 x 为正或负无穷大时,函数值也趋近于正或负无穷大,即函数没有上下界,因此函数 g(x) 的值域为一切正实数,即值域为 (0,+∞)。

3. 函数的奇偶性:将 x = -x 代入函数 g(x) 中,得到 g(-x) = 2^(3(-x) + 1) = 2^(-3x + 1) =1/(2^(3x + 1)) = 1/g(x)。

高一数学必修一函数的基本性练习题

高一数学必修一函数的基本性练习题

高一数学必修一函数的基本性练习题函数的基本性质综合练一.选择题:(本大题共10题,每小题5分,共50分)1.若函数 y = ax 与 y = -bx 在(0.+∞) 上都是减函数,则 y = ax + bx 在(0.+∞) 上是()A。

增函数 B。

减函数 C。

先增后减 D。

先减后增2.已知函数 f(x) = (m-1)x² + (m-2)x + (m-7m+12) 为偶函数,则 m 的值是()A。

1 B。

2 C。

3 D。

43.设 f(x) 是 (-∞。

+∞) 上的增函数,a 为实数,则有()A。

f(a)。

f(a)4.如果奇函数 f(x) 在区间 [3,7] 上是增函数且最大值为 5,那么 f(x) 在区间 [-7,-3] 上是()A。

增函数且最小值是 -5 B。

增函数且最大值是 -5 C。

减函数且最大值是 -5 D。

减函数且最小值是 -55.已知定义域为{x|x ≠ 0} 的函数 f(x) 为偶函数,且 f(x) 在区间 (-∞,0) 上是增函数,若 f(-3) = 2,则 f(x)/x < 0 的解集为()A。

(-3,0)∪(0,3) B。

(-∞,-3)∪(0,3) C。

(-∞,-3)∪(3.+∞) D。

(-3,0)∪(3.+∞)6.当 x ∈ [0,5] 时,函数 f(x) = 3x² - 4x + c 的值域为()A。

[c,5+5c] B。

[-c,c] C。

[-5+c,5+c] D。

[c,20+c]7.设 f(x) 为定义在 R 上的奇函数。

当x ≥ 1 时,f(x) = 2x +b (b 为常数),则 f(-1) 等于()A。

3 B。

1 C。

-1 D。

-38.下列函数在 (0,1) 上是增函数的是()A。

y = 1-2x B。

y = x-1 C。

y = -x²+2x D。

y = 59.下列四个集合:① A = {x ∈ R | y = x+1} ② B = {y | y =x+1.x ∈ R} ③ C = {(x,y) | y = x²+1.x ∈ R} ④ D = {不小于 1 的实数}。

高考综合复习 专题7 函数的概念与性质专题练习

高考综合复习 专题7 函数的概念与性质专题练习

高考综合复习专题七函数的概念与性质专题练习一.选择题1.下列函数既是奇函数,又在区间[-1,1]上单调递减的是()A.f(x)=sinxB.f(x)=-C.f(x)=D.f(x)=2.函数,若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1, -D.1,3.若函数f(x)是定义在R上的偶函数,在(-∞,0)上是减函数,且f(2)=0,则使f(x)<0的x的取值范围是()A.(-∞,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.(-2,2)4.已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)= ,则当x<-2时,f(x)=()A.-B.C.-D.-5.已知y=f(x)是R上的减函数,且y=f(x)的图象经过点A(0,1)和点B(3,-1),则不等式<1的解集为()A.(-1,2)B.(0,3)C.(-∞,-2)D.(-∞,3)6.已知f(x)是定义在R上的单调函数,实数≠,≠-1, =,.若,则()A.<0B.=0C.0<<1D.≥17.若函数f(x)=(a>0,a≠1)在区间(-,0)内单调递增,则a的取值范围是()A.[-,1)B.[,1)C.(,+∞)D.(1, )8.已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x∈[0,1]时,f(x)=现有4个命题:①f(x)是周期函数,且周期为2;②当x∈[1,2]时,f(x)=2x-;③f(x)为偶函数;④f(-2005.5)= .其中正确命题的个数是()A.1B.2C.3D.4二.填空题.1.若函数f(x)= (a≠0)的图象关于直线x=2对称,则a=.2.已知函数y=f(x)的反函数为y=g(x),若f(3)=-1,则函数y=g(x-1)的图象必经过点.3.定义在R上的函数f(x)对一切实数x都有f[f(x)]=x,则函数f(x)图象的自身关于对称.4.设f(x)是定义在R上的偶函数,且f(x+3)=1-f(x),又当x∈(0,1]时,f(x)=2x,则f(17.5)=.三.解答题.1.设函数f(x)=,求使f(x)≥2的x的取值范围.2.已知函数f(x)= (a,b为常数),且方程f(x)-x+12=0有两个实根为=3,=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式f(x)< .3.设f(x)是定义在R上的增函数,若不等式f(1-ax-)<f(2-a)对任意x∈[0,1]都成立,求实数a的取值范围.4.已知定义在R上的函数f(x)对任意实数,满足关系f(+)=f()+f()+2.(1)证明:f(x)的图象关于点(0,-2)对称.(2)若x>0,则有f(x)>-2,求证:f(x)在R上为增函数.(3)若数列满足=-,且对任意n∈N﹡有=f(n),试求数列的前n项和.答案与解析:一.选择题.1.选D.分析:这里f(x)为奇函数,由此否定B.C;又f(x)在[-1,1]上单调递减,由此否定A.故应选D.2.选C.分析:注意到这里a的可能取值至多有3个,故运用代值验证的方法.当a=1时,由f(1)+f(a)=2得f(1)=1;由f(x)的表达式得f(1)==1,故a=1是所求的一个解,由此否定B.当a=-时,由f(x)的表达式得f(-)=sin=1,又f(1)=1,故f(1)+f(-)=2,a=-是所求的一个解,由此否定A.D.本题应选C.3.选D.分析:由f(x)在(-∞,0)上是减函数,且f(x)为偶函数得f(x)在(0,+∞)上是增函数,∴f(x)在(-∞,-2]上递减,在[2,+∞)上递增.又∵f(2)=0, ∴f(-2)=0∴f(x)在(-∞,-2]上总有f(x)≥f(-2)=0,①f(x)在[2,+∞)上总有f(x)≥f(2)=0②∴由①②知使f(x)<0的x的取值范围是(-2,2),应选D.4.选C.分析:由f(x)的图象关于直线x=-1对称得f(x)=f(-2-x)①∴当x<-2时, -2-x>0∴再由已知得f(-2-x)= ②于是由①②得当x<-2时f(x)= ,即f(x)= -.应选C.5.选A.分析:由已知条件得f(0)=1,f(3)=-1,∴(※)又f(x)在R上为减函数.∴由(※)得0<x+1<3-1<x<2故应选A.6.选A.分析:注意到直接推理的困难,考虑运用特取——筛选法.在选项中寻觅特殊值.当=0时, =,=,则,由此否定B,当=1时,= ,f()=f(),则,由此否定D;当0<<1时, 是数轴上以分划定点,所成线段的定比分点(内分点),是数轴上以>1分划上述线段的定比分点(内分点),∴此时又f(x)在R上递减,∴由此否定C.因而应选A.7.选B.分析:令u=g(x)= ,y=f(x)则y=由题意知当x∈(-,0)时,u>0注意到g(0),故u=g(x)在(-,0)上为减函数.①又y=f(x)在(-,0)上为增函数,∴y=在u的相应区间上为减函数.∴0<a<1再由①得u'=g'(x)= 在(-,0)上满足u'≤0②而u'=在(-,0)上为减函数,且是R上的连续函数.③∴由②③得u'(-)≤0∴-a≤0,即a≥④于是由①,④得≤a<1应选B.点评:从复合函数的“分解”切入.利用复合函数的单调性与所“分解”出的内层函数与外层函数的单调性之间的联系(同增异减)初步确定a的取值范围0<a<1.但是,由于u=为x的三次函数, u'为x的二次函数.故还要从u'在(-,0)上的符号入手进一步确认a的正确的范围.”粗” 、“细”结合,双方确定所求参数的范围,乃是解决这类问题的基本方略.8.选B.分析:从认知f(x)的性质入手,由f(x)+f(x-1)=1得f(x-1)=1-f(x)(※)∴f(x-2)=1-f(x-1)(※※)∴由(※),(※※)得f(x)=f(x-2)∴f(x)为周期函数,且2是f(x)的一个周期.(1)由上述推理可知①正确.(2)当x∈[1,2]时,有x-1∈[0,1].∴由题设得f(x)=1-f(x-1)=1-(x-1)=2x-x,由此可知②正确(3)由已知条件以及结果①、②得,又f()=,∴f()≠f(-)∴f(x)不是偶函数即③不正确;(4)由已知条件与f(x)的周期性得f(-2005.5)=f(-2005.5+2×1003)= f()=故④不正确.于是由(1)(2)(3)(4)知,本题应选B.二.填空题.1.答案: .分析:由题设知f(0)=f(4)(a≠0),∴(a≠0)0<=1(a≠0)4a-1=1或4a-1=-1(a≠0)a=即所求a=.2.答案: (0,3)分析:f(3)=-1y=f(x)的图象经过点(3,-1)y=g(x)的图象经过点(-1,3)g(-1)=3g(0-1)=3y=g(x)的图象经过点(0,3).3.答案:直线y=x分析:根据函数的定义,设x为f(x)定义域内的任意一个值,则f(x)为其相应的函数值,即为y,即y= f(x),则有x=( y)①又由已知得f[f(x)]=f(y)= x②∴由①②知f(x)与其反函数(x)为同一函数,∴函数f(x)的图象自身关于直线y=x对称.4.答案:1分析: 从认知f(x)的性质切入已知f(x+3)=1-f(x)①以-x代替①中的x得f(-x+3)=1-f(-x)②又f(x)为偶函数∴f(-x)=f(x)③∴由②③得f(-x+3)=1-f(x)④∴由①④得f(3+x)=f(3-x)f(x)图象关于直线x=3对称f(-x)=f(6+x)∴由③得f(x)=f(6+x)即f(x)是周期函数,且6是f(x)的一个周期.⑤于是由③⑤及另一已知条件得f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)=2×0.5=1三.解答题.1.分析:注意到f(x)为复合的指数函数,故考虑令u=,而后利用指数函数的性质将所给不等式转化为关于u的不等式解.解:令u=, y=f(x),则y=2为u的指数函数.∴f(x)≥2≥2≥u≥①∴f(x) ≥≥②(1)当x≥1时,不等式②(x+1)-(x-1) ≥2≥成立.(2)当-1≤x<1时,由②得,(x+1)-(1-x) ≥x≥即≤x<1;(3)当x<-1时,由②得-(x+1)-(1-x) ≥即-2≥不成立.于是综合(1)(2)(3)得所求的x的取值范围为[,1]∪[1,+∞),也就是[,+∞)点评:对于复合函数y=f[p(x)],令u=p(x),将其分解为y=f(u),u=p(x).于是所给问题转化为内层函数u=p(x)的问题或转化为外层函数y=f(u)的问题.这种分解----转化的手法,是解决复合指数函数或复合对数函数的基本策略.2.分析:注意到f(x)为分式函数,故相关方程为分式方程,相关不等式为分式不等式,因此,求解此类问题要坚定地立足于求解分式问题的基本程序:移项,通分,分解因式;化“分”为“整”以及验根等等.解:(1)将=3, =4分别代入方程得由此解得∴f(x)= (x≠2).(2)原不等式<-<0<0<0(x-2)(x-1)(x-k)>0注意到这里k>1,(ⅰ)当1<k<2时,原不等式的解集为(1,k)∪(2,+∞);(ⅱ)当k=2时,原不等式(x-2)2(x-1)>0x>1且x≠2.∴原不等式的解集为(1,2)∪(2,+∞);(ⅲ)当k>2时,原不等式的解集为(1,2) ∪(k,+∞);于是综合(ⅰ) (ⅱ) (ⅲ)得当1<k≤2时,原不等式解集为(1,k)∪(2,+∞);当k>2时,原不等式解集为(1,2) ∪(k,+∞);点评:在这里,运用根轴法求解不等式(x-2)(x-1)(x-k)>0快捷准确.此外,在分式不等式转化为高次不等式后,分类讨论时不可忽略对特殊情形:k=2的讨论;综合结论时需要注意相关情况的合并,以最少情形的结论给出最佳答案.3.分析:所给不等式含有抽象的函数符号f,故首先需要“反用”函数的单调性定义脱去“f”,转化为普通的含参不等式的问题.进而,再根据个人的熟重和爱好选择不同解法.解:∵f(x)是R上的增函数.∴不等式f(1-ax-)<f(2-a) 对任意x∈[0,1]都成立.不等式1-ax-<2-a对任意x∈[0,1]都成立+ax-a+1>0对任意x∈[0,1]都成立①解法一: (向最值问题转化,以对称轴的位置为主线展开讨论.)令g(x)= +ax-a+1,则①式g(x)>0对任意x∈[0,1]都成立.g(x)在区间[0,1]上的最小值大于0.②注意到g(x)图象的对称轴为x=-(1)当-≤0即a≥0时,由②得g(0)>0-a+1>0a<1,即0≤a<1;(2)当0<-≤1时,即-2≤a<0时,由②得g(-)>01-a->0+4a-4<0<8当-2≤a<0时,这一不等式也能成立.(3)当->1即a<-2时.由②得g(1)>02>0即当a<-2时,不等式成立.于是综合(1)(2)(3)得所求实数a的取值范围为[0,1)∪[-2,0]∪(-∞,-2), 即(-∞,1).解法二: (以△的取值为主线展开讨论)对于二次三项式g(x)= +ax-a+1,其判别式△=+4(a-1)=+4a-4△<0<8--2<a<-2(1)当△<0时,g(x)>0对任意x∈[0,1]都成立,此时--2<a<-2;(2)当△≥0时,由g(x)>0对任意x∈[0,1]都成立得-2≤a<1或a≤--2.于是由(1)(2)得所求a的取值范围为(--2,-2)∪[-2,1)∪(-∞, --2]即(-∞,1).点评:解法一归统为最值问题,以g(x)图象的对称轴的位置为主线展开讨论;解法二直面g(x)>0在x∈[0,1]上成立,以g(x)的判别式△的取值为主线展开讨论,两种解法各有千秋,都解决这类问题的主要策略.以××为主线展开讨论,这是讨论有理有序,不杂不漏的保障.4.分析:为了认知和利用已知条件,从”特取”切入:在已知恒等式中令==0得f(0)=-2.为利用f(0)=-2,寻觅f(x)的关系式,又在已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2故得f(x)+f(-x)=-4证明(1),由此式展开.对于(2)面对抽象的函数f(x),则只能运用定义;对于(3),这里a n=f(n),a n+1=f(n+1),因此,从已知恒等式入手寻觅{a n}的递推式或通项公式,便称为问题突破的关键.解:(1)证明:在已知恒等式中令==0得f(0)=-2①又已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2∴f(x)+f(-x)=-4②设M(x,f(x))为y=f(x)的图象上任意一点则由②得③∴由③知点M(x,f(x))与N(-x,f(-x))所成线段MN的中点坐标为(0,-2),∴点M与点N关于定点(0,-2)对称.④注意到点M在y=f(x)图象上的任意性,又点N亦在y=f(x)的图象上,故由④知y=f(x)的图象关于点(0,-2)对称.(2)证明:设,为任意实数,且<,则->0∴由已知得f(-)>-2⑤注意到=(-)+由本题大前提中的恒等式得f()=f[(-)+] =f(-)+ f()+2∴f()-f()=f (-)+2⑥又由⑤知f (-)+2>0,∴由⑥得f()-f()>0,即f()>f().于是由函数的单调性定义知,f(x)在R上为增函数.(3)解:∵a n=f(n),∴a1=f(1)=-,a n+1=f(n+1)又由已知恒等式中令=n, =1得f(n+1)=f(n)+f(1)+2∴a n+1= a n+∴a n+1-a n=(n∈N﹡)由此可知,数列{ a n }是首项为=-,公差为的等差数列.∴=-n+×即=(n2-11n).点评:充分认识与利用已知条件中的恒等式,是本题解题的关键环节. 对于(1)由此导出f(x)+f(-x)=-4;对于(2)由此导出f()=f()+f(-)+2;对于(3)由此导出f(n+1)=f(n)+f(1)+2即a n+1-a n=.。

函数的基本性质(题型精练)(学生版)

函数的基本性质(题型精练)(学生版)

函数的基本性质(题型精练)目录:01函数的单调性02求函数的单调区间03利用函数单调性求最值04利用函数单调性求参数范围05函数的奇偶性06函数的奇偶性的应用07函数的对称性、周期性及其应用(含难点)08利用函数的基本性质比较大小01函数的单调性1(23-24高三上·河南南阳·阶段练习)已知函数f(x)=1x-2.(1)求f(x)的定义域;(2)用定义法证明:函数f(x)=1x-2在(0,+∞)上是减函数;(3)求函数f(x)=1x -2在区间12,10上的最大值.2(23-24高一上·陕西汉中·期中)已知函数f x =2x-1 x+1.(1)试判断函数f x 在区间-1,+∞上的单调性,并证明;(2)求函数f x 在区间0,+∞上的值城.3(23-24高三上·黑龙江佳木斯·阶段练习)已知函数f(x)=x+bx过点(1,2).(1)判断f(x)在区间(1,+∞)上的单调性,并用定义证明;(2)求函数f(x)在2,7上的最大值和最小值.02求函数的单调区间4(21-22高三上·贵州贵阳·阶段练习)函数f (x )=ln (2x 2-3x +1)的单调递减区间为()A.-∞,34B.-∞,12C.34,+∞D.(1,+∞)5(2023·海南海口·二模)已知偶函数y =f x +1 在区间0,+∞ 上单调递减,则函数y =f x -1 的单调增区间是.03利用函数单调性求最值6(2021·四川泸州·一模)函数f (x )=ln x +ln (2-x )的最大值为.7(23-24高三上·河南焦作·阶段练习)已知函数f (x )=x +1x,x 1,x 2∈12,3 ,则f x 1 -f x 2 的最大值为()A.43B.12C.56D.18(2022·山东济南·一模)已知函数f x =x -1 2x +1 x 2+ax +b x 2,对任意非零实数x ,均满足f x=f -1x.则f -1 的值为;函数f x 的最小值为.04利用函数单调性求参数范围9(2023·天津河北·一模)设a ∈R ,则“a >-2”是“函数f x =2x 2+4ax +1在2,+∞ 上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10(2023·陕西商洛·一模)已知函数f (x )=-x 2+2ax ,x ≤1(3-a )x +2,x >1是定义在R 上的增函数,则a 的取值范围是()A.1,3B.1,2C.2,3D.0,311(2024·全国·模拟预测)若函数f (x )=4|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是()A.[1,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,1]12(2023高三·全国·专题练习)已知函数f x =x +4x,g (x )=2x +a ,若∀x 1∈12,1,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是()A.a ≤1B.a ≥1C.a ≤2D.a ≥205函数的奇偶性13(23-24高三上·江苏常州·期末)已知定义在-1,1区间上的函数f x =x+ax2+1为奇函数.(1)求函数f x 的解析式;(2)判断并证明函数f x 在区间-1,1上的单调性.14(2022高三·全国·专题练习)设f x =x3+ax2-2x(x∈R),其中常数a∈R.(1)判断函数y=f x 的奇偶性,并说明理由;(2)若不等式f x >32x3在区间12,1上有解,求a的取值范围.15(23-24高三上·河南周口·期末)已知函数f x =ax+b1+x2是定义在-1,1上的函数,f-x=-f x 恒成立,且f12=25.(1)确定函数f x 的解析式,并用定义研究f x 在-1,1上的单调性;(2)解不等式f x-1+f x <0.16(23-24高三上·新疆阿克苏·阶段练习)已知奇函数f(x)=-x2+2x,x>0, 0,x=0,x2+mx,x<0.(1)求f(-m)的值;(2)若函数f(x)在区间[-1,a2-2]上单调递增,试确定a的取值范围.06函数的奇偶性的应用17(2024·河北保定·二模)若函数y =f x -1是定义在R 上的奇函数,则f -1 +f 0 +f 1 =()A.3B.2C.-2D.-318(23-24高三下·陕西西安·阶段练习)定义域均为R 的函数f x ,g x 满足f x =g x -1 ,且f x -1 =g 2-x ,则()A.f x 是奇函数B.f x 是偶函数C.g x 是奇函数D.g x 是偶函数19(2024·陕西西安·模拟预测)已知函数f x =a -12x-1a ∈R 为奇函数,则实数a 的值为()A.12B.-12C.1D.-120(23-24高三上·云南楚雄·期末)已知f x 是定义在R 上的奇函数,f 1 =f 3 =0,且f x 在0,2 上单调递减,在2,+∞ 上单调递增,则不等式f (x )2x -1≤0的解集为()A.-∞,-1 ∪0,12 ∪1,+∞ B.-3,-1 ∪0,12 ∪1,3C.-∞,-1 ∪0,12 ∪3,+∞D.-3,-1 ∪0,12 ∪1,321(2024·陕西·一模)已知定义在R 上的函数f (x ),满足x 1-x 2 f x 1 -f x 2 <0,且f (x )+f (-x )=0.若f (1)=-1,则满足|f (x -2)|≤1的x 的取值范围是()A.[1,3]B.[-2,1]C.[0,4]D.[-1,2]22(23-24高三上·辽宁朝阳·阶段练习)函数f x 在-∞,+∞ 上单调递减,且为奇函数.若f 1 =-2,则满足-2≤f 1-x ≤2的x 的取值范围是()A.0,2B.-2,0C.1,3D.-1,107函数的对称性、周期性及其应用(含难点)23(2024·山东济南·二模)已知函数f x 的定义域为R ,若f -x =-f x ,f 1+x =f 1-x ,则f 2024 =()A.0B.1C.2D.324(2024·四川南充·三模)已知函数f x 、g x 的定义域均为R ,函数f x 的图象关于点-1,-1 对称,函数g x +1 的图象关于y 轴对称,f x +2 +g x +1 =-1,f -4 =0,则f 2030 -g 2017 =()A.-4B.-3C.3D.425(2024·广东广州·模拟预测)已知函数f x 的定义域为R ,且满足f x =-f 2-x ,f x +2 为偶函数,当x ∈1,2 时,f x =ax 2+b ,若f 0 +f 3 =6,则f 253=()A.329B.113C.-43D.-17926(23-24高一上·广东广州·期中)已知函数f x ,g x 的定义域均为R ,且f x +g 2-x =5,g x -f x -4 =7.若y =g x 的图象关于直线x =2对称,g 2 =4,下列说法正确的是()A.g 2+x =g 2-xB.y =g x 图像关于点3,6 对称C.f 2 =3D.f 1 +f 2 +⋯f 26 =-2827(2024·河南·二模)已知函数f x 是偶函数,对任意x ∈R ,均有f x =f x +2 ,当x ∈0,1 时,f x =1-x ,则函数g x =f x -log 5x +1 的零点有个.28(23-24高三下·重庆·阶段练习)已知函数f x 的定义域是R ,f 32+x =f 32-x ,f x +f 6-x =0,当0≤x ≤32时,f x =4x -2x 2,则f 2024 =.29(2023高三·全国·专题练习)设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)⋅f (x 2),且f (1)=a >0.(1)求f 12 ,f 14;(2)证明f (x )是周期函数;(3)记a n =f 2n +12n,求a n .30(2023·浙江绍兴·二模)已知定义在0,+∞ 上的增函数f x 满足:对任意的a ,b ∈0,+∞ 都有f ab =f a +f b 且f 4 =2,函数g x 满足g x +g 4-x =-2,g 4-x =g x +2 . 当x ∈0,1 时,g x =f x +1 -1,若g x 在0,m 上取得最大值的x 值依次为x 1,x 2,⋯,x k ,取得最小值的x 值依次为x1,x2,⋯,x n,若ki =1x i +g x i +ni =1x i +g x i =21,则m 的取值范围为08利用函数的基本性质比较大小31(23-24高三上·天津蓟州·阶段练习)已知奇函数f x 在R 上是增函数,若a =f log 215,b =f log 24.1 ,c =f 20.5 ,则a ,b ,c 的大小关系为()A.a <c <bB.b <a <cC.c <b <aD.c <a <b32(23-24高一上·陕西西安·期中)定义域为R 的函数f x 满足f 3-x =f x +3 ,且当x 2>x 1>3时,f x 1 -f x 2 x 1-x 2 >0恒成立,设a =f 2x 2-x +5 ,b =f 52 ,c =f x 2+4 ,则()A.c >a >bB.c >b >aC.a >c >bD.b >c >a33(23-24高三上·福建厦门·期中)已知定义在R 上的函数f (x )满足,①f (x +2)=f (x ),② f (x -2)为奇函数,③当x ∈0,1 时,f x 1 -f x 2 x 1-x 2>0x 1≠x 2 恒成立.则f -152 、f (4)、f 112 的大小关系正确的是()A.f -152 >f 4 >f 112 B.f -152 >f 112 >f 4 C.f 112 >f 4 >f -152D.f 4 >f 112 >f -152一、单选题1(2024·山西晋中·三模)下列函数中既是奇函数,又在0,+∞ 上单调递减的是()A.f x =2xB.f x =x 3C.f x =1x-x D.f x =ln x ,x >0,-ln -x ,x <02(2024·山东·二模)已知函数f x =2x 2-mx +1在区间-1,+∞ 上单调递增,则f 1 的取值范围是( ).A.7,+∞B.7,+∞C.-∞,7D.-∞,73(2024·山东·二模)已知函数f x 是偶函数,且该函数的图像经过点M 2,-5 ,则下列等式恒成立的是( ).A.f -5 =2B.f -5 =-2C.f -2 =5D.f -2 =-54(2024·全国·模拟预测)函数f x =e x -e -x4ln x +1的大致图象是()A. B.C. D.5(2024·全国·模拟预测)已知函数f x =3x -2-32-x ,则满足f x +f 8-3x >0的x 的取值范围是()A.-∞,4B.-∞,2C.2,+∞D.-2,26(2024·全国·模拟预测)已知函数f (x )是定义在R 上的奇函数,且对任意的m <n <0,都有(m -n )(f (m )-f (n ))<0,且f (-2)=0,则不等式f (x +1)-f (-x -1)x ≥0的解集为()A.[-3,-1]∪[0,1]B.[-2,2]C.(-∞,-3)∪(-2,0)∪(2,+∞)D.[-3,-1]∪(0,1]7(2024·湖南岳阳·三模)已知函数f (x )=e x +a ,x <a x 2+2ax ,x ≥a,f (x )不存在最小值,则实数a 的取值范围是()A.(-1,0)B.13,+∞C.(-1,0)∪13,+∞D.-13,0∪(1,+∞)8(2024·浙江绍兴·模拟预测)已知:对于任意的正数x,y,z≤2xy,若满足x+y=1,则x2+y2+1xy+5x2+5y2+z2+10xy-3xz-3yz≥k恒成立,那么k的最大值是()A.6+3B.6+112C.8+3 D.8+112二、多选题9(2021·江西·模拟预测)已知函数f(x)=2x+3x+4,则下列叙述正确的是()A.f(x)的值域为-∞,-4∪-4,+∞B.f(x)在区间-∞,-4上单调递增C.f(x)+f-8-x=4 D.若x∈x x>-4,x∈Z,则f(x)的最小值为-3 10(2024·江苏南京·二模)已知函数f(x)满足f(x)f(y)=f(xy)+|x|+|y|,则()A.f(0)=1B.f(1)=-1C.f(x)是偶函数D.f(x)是奇函数11(2023·河南·三模)已知函数f x =ln x-1-2x-1,则下列结论正确的是()A.f x 在定义域上是增函数B.f x 的值域为RC.f log20232024+f log20242023=1D.若f a =e b+1e b-1-b,a∈0,1,b∈0,+∞,则ae b=1三、填空题12(2023·上海嘉定·一模)函数y=2x2-3x+5x-1在x∈32,3上的最大值和最小值的乘积为13(2024·湖北黄石·三模)设a,b∈R+,若a+4b=4,则a+2bab的最小值为,此时a的值为.14(2023·云南保山·二模)对于函数f x ,若在其图象上存在两点关于原点对称,则称f x 为“倒戈函数”,设函数f x =3x+tan x-2m+1m∈R是定义在-1,1上的“倒戈函数”,则实数m的取值范围是.。

函数性质专题(含详细答案)

函数性质专题(含详细答案)

,故其周期为 ,
对称.
.所以做示意图
第 10页(共 18 页)
17. D 【解析】由
函数,且
,所以
知, ,
的周期 ,
,又 ,故
是定义在 上的奇
18. B 【解析】对于选项 A,
为增函数,
为减函数,故
对于选项 B,
,故
为增函数,
对于选项 C,函数的定义域为
,不为 ,
对于选项 D,函数
为偶函数,在
上单调递减,在
时,都有
,设
,则
,故函数

上是增函数,根据对称性,易知函数

上是减函数,根据周期性,函数
A.
B.
18. 下列函数中,定义域是 且为增函数的是
A.
B.
19. 对于函数 ,所得出的正确结果可能是
A. 和
B. 和
C.
D.
C.
D.
,选取 , , 的一组值计算

C. 和
D. 和
20. 设函数
的最小值为 ,则实数 的取值范围是
A.
B.
C.
D.
21. 已知函数
,给出下列命题:①
必是偶函数;②当
时,
的图象必关于直线
对称;③若
,则
在区间
上是增函数;④
有最大值
,其中正确命题是
A. ①②
B. ②③
C. ①③
D. ③
22. 定 义 在
上的函数
满足
,当
时,
;当
时,
,则
A.
B.
23. 已知定义在 上的奇函数
满足
C.
D.
,且在区间

(完整word版)函数的基本性质练习题及答案

(完整word版)函数的基本性质练习题及答案

高中数学必修一1.3函数的基本性质练习题及答案一:单项选择题: (共10题,每小题5分,共50分)1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( )A.1B.2C.3D.42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A.)2()1()23(f f f <-<- B.)2()23()1(f f f <-<- C.)23()1()2(-<-<f f f D.)1()23()2(-<-<f f f3. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是()A.增函数且最小值是5-B.增函数且最大值是5-C.减函数且最大值是5-D.减函数且最小值是5-4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数5. 函数)11()(+--=x x x x f 是( )A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数6. 下列函数既是奇函数,又在区间上单调递减的是( ) A. B. C. D.7. 设函数|| + b + c 给出下列四个命题:①c = 0时,y 是奇函数 ②b 0 , c >0时,方程0 只有一个实根 ③y 的图象关于(0 , c)对称 ④方程0至多两个实根其中正确的命题是( )A .①、④B .①、③C .①、②、③D .①、②、④8. 已知函数f(x)=3-2|x|,g(x)=x 2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么F(x) ( )A .有最大值7-2,无最小值B . 有最大值3,最小值-1C .有最大值3,无最小值D .无最大值,也无最小值9. 已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式的解集是( ) A .B .C .D .10. 设定义域为R 的函数f (x )满足,且f (-1)=,则f (2006)的值为( ) A .1 B .1 C .2006 D .二:填空题: (共2题,每小题10分,共20分)1. 设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是 .2. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是____________ 三:解答题: (共2题,每小题10分,共20分)1. 判断y=1-2x 3 在(-)上的单调性,并用定义证明。

高中数学必修一函数性质专项习题及答案

高中数学必修一函数性质专项习题及答案

高中数学必修一函数性质专项习题及答案必修1函数的性质1.在区间(0,+∞)上不是增函数的函数是A.y=2x+1B.y=3x2+1C.y=1/xD.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数。

则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(3,8)D.(0,5)4.函数f(x)=ax+1在区间(-2,+∞)上单调递增,则实数a的取值范围是()x+2A.(0,11/22)B.(11/22,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.若f(x)=x+px+q满足f(1)=f(2)=5,则f(1)的值是()A.5B.-5C.6D.-67.若集合A={x|1<x<2},B={x|x≤a},且A∩B≠Ø,则实数a的集合()A.{a|a<2}B.{a|a≥1}C.{a|a>1}D.{a|1≤a≤2}8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是()A.(-∞,0],[2,∞)B.(-∞,0],[0,2]C.[0,2],[2,∞)D.[0,2],[-∞,0)10.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围()A.a≤3B.a≥-3C.a≤5D.a≥311.函数y=x+4x+c,则()A.f(1)<c<f(-2)B.f(1)>c>f(-2)C.c>f(1)>f(-2)D.c<f(-2)<f(1)12.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上是减函数,则f(2)的符号为()A.正数B.负数C.零一、文章格式已经修正,删除了明显有问题的段落,并对每段话进行了小幅度改写。

高一数学函数的基本性质知识点及练习题(含答案)

高一数学函数的基本性质知识点及练习题(含答案)
函数的基本性质
1.奇偶性 (1)定义:如果对于函数 f(x)定义域内的任意 x 都有 f(- x)=- f(x),则称 f(x)为奇函数;如果对于函数 f(x)
定义域内的任意 x 都有 f(- x)=f(x),则称 f (x)为偶函数。
如果函数 f(x) 不具有上述性质,则 f (x)不具有奇偶性 .如果函数同时具有上述两条性质,则 f(x)既是奇函数,
,求函数
得单调递减区间 .
2.( 12 分)已知

,求
.
第3页 共4页
第4页 共4页
最小值:一般地,设函数 y=f(x)的定义域为 I ,如果存在实数 M 满足:①对于任意的
x∈ I ,都有 f(x)≤ M ; x∈ I ,都有 f(x)≥ M ;
②存在 x0∈I ,使得 f(x0) = M 。那么,称 M 是函数 y=f(x)的最大值。 注意:
○1 函数最大(小)首先应该是某一个函数值,即存在
函数; ②若 u=g( x)在 A 上是增(或减)函数,而
函数。
y= f(u) 在 B 上是减(或增)函数,则函数
yபைடு நூலகம் f[g( x)] 在 A 上是减
( 4)判断函数单调性的方法步骤 利用定义证明函数 f(x)在给定的区间 D 上的单调性的一般步骤:
○1 任取 x1, x2∈ D,且 x1<x2; ○2 作差 f(x1)- f(x2); ○3 变形(通常是因式分解和配方) ; ○4 定号(即判断差 f(x1)-f (x2)的正负); ○5 下结论(即指出函数 f(x)在给定的区间 D 上的单调性) 。 (5)简单性质 ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反;
③在公共定义域内:

高考数学函数性质练习题

高考数学函数性质练习题

高考数学函数性质练习题以下是高考数学函数性质的练习题:1. 已知函数f(x) = 2x^3 - 3x^2 + 4x - 5,求f(x)的单调区间和极值点。

2. 函数g(x) = x^2 + 2x - 3的图像关于直线x = 1对称,求g(x)的对称函数h(x)。

3. 给定函数F(x) = sin(x) + cos(x),求F(x)的周期和最大值。

4. 函数f(x) = x^4 - 4x^2 + 4在区间[-2, 2]上的最大值和最小值分别是多少?5. 函数f(x) = x^3 - 6x^2 + 11x - 6的零点个数是多少?6. 函数f(x) = 2^x - 3x + 1在实数域R上的单调性如何?7. 函数f(x) = ln(x) - x^2 + 2x在区间(0, +∞)上是否存在极值点?如果存在,请求出极值点。

8. 函数f(x) = x^3 - 3x^2 + 2的导数f'(x)是什么?并求出f'(x)的零点。

9. 函数f(x) = x^2 - 4x + 4的图像是一个什么形状?并求出其顶点坐标。

10. 函数f(x) = x^2 - 6x + 8与x轴的交点坐标是什么?11. 函数f(x) = 1/x在(-∞, 0)和(0, +∞)上的单调性如何?12. 函数f(x) = x^3 - 3x^2 + 2x - 1的图像在哪些区间上是凹的?13. 函数f(x) = e^x - x^2 + 1的图像在x=0处的切线方程是什么?14. 函数f(x) = 1/(x+1) + x^2的图像在x=-1处的渐近线方程是什么?15. 函数f(x) = x^3 - 3x^2 + 2x - 1的图像在哪些区间上是凸的?请同学们认真完成以上练习题,以加深对函数性质的理解和应用。

高三函数基本性质练习题

高三函数基本性质练习题

高三函数基本性质练习题函数是数学中的重要概念,也是高中数学课程中的重点知识。

函数的基本性质是学习函数的基础,对于理解和解题有着重要的作用。

下面是一些高三函数基本性质的练习题,希望可以帮助大家巩固所学知识。

1. 已知函数 f(x) = 2x - 3,求f(-1)的值。

解析:将x替换为-1,得到f(-1) = 2(-1) - 3 = -2 - 3 = -5。

因此,f(-1)的值为-5。

2. 已知函数 g(x) = x^2 + 2x - 1,求g(3)的值。

解析:将x替换为3,得到g(3) = 3^2 + 2(3) - 1 = 9 + 6 - 1 = 14。

因此,g(3)的值为14。

3. 已知函数 h(x) = (x + 1)(x - 2),求h(0)的值。

解析:将x替换为0,得到h(0) = (0 + 1)(0 - 2) = 1 × (-2) = -2。

因此,h(0)的值为-2。

4. 已知函数 f(x) = 3x + 2 和 g(x) = 2x - 1,求 f(2) - g(2) 的值。

解析:首先求出 f(2) 的值:f(2) = 3(2) + 2 = 6 + 2 = 8。

然后求出 g(2) 的值:g(2) = 2(2) - 1 = 4 - 1 = 3。

最后计算 f(2) - g(2):f(2) - g(2) = 8 - 3 = 5。

因此,f(2) - g(2) 的值为5。

5. 已知函数 y = 2x^2 + 3x + 1,求函数的对称轴和顶点坐标。

解析:对称轴的公式为 x = -b / (2a),其中a和b分别为二次项和一次项的系数。

对于给定的函数 y = 2x^2 + 3x + 1,a = 2,b = 3。

所以对称轴的横坐标为 x = -3 / (2 * 2) = -3 / 4。

将横坐标代入原函数,求出对称轴上的纵坐标:y = 2 * (-3 / 4)^2 + 3 * (-3 / 4) + 1 = 2 * 9 / 16 - 9 / 4 + 1 = 9 / 8 - 9 / 4 + 1 = 9 / 8 - 18 / 8 + 8 / 8 = -1 / 8。

函数的基本性质练习题

函数的基本性质练习题

函数的基本性质练习题1.3 函数的基本性质练题(1)一、选择题:1.下面说法正确的选项(B)A。

函数的单调区间可以是函数的定义域。

B。

函数的多个单调增区间的并集也是其单调增区间。

C。

具有奇偶性的函数的定义域定关于原点对称。

D。

关于原点对称的图象一定是奇函数的图象。

2.在区间(,)上为增函数的是(D)A。

y = 1B。

y = (2x + 1)/(2x - 1)C。

y = (x^2 + 2)/(1 - x^2)D。

y = 1 + x3.函数y = x + bx + c(x∈(,1))是单调函数时,b的取值范围(B)A。

b ≥ 2B。

b ≤ 2C。

b。

2D。

b < 24.如果偶函数在[a,b]具有最大值,那么该函数在[b,a]有(A)A。

最大值B。

最小值C。

没有最大值D。

没有最小值5.函数y = x|x| + px,x∈R是(B)A。

偶函数B。

奇函数C。

不具有奇偶函数D。

与p有关6.函数f(x)在(a,b)和(c,d)都是增函数,若x1∈(a,b),x2∈(c,d),且x1 < x2,那么(A)A。

f(x1) < f(x2)B。

f(x1)。

f(x2)C。

f(x1) = f(x2)D。

无法确定7.函数f(x)在区间[2,3]是增函数,则y = f(x+5)的递增区间是(C)A。

[3,8]B。

[7,2]C。

[,5]D。

[2,3]8.函数y = (2k+1)x + b在实数集上是增函数,则(A)A。

k。

1/2B。

k < 1/2C。

b。

0D。

b。

1/29.定义在R上的偶函数f(x),满足f(x+1) = f(x),且在区间[1,]上为递增,则(B)A。

f(3) < f(2) < f(2)B。

f(2) < f(3) < f(2)C。

f(3) < f(2) < f(2)D。

f(2) < f(2) < f(3)10.已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是(C)A。

高一数学函数的基本性质综合训练

高一数学函数的基本性质综合训练

(数学1必修)函数的基本性质--综合训练B 组一、选择题1.下列判断正确的是( )A .函数22)(2--=x x x x f 是奇函数B .函数()(1f x x =-函数C .函数()f x x =D .函数1)(=x f 既是奇函数又是偶函数2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞3.函数y = ) A .(]2,∞- B .(]2,0C .[)+∞,2 D .[)+∞,04.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .3a ≥5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) 1y x =+和y =表示相等函数。

其中正确命题的个数是( )A .0B .1C .2D .36.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、填空题1.函数x x x f -=2)(的单调递减区间是____________________。

2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = .3.若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=__________。

函数的基本性质练习题(重要)

函数的基本性质练习题(重要)

(高中数学必修1)函数的基本性质[B组] 一、选择题1.下列判断正确的是( )A .函数22)(2--=x xx x f 是奇函数 B.函数()(1f x x =-C.函数()f x x = D.函数1)(=x f 既是奇函数又是偶函数2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A.(],40-∞ B .[40,64] C.(][),4064,-∞+∞ D.[)64,+∞3.函数y =)A.(]2,∞- B .(]2,0C .[)+∞,2D .[)+∞,04.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( )A.3a ≤- B.3a ≥- C.5a ≤ D.3a ≥5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) 1y x =+和y =表示相等函数。

其中正确命题的个数是( )A.0 B .1 C.2 D.36.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、填空题1.函数x x x f -=2)(的单调递减区间是____________________。

2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = . 3.若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=__________。

人教版高中数学必修一《函数的基本性质》练习题含答案

人教版高中数学必修一《函数的基本性质》练习题含答案

人教版高中数学必修一《函数的基本性质》练习题含答案一、选择题1.B2.B3.D4.B5.A6.D二、填空题1.x∈(-5,-1)∪(0,1)2.(-∞,∞)3.(-∞,∞)4.(-∞,0)5.2三、解答题1.一次函数y=kx+b的单调性取决于k的正负性。

当k>0时,函数单调递增;当k0时,函数在(0,∞)上单调递减;当k<0时,函数在(-∞,0)上单调递减。

2.因为f(x)是奇函数,所以f(1-a)+f(-(1-a))=0,即f(1-a)=-f(1+a)。

由于f(x)在定义域上单调递减,所以f(1-a)f(1-a)>f(1),即f(0)>-f(1+a)>f(1)。

又因为f(1-a)=-f(1+a),所以f(0)>f(1+a)>f(1)。

由此可得1+a<0,即a<-1.3.函数y=x+1+2x的定义域为(-∞,∞),因为x+1的单调性为单调递增,2x的单调性为单调递增,所以y的单调性为单调递增。

因此,y的值域为(-∞,∞)。

已知函数$f(x)=x+2ax+2,x\in[-5,5]$,二次函数$y=ax^2+bx+c$,其中:①当$a=-1$时,求函数的最大值和最小值;当$a=-1$时,二次函数为$y=-x^2+bx+c$,由于$a<0$,所以开口向下,最大值为顶点,顶点横坐标为$x_0=-\frac{b}{2a}=0$,代入得$y_{\max}=c$,最小值为区间端点处的值,即$f(-5)$和$f(5)$中的较小值。

因此,函数$f(x)$的最大值为$c$,最小值为$\min\{f(-5),f(5)\}$。

②求实数$a$的取值范围,使$y=f(x)$在区间$[-5,5]$上是单调函数。

二次函数$y=ax^2+bx+c$在开口方向上单调递增的充分必要条件是$a>0$,在开口方向上单调递减的充分必要条件是$a0$时,$y=f(x)$在$[-5,5]$上是单调递增函数;当$a<0$时,$y=f(x)$在$[-5,5]$上是单调递减函数。

(完整版)《函数的基本性质》练习题

(完整版)《函数的基本性质》练习题

(完整版)《函数的基本性质》练习题一、选择题1. 设函数 f(x) = 3x^2 + 2x + 1,在区间 [-2, 2] 上,f(x) 的最小值出现在区间的哪个点?A. x = -2B. x = -1C. x = 0D. x = 1E. x = 2答案:C. x = 02. 若函数 g(x) 的定义域为实数集,且对任意 x,g(x) = g(x + 1),则函数 g(x) 的图像具有什么样的性质?A. 对称性B. 周期性C. 单调性D. 渐近性E. 不对称性答案:B. 周期性二、填空题1. 设函数 h(x) = 2^(x - 1),则 h(0) = ____答案:12. 设函数i(x) = √(x^2 - 9),则定义域为 ____ 的实数集。

答案:[-∞, -3] 并[3, +∞]三、解答题1. 证明函数 f(x) = x^3 - 6x^2 + 9x + 2 在整个实数集上是递增的。

解答:首先,计算 f'(x) = 3x^2 - 12x + 9。

我们可以使用求函数的导数的方法证明 f(x) 的递增性。

根据二次函数的性质,当 3x^2 - 12x + 9 > 0 时,即 x^2 - 4x + 3 > 0 时,函数 f(x) 在该区间上是递增的。

化简方程得到 (x - 1)(x - 3) > 0,所以 f(x) 在 (-∞, 1)U(3, +∞) 上是递增的。

因此,函数 f(x) 在整个实数集上是递增的。

2. 设函数 g(x) = |x + 3| - 2x,求函数 g(x) 的定义域以及其在定义域上的单调区间。

解答:对于函数 g(x) 来说,|x + 3| 在定义域内的取值范围为 x+ 3 ≥ 0 和 x + 3 < 0 两种情况,即x ≥ -3 或 x < -3。

同时,2x 在定义域内的取值范围为 x 属于实数集。

综合两种情况,g(x) 的定义域为x 属于实数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010高考数学总复习 函数的基本性质练习题
一、选择题
1. 已知函数为)127()2()1()(22+-+-+-=m m x m x m x f 偶函数,则m 的值是( )
A. 1
B. 2
C. 3
D. 4
2. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )
A. )
2()1()23(f f f <-<- B. )
2()23()1(f f f <-<- C. )23
()1()2(-<-<f f f D. )1()2
3()2(-<-<f f f 3. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )
A. 增函数且最小值是5-
B. 增函数且最大值是5-
C. 减函数且最大值是5-
D. 减函数且最小值是5-
4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )
A. 奇函数
B. 偶函数
C. 既是奇函数又是偶函数
D. 非奇非偶函数
5. 下列函数中,在区间()0,1上是增函数的是( )
A. x y =
B. x y -=3
C. x
y 1= D. 42+-=x y 6. 函数)11()(+--=x x x x f 是( )
A. 是奇函数又是减函数
B. 是奇函数但不是减函数
C. 是减函数但不是奇函数
D. 不是奇函数也不是减函数
二、填空题
1. 设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时,)(x f 的图象如右图,则不等式()0f x <的解是
2. 函数21y x x =++________________.
3. 已知[0,1]x ∈,则函数21y x x =
+-的值域是 . 4. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .
三、解答题
1. 判断一次函数,b kx y +=反比例函数x
k y =,二次函数c bx ax y ++=2的单调性.
2. 已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数;
(2)()f x 在定义域上单调递减;(3)2
(1)(1)0,f a f a -+-<求a 的取值范围.
3. 利用函数的单调性求函数x x y 21++=的值域;
4. 已知函数[]2()22,5,5f x x ax x =++∈-.
① 当1a =-时,求函数的最大值和最小值;
② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数. 参考答案
一、选择题
1. B 奇次项系数为0,20,2m m -==
2. D 3(2)(2),212
f f =--<-<- 3. A 奇函数关于原点对称,左右两边有相同的单调性 4. A ()()()()F x f x f x F x -=--=-
5. A 3y x =-在R 上递减,1y x
=
在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减, 6. A ()(11)(11)()f x x x x x x x f x -=----+=+--=-为奇函数,而222,12,01(),2,10
2,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩为减函数. 二、填空题
1. (](2,0)2,5- 奇函数关于原点对称,补足左边的图象
2. [2,)-+∞ 1,x y ≥-是x 的增函数,当1x =-时,min 2y =-
3.
该函数为增函数,自变量最小时,函数值最小; 自变量最大时,函数值最大
4. [)0,+∞ 2
10,1,()3k k f x x -===-+ 三、解答题
1. 解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;
当0k >,k y x
=
在(,0),(0,)-∞+∞是减函数, 当0k <,k y x
=在(,0),(0,)-∞+∞是增函数; 当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a
-+∞是增函数, 当0a <,2y ax bx c =++在(,]2b a -∞-是增函数,在[,)2b a
-+∞是减函数. 2. 解:22(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩, ∴01a <<
3. 解:1210,2x x +≥≥-,显然y 是x 的增函数,12x =-,min 1,2y =- 1[,)2
y ∴∈-+∞ 4. 解:2(1)1,()22,a f x x x =-=-+对称轴
min max 1,()(1)1,()(5)37x f x f f x f =====
∴max m ()37,()1in f x f x ==
(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调 ∴5a ≥或5a ≤-.。

相关文档
最新文档