数学必修一浙江省高中新课程作业本标准答案
人教A版新课程标准数学必修1课后习题答案.doc
高中数学必修1课后习题答案第一章集合与函数概念练习(第5页)1. (1)中国G A,美国WA,印度e A,英国A;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)—1仁A A={x\x2 =x} = {09\}(3)3冬B B = (xlx2+x-6 = 0) = (-3,2}. (4) 8 E C, 9.1 w C 9.1WN. 2.解(1)因为方程x2-9 = 0的实数根为X,=-3,%2=3,所以山方程J_9 = 0的所有实数根组成的集合为(-3,3};(2)因为小于8的素数为2,3,5,7, 所以山小于8的所有素数组成的集合为{2,3,5,7};(3)山{v JV | 3 I — |• 一 ~ ,得{ 一,即一•次函数y = x + 3与),=一2尤+ 6的图象的交点为(1,4),所以一次函数y = -2x + 6 [》=4y =工+ 3与y = -2尤+ 6的图象的交点组成的集合为((1,4)}:(4)山4x — 5v3,得x<2, 所以不等式4x-5<3的解集为{x\x<2}.练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得0;取一个元素,得{〃},沛},化};取两个元素,得{。
,/,},{。
,。
},”,身;取三个元素,得{aM ,即集合}的所有子集为0,{□},{"},化},{□,/?},{〃,c},{Z?,c},c} . 2. (1)a e {a.h.c}。
是集合{a.b.c)中的一个元素;(2)O G(X I X2=O} {尤疽=0} = {0};(3)0 = {xeR\x2 + l = O)方程x2+l = O无实数根,(xe/?lx2 + l=O} = 0;4){。
,1住》(或{0,1}Q2V)(0,1}是自然数集合N的子集,也是真子集;(5 ){0} {x\x~ =x} (或{0}c {xl A*2=x}){x\x2 =%) = {0,1} ;(6 )(2,1} = {x I x2 - 3x + 2 = 0} 方程x' -3工 + 2 = 0 两根为为=1,易=2 .3.解:(1)| 切B = {x\x是的约数} = {1,2,4,8},旌A B ;(2)当k=2z 时,3*=6z;当k = 2z + l时,3*=6z + 3, 即8是人的真子集,B切A;(3)因为4与10的最小公倍数是20,所以A = B. 练习(第11 页)1 解:人16 = {3,5,6,8}0{4,5,7,8} = {5,8}, AU8 = {3,5,6,8}U{4,5,7,8} = {3,4,5,6,7,8}.2.解:方程亍_4x —5= 0 的两根为玉=一1,邑=5, 方程亍—1=()的两根为弟=一1,心=1 ,得A = {-1,5},B = {-1,1}, 即AnB = {—l}MUB = {—1,1,5} 解:A^B = {x\x^等腰直角三角形}A\jB = {x\x^等腰三角形或直角三角形}. 4.解:显然QB = {2,4,6}, QA = {1,3,6,7},则An(qg)={2,4},(〃A)n(〃8)={6}.2 2习题1.1 (第11页) A组I. (1) 3—E Q 3—是有理数;(2) 3?E N7 732=9是个自然数;(3)兀宅Q》是个无理数,不是有理数;(4) V2e/? 皿是实数;(5) V9eZ 西=3是个整数;(6) (V5)2G N (^5)2=5是个自然数.2. (1) 5E A; (2) 7WA; (3) -IO G A.当k = 2时,3上一1=5;当k=-3时,3S1 = —10; 3.解:(I)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(x-l)(x + 2)= 0的两个实根为石=一2,易=1,即{一2,1}为所求;(3)由不等式-3〈2=-1<3,得—1 v 尤V 2 ,旦x E Z ,即{0,1,2}为所求. 4.解:(1)显然^ 亍2 0,得X2-4>-4,即y 2 —4 ,2得二次函数V = X2-4的函数值组成的集合为{yly2—4}; (2)显然有x^O,得反比例函数y =—的自X 4变量的值组成的集合为{工1尤。
数学必修一浙江省高中新课程作业本标准答案
数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4 }.11.a=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6 綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂UB,与条件A∩綂UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×1 3=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有最大值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a <1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k ≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x <0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=log328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0<x+a<a,得-a<x<0;②当0<a<1时,x+a>a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2 +1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1, 2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 125<0,f(-0 75)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298<0,∴x2∈(-0 625,-0 5625),由|-0.625+0.5625|<0.1,故x2=-0.5625是原方程的近似解,同理可得x3=1 5625.3 1 2用二分法求方程的近似解(二)1.D.2.B.3.C.4.1.5.1.6.2 6.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a>134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个).(2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1.012≈15(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1. (第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)1 5m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只. (2)由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max=31.2.故第二年的养鸡规模最大,共养鸡31.2万只.单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0<m≤1时有公共解,∴0<m≤1.17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg). 综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125. 17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0). 16.2.17.(1,1)和(5,5).18.-2.19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞). (2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a<x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)(x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有最大值10 75万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)=-(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3.。
人教A版新课程标准数学必修1课后习题答案
高中数学必修1课后习题答案第一章集合与函数概念练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x === (3)3∉B2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <, 所以不等式453x -<的解集为{|2}x x <.练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==; (3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; 4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ; (2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ; (3)因为4与10的最小公倍数是20,所以AB =.练习(第11页)1解:{3,5,6,8A B == ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B == .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=- .3.解:{|}A B x x = 是等腰直角三角形,{|}A B x x = 是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð,则(){2,4}U A B = ð,()(){6}U U A B = 痧.习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数. 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{01,2}为所求. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠;(3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ;{1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥ ,{|34}A B x x =≤< . 7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}A B = ,{3,4,5,6}A C = ,而{1,2,3B C = ,{3}B C = ,则(){1,2A BC= ,(){1,2,3,4,5,6,7,8}A B C = .9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x = 是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.解:{|210}A B x x =<< ,{|37}A B x x =≤< ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð得(){|2,10}R A B x x x =≤≥ 或ð, (){|3,7}R A B x x x =<≥ 或ð,(){|23,710}R A B x x x =<<≤< 或ð,(){|2,3710}R A B x x x x =≤≤<≥ 或或ð.B 组1.4 集合B 满足A B A = ,则B A ⊆,即集合B 是集合A 的子集,得4个子集. 2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅ ; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B == ; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅ .4.解:显然{0,1,2,3,4,5,6,7,8,U =,由U A B = ,得U B A ⊆ð,即()U UA B B =痧,而(){1,3,5,7U A B = ð,得{1,3,5,7}U B =ð,而()U U B B =痧,即{0,2,4,6,8.9,10}B =.练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=; (2)由2()32f x x x=+,得22()3232f a a a a a=⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=. 3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.练习(第23页)1.解:, y ==,且050x <<, 即(050)y x =<<. 2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零; 图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.解:因为sin 60=,所以与A 中元素60相对应的B 中的元素是2; 因为sin 452= ,所以与B 中的元素2相对应的A 中元素是45.习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且. 2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (2)2()f x x =的定义域为R ,而4())g x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (3)2x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞ ,值域是(,0)(0,)-∞+∞ ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2()32)(2)852f =⨯--++即(8f =+; 同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++; 22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++; 22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-; (3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.解:由(1)0,(3)0f f ==,得1,3是方程2x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c=-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8. 7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x =>,10(0)x y y=>, 由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,x y dx y==+,得20)l =,即0)l d => 9.解:依题意,有2()2dx vt π=,即24vx t dπ=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个. 分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)- ; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x和点(5,)y不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)步行的路程为12x -,得1235xt -=+,(012)x ≤≤,即125x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=+≈练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x +=,其定义域为(,0)(0,)-∞+∞ ,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2) 函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->, 即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0xx x x >-<,得12()()0f x f x -<, 即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-, 当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当16240502()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+, 即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上增函数, 所以2min ()(2)2220g x g ==-⨯=. 2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =, 即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->, 因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等 即{|}P PA PB =表示的点组成线段AB 的垂直平分线; (2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC == 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B = ; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭ ,即A C =∅ ; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭ ;则39()(){(0,0),(,)}55A B B C =- . 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞ .7.解:(1)因为1()1x f x x -=+,所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x -=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=; (2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x =-. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤. 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x = 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}U A B = ð,得{2,4,5,6,7,8A B = , 集合A B 里除去()U A B ð,得集合B , 所以集合{5,6,7,8,9}B =. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)因为()f x axb =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++得22121212121()(2)()242x x x x g x x x x a b ++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++, 2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+,所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-, 又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数. 7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
2018版人教A版浙江专版必修一课后作业:第二章 基本初
学习目标 1.构建知识网络.2.进一步熟练指数、对数运算,加深对公式成立条件的记忆.3.以函数观点综合理解指数函数、对数函数、幂函数.1.知识网络2.要点归纳 (1)分数指数幂 ①m na =1n a m(a >0,m ,n ∈N *,且n >1).②m n a=1m na(a >0,m ,n ∈N *,且n >1).(2)根式的性质①(na )n =a .②当n 为奇数时,na n =a ; 当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(3)指数幂的运算性质 ①a r ·a s =a r +s (a >0,r ,s ∈R ).②(a r )s =a rs (a >0,r ,s ∈R ). ③(ab )r =a r b r (a >0,b >0,r ∈R ). (4)指数式与对数式的互化式log a N =b ⇔a b =N (a >0,且a ≠1,N >0). (5)对数的换底公式log a N =log m Nlog m a(a >0,且a ≠1,m >0,且m ≠1,N >0).推论:log m a b n =nm log a b (a >0,且a ≠1,m ,n >0,且m ≠1,n ≠1,b >0).(6)对数的四则运算法则若a >0,且a ≠1,M >0,N >0,则 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).类型一 指数、对数的运算例1 化简:(1)23-×)92÷105;解 原式=922352332221010-⎛⎫⎛⎫⨯÷ ⎪ ⎪⎝⎭⎝⎭=2-1×103×5210-=2-1×1210=102. (2)2log 32-log 3329+log 38-5log 325.解 原式=log 34-log 3329+log 38-52log 35=log 3⎝⎛⎭⎫4×932×8-5log 95 =log 39-9=2-9=-7.反思与感悟 指数、对数的运算应遵循的原则指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.跟踪训练1 计算80.25×42+(32×3)6+log 32×log 2(log 327)的值为________. 答案 111解析 ∵log 32×log 2(log 327)=log 32×log 23 =lg2lg3×lg3lg2=1, ∴原式=342×142+22×33+1=21+4×27+1=111. 类型二 数的大小比较 例2 比较下列各组数的大小: (1)27,82;解 ∵82=(23)2=26,由指数函数y =2x 在R 上单调递增知26<27即82<27. (2)log 20.4,log 30.4,log 40.4;解 ∵对数函数y =log 0.4x 在(0,+∞)上是减函数, ∴log 0.44<log 0.43<log 0.42<log 0.41=0. 又幂函数y =x -1在(-∞,0)上是减函数,∴1log 0.42<1log 0.43<1log 0.44, 即log 20.4<log 30.4<log 40.4. (3)132-,log 213,12log 13.解 0<132-<20=1.log 213<log 21=0.12log 13>12log 12=1.∴log 213<132 <12log 13.反思与感悟 数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查指数函数、对数函数、幂函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小. 跟踪训练2 比较下列各组数的大小: (1)log 0.22,log 0.049;解 ∵log 0.049=lg9lg0.04=lg32lg0.22=2lg32lg0.2=lg3lg0.2=log 0.23. 又∵y =log 0.2x 在(0,+∞)上单调递减, ∴log 0.22>log 0.23,即log 0.22>log 0.049. (2)a 1.2,a 1.3;解 ∵函数y =a x (a >0,且a ≠1),当底数a >1时在R 上是增函数;当底数0<a <1时在R 上是减函数,而1.2<1.3,故当a >1时,有a 1.2<a 1.3; 当0<a <1时,有a 1.2>a 1.3. (3)30.4,0.43,log 0.43. 解 30.4>30=1, 0<0.43<0.40=1, log 0.43<log 0.41=0, ∴log 0.43<0.43<30.4.类型三 指数函数、对数函数、幂函数的综合应用 命题角度1 函数性质及应用例3 已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.解 (1)当a >0,b >0时,因为a ·2x ,b ·3x 都单调递增,所以函数f (x )单调递增; 当a <0,b <0时,因为a ·2x ,b ·3x 都单调递减,所以函数f (x )单调递减. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0. ①当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b , 解得x >32log ⎝⎛⎭⎫-a2b ; ②当a >0,b <0时,⎝⎛⎭⎫32x <-a2b , 解得x <32log ⎝⎛⎭⎫-a2b . 反思与感悟 指数函数、对数函数、幂函数是使用频率非常高的基本初等函数,它们经过加、减、乘、除、复合、分段,构成我们以后研究的函数,使用时则通过换元、图象变换等手段化归为基本的指数函数、对数函数、幂函数来研究. 跟踪训练3 已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,∴定义域为(-3,1).(2)函数可化为f (x )=log a [(1-x )(x +3)]=log a (-x 2-2x +3)=log a [-(x +1)2+4]. ∵-3<x <1,∴0<-(x +1)2+4≤4. ∵0<a <1,∴log a [-(x +1)2+4]≥log a 4. 由log a 4=-2,得a -2=4,∴a =124-=12. 命题角度2 函数图象及应用 例4 如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( ) A.{x |-1<x ≤0} B.{x |-1≤x ≤1} C.{x |-1<x ≤1} D.{x |-1<x ≤2} 答案 C解析 借助函数的图象求解该不等式.令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1. ∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.反思与感悟 指数函数、对数函数、幂函数图象既是直接考查的对象,又是数形结合求交点,最值,解不等式的工具,所以要能熟练画出这三类函数图象,并会进行平移、伸缩,对称、翻折等变换.跟踪训练4 若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )答案 B解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x =(13)x ,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称.显然不符.故选B.1.化简2lg (lg a 100)2+lg (lg a )为( )A.1B.2C.3D.0答案 B解析 2lg (lg a 100)2+lg (lg a )=2lg (100·lg a )2+lg (lg a )=2[lg100+lg (lg a )]2+lg (lg a )=2.2.在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )答案 D解析 显然a >0且a ≠1. 若0<a <1,则只有D 符合.若a >1,只有B 中y =x a 符合,但B 中g (x )不符合.3.函数f (x )=⎝⎛⎭⎫12x与函数g (x )=12log |x |在区间(-∞,0)上的单调性为( )A.都是增函数B.都是减函数C.f (x )是增函数,g (x )是减函数D.f (x )是减函数,g (x )是增函数 答案 D解析 f (x )=⎝⎛⎭⎫12x 在x ∈(-∞,0)上为减函数,g (x )=12log |x |为偶函数,x ∈(0,+∞)时g (x )=12log x 为减函数,所以在(-∞,0)上为增函数.4.已知P =322-,Q =⎝⎛⎭⎫253,R =⎝⎛⎭⎫123,则P ,Q ,R 的大小关系是( ) A.P <Q <R B.Q <R <P C.Q <P <RD.R <Q <P答案 B解析 由函数y =x 3在R 上是增函数知,⎝⎛⎭⎫253<⎝⎛⎭⎫123,由函数y =2x 在R 上是增函数知, 322->2-3=⎝⎛⎭⎫123,所以P >R >Q .5.函数f (x )=2x |log 0.5x |-1与x 轴交点的个数为( ) A.1 B.2 C.3 D.4答案 B解析 函数f (x )=2x |log 0.5x |-1与x 轴交点个数即为函数y =|log 0.5x |与y =12x 图象的交点个数.在同一直角坐标系中作出函数y =|log 0.5x |,y =12x 的图象(图略),易知有2个交点.1.函数是高中数学极为重要的内容,函数思想和函数方法贯穿整个高中数学的过程,对本章的考查是以基本函数形式出现的综合题和应用题,一直是常考不衰的热点问题.2.从考查角度看,指数函数、对数函数概念的考查以基本概念与基本计算为主;对图象的考查重在考查平移变换、对称变换以及利用数形结合的思想方法解决数学问题的能力;对幂函数的考查将会从概念、图象、性质等方面来考查.课时作业一、选择题1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0]∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.即x ∈(-1,0)∪(0,2].2.已知x ,y 为正实数,则( ) A .2lg x+lg y =2lg x +2lg yB .2lg(x+y )=2lg x ·2lg yC .2lg x ·lg y=2lg x +2lg yD .2lg(xy )=2lg x ·2lg y 答案 D解析 2lg x ·2lg y =2lg x+lg y=2lg(xy ).故选D.3.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)等于( )A .3B .6C .9D .12 答案 C解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.4.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎡⎦⎤-1,43 C.⎣⎡⎭⎫0,32 D .[1,2)答案 D解析 方法一 当2-x ≥1,即x ≤1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|= -ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D. 方法二 f (x )=|ln(2-x )|的图象如图.由图象可得,函数f (x )在区间[1,2)上为增函数,故选D.5.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图象是( )答案 C解析 因为f (x )是函数y =log 2x 的反函数,所以f (x )=2x ,所以y =f (1-x )=21-x =⎝⎛⎭⎫12x -1,其函数图象可由函数y =⎝⎛⎭⎫12x 的图象向右平移1个单位长度得到,故选C.6.设f (x )是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =f⎛ ⎝,b =f ⎛⎝,c =f (-2),则a ,b ,c 的大小关系是( ) A .a >b >c B .b >c >a C .c >a >b D .c >b >a答案 C解析 因为1==2,0<1,所以0<log32< 2.因为f (x )在[0,+∞)上单调递增,所以f (<f (<f (2).因为f (x )是偶函数,所以a =f⎛ ⎝=f (-=f (,b =f⎛ ⎝=f (-=f (,c =f (-2)=f (2). 所以c >a >b .7.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(1,2] D.⎝⎛⎭⎫0,12 答案 C解析 设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需x ∈(1,2)时,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象的下方即可.当0<a <1时,由图象知显然不成立; 当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log a 2≥1, ∴1<a ≤2,故选C. 二、填空题8.若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 1解析 f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=0,∴a =1.9.已知12a =49(a >0),则23log a =________.答案 4解析 ∵12a =49(a >0),∴23log (12a )=23log 49=2,∴1223log a =2,∴23log a =4. 10.若函数y =12log (3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.答案 (-8,-6]解析 令g (x )=3x 2-ax +5,其对称轴为直线x =a 6.依题意,有⎩⎪⎨⎪⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8.11.设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝⎛⎭⎫12x ,x <0,则f (f (-4))=______.答案 4解析 f (-4)=⎝⎛⎭⎫12-4=16, 又f (16)=16=4,∴f (f (-4))=4.12.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 答案 1解析 ∵f (1+x )=f (1-x ),∴y =f (x )关于直线x =1对称,∴a =1. ∴f (x )=2|x -1|在[1,+∞)上单调递增.∴[m ,+∞)⊆[1,+∞). ∴m ≥1,即m 的最小值为1.13.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =,y =12x ,y =⎝⎛⎭⎫22x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.答案 ⎝⎛⎭⎫12,14解析 由图象可知,点A (x A,2)在函数y =的图象上,所以2=A ,x A =⎝⎛⎭⎫222=12.点B (x B,2)在函数y =12x 的图象上,所以2=12B x ,x B =4.点C (4,y C )在函数y =⎝⎛⎭⎫22x 的图象上,所以y C =⎝⎛⎭⎫224=14. 又x D =x A =12,y D =y C =14,所以点D 的坐标为⎝⎛⎭⎫12,14. 三、解答题14.若lg a ,lg b 是方程2x 2-4x +1=0的两根,求lg(ab )·⎝⎛⎭⎫lg a b 2的值. 解 ∵lg a ,lg b 是方程2x 2-4x +1=0的两根, ∴lg a +lg b =2,lg a lg b =12,∴(lg a -lg b )2=(lg a +lg b )2-4lg a lg b =4-2=2,∴lg(ab )·⎝⎛⎭⎫lg a b 2=(lg a +lg b )·(lg a -lg b )2 =2×2=4.15.已知函数f (x )=2x 2+2x +a (-2≤x ≤2). (1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值. 解 (1)令t =x 2+2x +a ,则其对称轴x =-1,∴t =x 2+2x +a 在[-2,-1]上单调递减, 在[-1,2]上单调递增,又y =2t 在(-∞,+∞)上单调递增,∴f (x )的增区间为[-1,2],减区间为[-2,-1]. (2)由(1)知f (x )max =f (2)=222+2×2+a =28+a .∴28+a =64=26,∴8+a =6,a =-2,∴f (x )min =f (-1)=2(-1)2+2×(-1)-2=2-3=18.16.已知常数a (a >1)和变量x ,y 之间的关系式是log a x +3log x a -log x y =3,若x =a t (t ≠0),且当t ≥1时,y 的最小值是8,求相应的x 的值. 解 把x =a t 代入log a x +3log x a -log x y =3, 得t +3t -1tlog a y =3.∴log a y =t 2-3t +3,∴y =at 2-3t +3. 又t ≥1,a >1,故可令u =t 2-3t +3, 则当t =32时,u =t 2-3t +3有最小值为34,此时y 也有最小值,即y min =34a =8, 此时x =a t=34a =(34a )2=82=64.。
人教A版新课程标准数学必修1课后习题答案【上】
A (ðU B) {2, 4} , (ðU A) (ðU B) {6}.1.1 集合习题 1.1
(第 11 页)
A 组 1.(1) 3 2 Q 7
2 3是
7
有理数; (2) 32 N
32 9 是个自然数;(3) Q
是个无理数,不是有理数; (4) 2 R
2 是实数;(5) 9 Z
9 3 是个整数;
(6) ( 5)2 N ( 5)2 5 是个自然数. 2.(1)
5 A ; (2) 7 A ; (3) 10 A .当 k 2 时, 3k 1 5 ;当 k 3 时, 3k 1 10 ;3.解:
(1)大于1且小于 6 的整数为 2, 3, 4, 5 ,即{2, 3, 4, 5} 为所求;(2)方程 (x 1)(x 2) 0 的两个实根为
x1 2, x2 1,即{2,1} 为所求;(3)由不等式 3 2x 1 3 ,得 1 x 2 ,且 x Z ,即{0,1, 2} 为所
求.4.解:(1)显然有 x2 0 ,得 x2 4 4 ,即 y 4 ,得二次函数 y x2 4 的函数值组成的集合为
得 ðR ( A B) {x | x 2,或x 10},
即 B C {x | x是正方形} ,
形,
即 ðAB {x | x是邻边不相等的平行四边形} ,
10.解: A B {x | 2 x 10}, A B {x | 3 x 7} ,
ðR A {x | x 3,或x 7} , ðR B {x | x 2,或x 10},
{1} A ; A ; {1, 1} = A ;
A {x | x2 1 0} {1,1} ;(3){x | x是菱形} {x | x是平行四边形} ;
(人教版新课标)高中数学必修1所有课时练习(含答案)
第一章 集合与函数的概念课时作业(一) 集合的含义姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .无限接近于0的数 C .美丽的小女孩D .方程x 2-1=0的实数根解析: 选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合,故选D.答案: D2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉M D .0∉M,2∉M解析: 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M . 答案: B3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .2解析: 由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠-2,a ≠1,且a ≠2.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.答案: C4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .4∈MB .2∈MC .0∉MD .-4∉M解析: 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M ,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a 的值是________. 解析: 由(x -a )(x -a +1)=0得x =a 或x =a -1, 又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意; 当a -1=2时,a =3,集合A 中的元素为2,3,符合题意. 综上可知,a =2或a =3. 答案: 2或36.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a ,0三个元素构成的集合,若A =B ,则实数a =________.解析: 由集合相等的概念得⎩⎨⎧a 2-1=0,a 2-3a =-2,解得a =1. 答案: 1三、解答题(每小题10分,共20分)7.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值. 解析: 当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A 中只有一个元素2.当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根, 需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或1.8.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解析: ∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 中含有两个元素-3、-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 中含有两个元素-4,-3,符合题意. 综上所述,a =0或a =-1. 尖子生题库☆☆☆9.(10分)设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解析: (1)由集合元素的互异性可得 x ≠3,x 2-2x ≠x 且x 2-2x ≠3, 解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2.课时作业(二) 集合的表示姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N +,且s ≤5}解析: A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.答案: D2.下列集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2} C .{2} D .{x |x 2-4x +4=0}解析: {x =2}表示的是由一个等式组成的集合,而其他三个集合均表示由元素2组成的集合.答案: B 3.(2012·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10解析: 由x ∈A ,y ∈A 得x -y =0或x -y =±1或x -y =±2或x -y =±3或x -y =±4,故集合B 中所含元素的个数为10个. 答案: D4.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0};②方程x -2+|y +2|=0的解集为{-2,2};③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的说法有( ) A .1个 B .2个 C .3个 D .0个解析: 直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎨⎧ x -2=0,y +2=0,即⎩⎨⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相等,③不正确.故选A.答案: A二、填空题(每小题5分,共10分)5.用列举法写出集合⎩⎨⎧⎭⎬⎫33-x ∈Z | x ∈Z =________.解析: ∵33-x∈Z ,x ∈Z ,∴3能被3-x 整除,即3-x 为3的因数. ∴3-x =±1或3-x =±3, ∴33-x =±3或33-x=±1. 综上可知,-3,-1,1,3满足题意. 答案: {-3,-1,1,3}6.若3∈{m -1,3m ,m 2-1},则m =________. 解析: 由m -1=3,得m =4;由3m =3,得m =1,此时m -1=m 2-1=0,故舍去;由m 2-1=3,得m =±2.经检验,m =4或m =±2满足集合中元素的互异性. 故填4或±2. 答案: 4或±2三、解答题(每小题10分,共20分) 7.用列举法表示下列集合: ①{x ∈N|x 是15的约数};②{(x ,y )|x ∈{1,2},y ∈{1,2}}; ③{(x ,y )|x +y =2且x -2y =4}; ④{x |x =(-1)n ,n ∈N};⑤{(x ,y )|3x +2y =16,x ∈N ,y ∈N}; ⑥{(x ,y )|x ,y 分别是4的正整数约数}. 解析: ①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}(注:防止把{(1,2)}写成{1,2}或{x =1,y =2})③⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫83,-23 ④{-1,1}⑤{(0,8),(2,5),(4,2)}⑥{(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 8.用描述法表示下列集合: ①{3,9,27,81};②{-2,-4,-6,-8,-10}. 解析: ①{x |x =3n ,n ∈N *且n ≤4} ②{x |x =-2n ,n ∈N *且n ≤5} 尖子生题库☆☆☆9.(10分)定义集合运算A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和是多少?解析: 当x =1或2,y =0时,z =0, 当x =1,y =2时,z =2; 当x =2,y =2时,z =4. ∴A *B ={0,2,4},∴所有元素之和为0+2+4=6.课时作业(三) 集合间的基本关系姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列命题: ①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅A ,则A ≠∅. 其中正确的有( ) A .0个 B .1个 C .2个D .3个解析: ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.答案: B2.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( ) A .2 B .-1 C .2或-1 D .4解析: ∵A =B , ∴m 2-m =2,∴m =2或m =-1. 答案: C3.已知全集U =R ,则正确表示集合U ,M ={-1,0,1},N ={x |x 2+x =0}之间关系的Venn 图是( )解析: 由N ={x |x 2+x =0},得N ={-1,0},则N M U . 答案: B4.下列集合中,结果是空集的为( ) A .{x ∈R |x 2-4=0} B .{x |x >9或x <3} C .{(x ,y )|x 2+y 2=0} D .{x |x >9且x <3}解析: {x ∈R |x 2-4=0}={2,-2},{(x ,y )|x 2+y 2=0}={(0,0)},显然{x |x >9或x <3}不是空集,{x |x >9且x <3}是空集,选D. 答案: D二、填空题(每小题5分,共10分)5.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为________.解析: 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 答案: a ≥26.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析: ∵∅{x |x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.答案: a ≤14三、解答题(每小题10分,共20分)7.已知{1}A ⊆{1,2,3},求满足条件的所有的集合A . 解析: 当A 中含有两个元素时, A ={1,2}或A ={1,3};当A 中含有三个元素时,A ={1,2,3}.所以满足已知条件的集合A 是{1,2},{1,3},{1,2,3}.8.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析: 假设存在实数x ,使B ⊆A , 则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1. (2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2. ①当x =-1时,A ={1,3,1},与元素互异性矛盾, 故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A . 综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A . 尖子生题库☆☆☆9.(10分)设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}. (1)若A B ,求实数a 的取值范围; (2)是否存在实数a 使B ⊆A?解析: (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3或⎩⎪⎨⎪⎧a -2≥-2,a +2<3.解得:0≤a ≤1. (2)同理可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3,得a 无解,所以不存在实数a 使B ⊆A .课时作业(四) 交集、并集姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知集合M ={-1,1,2},集合N ={y |y =x 2,x ∈M },则M ∩N 是( ) A .{1,2,4} B .{1} C .{1,2} D .∅ 解析: ∵M ={-1,1,2},x ∈M , ∴x =-1或1或2. 由y =x 2得y =1或4,∴N ={1,4},M ∩N ={1}. 答案: B 2.设集合A ={x ∈Z |-10≤x ≤-1},B ={ x ∈Z ||x |≤5},则A ∪B 中的元素个数是( ) A .10 B .11 C .15 D .16 解析: A ={-10,-9,-8,-7,-6,…,-1}, B ={-5,-4,-3,-2,-1,0,1,2,3,4,5}, ∴A ∪B ={-10,-9,-8,…,-1,0,1,2,3,4,5},A ∪B 中共16个元素. 答案: D3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N =( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}解析: M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}. 答案: D4.设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B .{x |1≤x ≤2} C .{x |0≤x ≤4} D .{x |1≤x ≤4} 解析: 在数轴上表示出集合A 与B ,如下图.则由交集的定义知,A ∩B ={x |0≤x ≤2}. 答案: A二、填空题(每小题5分,共10分)5.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R6.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)7.已知M ={1},N ={1,2},设A ={(x ,y )|x ∈M ,y ∈N },B ={(x ,y )|x ∈N ,y ∈M },求A ∩B 和A ∪B .解析: A ∩B ={(1,1)},A ∪B ={(1,1),(1,2),(2,1)}8.已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =R ,求a 的取值范围. 解析: 若A ∪B =R ,如图所示,则必有2a ≤-1且a +3≥5,∴a ≤-12且a ≥2,此时a 无解.尖子生题库☆☆☆9.(10分)集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C , ∴-a2<2,∴a >-4.课时作业(五)补集及综合应用姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个解析:A={0,1,3},集合A的真子集共有8个.答案: D2.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)解析:阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(∁U A).答案: B3.已知U为全集,集合M,N⊆U,若M∩N=N,则()A.∁U N⊆∁U M B.M⊆∁U NC.∁U M⊆∁U N D.∁U N⊆M解析:由M∩N=N知N⊆M.∴∁U M⊆∁U N.答案: C4.(2012·山东卷)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}解析:∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.答案: C二、填空题(每小题5分,共10分)5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于________________________________________________________________________.解析:∁U B={x|-1≤x≤4},A∩(∁U B)={x|-1≤x≤3}.答案:{x|-1≤x≤3}6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a的取值范围是________.解析:∵∁R B=(-∞,1)∪(2,+∞)且A∪∁R B=R,∴{x|1≤x≤2}⊆A,∴a≥2.答案:[2,+∞)三、解答题(每小题10分,共20分)7.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3},求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解析:由下图可知,∁U A ={x |x ≤-2或3≤x ≤4}, A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4},(∁U A )∩B ={x |-3<x ≤-2或x =3}.8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解析: ∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2. (2)若A ≠∅,则有⎩⎨⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2. 尖子生题库☆☆☆9.(10分)已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解析: 假设存在x ,使B ∪(∁A B )=A ,∴B A . (1)若x +2=3,则x =1符合题意. (2)若x +2=-x 3,则x =-1不符合题意. ∴存在x =1,使B ∪(∁A B )=A , 此时A ={1,3,-1},B ={1,3}.课时作业(六) 函数的概念姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x ,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来.A .1个B .2个C .3个D .4个 答案: B2.函数f (x )=⎝⎛⎭⎫x -120+|x 2-1|x +2的定义域为( )A.⎝⎛⎭⎫-2,12 B .(-2,+∞) C.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,+∞解析: 要使函数式有意义,必有x -12≠0且x +2>0,即x >-2且x ≠12.答案: C3.已知函数f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6 D .-6解析: 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧1+p +q =0,4+2p +q =0,∴⎩⎪⎨⎪⎧p =-3,q =2,∴f (x )=x 2-3x +2, ∴f (-1)=(-1)2-3×(-1)+2=6. 答案: C4.若函数g (x +2)=2x +3,则g (3)的值是( ) A .9 B .7 C .5 D .3解析: g (3)=g (1+2)=2×1+3=5. 答案: C二、填空题(每小题5分,共10分)5.函数f (x )=x 2-2x +5定义域为A ,值域为B ,则集合A 与B 的关系是________. 解析: 显然二次函数的定义域为A =R , 又∵f (x )=x 2-2x +5=(x -1)2+4≥4, ∴B =[4,+∞),∴A B . 答案: A B6.设f (x )=11+x,则f [f (x )]=________.解析: f [f (x )]=f ⎝ ⎛⎭⎪⎫11+x =11+11+x =x +1x +2(x ≠-1且x ≠-2). 答案:x +1x +2(x ≠-1且x ≠-2) 三、解答题(每小题10分,共20分) 7.判断下列各组函数是否是相等函数. (1)f (x )=(x -2)2,g (x )=x -2;(2)f (x )=x 3+xx 2+1,g (x )=x .解析: (1)∵f (x )=(x -2)2=|x -2|,g (x )=x -2,∴两函数的对应关系不同,故不是相等函数. (2)∵f (x )=x 3+xx 2+1=x ,g (x )=x ,又∵两个函数的定义域均为R ,对应关系相同,故是相等函数.8.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域; (2)求f (-1), f (12)的值.解析: (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞).(2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.尖子生题库☆☆☆9.(10分)已知函数f (x )=x 21+x 2.(1)求f (2)与f ⎝⎛⎭⎫12, f (3)与f ⎝⎛⎭⎫13. (2)由(1)中求得结果,你能发现f (x )与f ⎝⎛⎭⎫1x 有什么关系?并证明你的发现. (3)求f (1)+f (2)+f (3)+…+f (2 013)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 013. 解析: (1)∵f (x )=x 21+x 2,∴f (2)=221+22=45,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1221+⎝⎛⎭⎫122=15, f (3)=321+32=910,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1321+⎝⎛⎭⎫132=110. (2)由(1)发现f (x )+f ⎝⎛⎭⎫1x =1. 证明如下:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+11+x 2=1. (3)f (1)=121+12=12.由(2)知f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, …,f (2 013)+f ⎝⎛⎭⎫12 013=1,∴原式=12+1+1+1+…+1 2 012个=2 012+12 =4 0252.课时作业(七) 函数的三种表示法姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )解析: 根据函数的定义,观察图象,对于选项A ,B ,值域为{y |0≤y ≤2},不符合题意,而C 中当0<x <2时,一个自变量x 对应两个不同的y ,不是函数.故选D.答案: D2.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8 B .1 C .5 D .-1解析: 由f (2x +1)=3x +2,令2x +1=t , ∴x =t -12,∴f (t )=3·t -12+2,∴f (x )=3(x -1)2+2,∴f (a )=3(a -1)2+2=2,∴a =1.答案: B3.已知函数f (x )由下表给出,则f (f (3))等于( )x 1 2 3 4 f (x ) 3 2 41A.1 C .3 D .4 解析: ∵f (3)=4,∴f (f (3))=f (4)=1. 答案: A4.(2012·临沂高一检测)函数y =f (x )的图象如图所示,则函数y =f (x )的解析式为( ) A .f (x )=(x -a )2(b -x ) B .f (x )=(x -a )2(x +b ) C .f (x )=-(x -a )2(x +b ) D .f (x )=(x -a )2(x -b )解析: 由图象知,当x =b 时,f (x )=0,故排除B ,C ;又当x >b 时,f (x )<0,故排除D.故应选A.答案: A二、填空题(每小题5分,共10分)5.(2011·济南高一检测)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.解析: ∵f (3)=1,1f (3)=1,∴f ⎝⎛⎭⎫1f (3)=f (1)=2. 答案: 26.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )=________.解析: 设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧ a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-2,b =-3.故所求的函数为f (x )=2x +1或f (x )=-2x -3. 答案: 2x +1或-2x -3三、解答题(每小题10分,共20分) 7.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ). (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.8.作出下列函数的图象: (1)y =1-x ,x ∈Z ;(2)y =x 2-4x +3,x ∈[1,3].解析: (1)因为x ∈Z ,所以图象为一条直线上的孤立点,如图1所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图2所示.尖子生题库☆☆☆9.(10分)求下列函数解析式.(1)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ); (2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x , ∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .课时作业(八) 分段函数和映射姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.如图中所示的对应:其中构成映射的个数为( )A .3B .4C .5D .6解析:序号 是否为映射原因① 是 满足取元任意性,成象唯一性 ② 是 满足取元任意性、成象唯一性 ③ 是 满足取元任意性、成象唯一性 ④ 不是 是一对多,不满足成象唯一性 ⑤ 不是 是一对多,不满足成象唯一性 ⑥不是a 3,a 4无象、不满足取元任意性答案: 2.已知函数y =⎩⎪⎨⎪⎧x 2+1 (x ≤0)-2x (x >0),使函数值为5的x 的值是( )A .-2或2B .2或-52C .-2D .2或-2或-52解析: 若x ≤0,则x 2+1=5 解得x =-2或x =2(舍去).若x >0,则-2x =5,∴x =-52(舍去),综上x =-2. 答案: C3.已知映射f :A →B ,即对任意a ∈A ,f :a →|a |.其中集合A ={-3,-2,-1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的对应元素,则集合B 中元素的个数是( )A .7B .6C .5D .4解析: |-3|=|3|,|-2|=|2|,|-1|=1,|4|=4,且集合元素具有互异性,故B 中共有4个元素,∴B ={1,2,3,4}. 答案: D4.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6),则f (3)为( )A .3B .2C .4D .5解析: f (3)=f (3+2)=f (5),f (5)=f (5+2)=f (7),∴f (7)=7-5=2.故f (3)=2. 答案: B二、填空题(每小题5分,共10分)5.f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析: ∵f (x )=⎩⎪⎨⎪⎧3x +2 x <1x 2+ax x ≥1,∴f (0)=2,∴f (f (0))=f (2)=4+2a , ∴4+2a =4a ,∴a =2.答案: 26.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为________.解析: 由题意知⎩⎪⎨⎪⎧ x +y =4x -y =-2∴⎩⎪⎨⎪⎧x =1y =3答案: (1,3)三、解答题(每小题10分,共20分)7.已知f (x )=⎩⎪⎨⎪⎧x 2, -1≤x ≤11, x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解析: (1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].8.如图所示,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解析: (1)直接由图中观察,可得 f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .∴⎩⎪⎨⎪⎧b =4,k =-2. ∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2≤x ≤6).∴f (x )=⎩⎪⎨⎪⎧-2x +4, 0≤x ≤2,x -2, 2<x ≤6.尖子生题库☆☆☆9.(10分)“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y .(单位:元)解析: 由题意知,当0<x ≤5时,y =1.2x , 当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6. 当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎨⎧1.2x (0<x ≤5)2.4x -6 (5<x ≤6)4.8x -20.4 (6<x ≤7).课时作业(九) 函数的单调性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1. (2010·北京)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①② B .②③ C .③④D .①④答案 B解析 ①函数y =x 12在(0,+∞)上为增函数,故在(0,1)上也为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数,③y =|x -1|在(0,1)上为减函数,④y =2x +1在(-∞,+∞)上为增函数,故在(0,1)上也为增函数. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝⎛⎦⎤-∞,32 B.⎣⎡⎭⎫32,+∞ C.⎝⎛⎦⎤-1,32D.⎣⎡⎭⎫32,4答案 D解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调减区间为⎣⎡⎭⎫32,4.点评 本题的易错点是:易忽略f (x )的定义域.一定注意定义域优先的原则. 3. 若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数.4. 已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)答案 C解析 显然(4-6)(f (4)-f (6))>0⇒f (4)<f (6),结合奇函数的定义,得-f (4)=f (-4),-f (6)=f (-6). 故f (-4)>f (-6).二、填空题(每小题5分,共15分)5. 设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号) 答案 ①③解析 依据增函数的定义可知,对于①③,当自变量增大时,相对应的函数值也增大,所以①③可推出函数y =f (x )为增函数.6. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. 答案 ⎣⎡⎦⎤-14,0 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.点评 本题首先应该对参数a 进行分类讨论,然后再针对a ≠0时的情况,根据二次函数的对称轴与单调区间的位置关系确定参数的取值范围.本题易出现的问题是默认函数f (x 为二次函数,忽略对a 是否为0的讨论.7. 已知函数f (x )=⎩⎪⎨⎪⎧e -x -2 (x ≤0)2ax -1 (x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________. 答案 ①③④ 解析根据题意可画出草图,由图象可知,①显然正确; 函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确; 由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 三、解答题8. (10分)已知函数y =f (x )在[0,+∞)上是减函数,试比较f ⎝⎛⎭⎫34与f (a 2-a +1)的大小.解 ∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34>0, 又∵y =f (x )在[0,+∞)上是减函数, ∴f (a 2-a +1)≤f ⎝⎛⎭⎫34.点评 本题是应用函数单调性的定义来比较函数值的大小,在应用函数单调性的定义时,必须要求自变量的值都在函数的同一单调区间内.课时作业(十) 函数的最大(小)值姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.函数y =1x 2在区间⎣⎡⎦⎤12,2上的最大值是( ) A.14 B .-1 C .4 D .-4解析: ∵函数y =1x 2在⎣⎡⎦⎤12,2上是减函数, ∴y max =1⎝⎛⎭⎫122=4.答案: C2.函数f (x )=⎩⎪⎨⎪⎧2x +6,(x ∈[1,2])x +7,(x ∈[-1,1))则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析: f (x )在[-1,2]上单调递增,∴最大值为f (2)=10,最小值为f (-1)=6. 答案: A3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 解析: f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a . ∴函数f (x )图象的对称轴为x =2, ∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1. 答案: C4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0) C .(-∞,0] D .(0,+∞)解析: a <-x 2+2x 恒成立,则a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,故a <0. 答案: B二、填空题(每小题5分,共10分)5.函数f (x )=xx +2在区间[2,4]上的最大值为________,最小值为________.解析: ∵f (x )=x x +2=x +2-2x +2=1-2x +2,∴函数f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=22+2=12,f (x )max =f (4)=44+2=23.答案: 23 126.在已知函数f (x )=4x 2-mx +1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f (x )在[1,2]上的值域________.解析: 由题意知x =-2是f (x )的对称轴,则m2×4=-2,m =-16,∴f (x )=4x 2+16x +1 =4(x +2)2-15.又∵f (x )在[1,2]上单调递增.f (1)=21, f (2)=49,∴在[1,2]上的值域为[21,49]. 答案: [21,49]三、解答题(每小题10分,共20分)7.已知函数f (x )=x 2-2x +2,x ∈A ,当A 为下列区间时,分别求f (x )的最大值和最小值. (1)A =[-2,0];(2)A =[2,3].解析: f (x )=x 2-2x +2=(x -1)2+1,其对称轴为x=1.(1)A=[-2,0]为函数的递减区间,∴f(x)的最小值是2,最大值是10;(2)A=[2,3]为函数的递增区间,∴f(x)的最小值是2,最大值是5.8.已知函数f(x)=x-1x+2,x∈[3,5],(1)判断函数f(x)的单调性并证明.(2)求函数f(x)的最大值和最小值.解析:(1)任取x1,x2∈[3,5]且x1<x2,则f(x1)-f(x2)=x1-1x1+2-x2-1x2+2=(x1-1)(x2+2)-(x2-1)(x1+2)(x1+2)(x2+2)=x1x2+2x1-x2-2-x1x2-2x2+x1+2(x1+2)(x2+2)=3(x1-x2) (x1+2)(x2+2).∵x1,x2∈[3,5]且x1<x2,∴x1-x2<0,x1+2>0,x2+2>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴函数f(x)=x-1x+2在x∈[3,5]上为增函数.(2)由(1)知,当x=3时,函数f(x)取得最小值为f(3)=2 5;当x=5时,函数f(x)取得最大值为f(5)=47.尖子生题库☆☆☆9.(10分)如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m,问:每间笼舍的宽度x为多少时,才能使得每间笼舍面积y达到最大?每间笼舍最大面积为多少?解析:设总长为b,由题意知b=30-3x,可得y=12xb,即y=12x(30-3x)=-32(x-5)2+37.5,x∈(0,10).当x=5时,y取得最大值37.5,即每间笼舍的宽度为5 m时,每间笼舍面积y达到最大,最大面积为37.5 m2.课时作业(十一) 函数的奇偶性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.函数f (x )=x 2+3的奇偶性是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 解析: 函数f (x )=x 2+3的定义域为R ,f (-x )=(-x )2+3=x 2+3=f (x ),所以该函数是偶函数,故选B. 答案: B2.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4解析: 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x ,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.答案: A3.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)等于( ) A .-10 B .-18 C .-26 D .10解析: 由函数g (x )=x 5+ax 3+bx 是奇函数,得g (-x )=-g (x ),∵f (2)=g (2)-8,f (-2)=g (-2)-8,∴f (2)+f (-2)=-16.又f (-2)=10,∴f (2)=-16-f (-2)=-16-10=-26. 答案: C4.已知函数f (x )在[-5,5]上是偶函数,f (x )在[0,5]上是单调函数,且f (-3)<f (-1),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)解析: 函数f (x )在[-5,5]上是偶函数,因此f (x )=f (-x ),于是f (-3)=f (3),f (-1)=f (1),则f (3)<f (1).又∵f (x )在[0,5]上是单调函数,从而函数f (x )在[0,5]上是减函数,观察四个选项,并注意到f (x )=f (-x ),易知只有D 正确. 答案: D二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,则m =________.解析: 当x <0时,-x >0,f (-x )=-(-x )2+2(-x )=-x 2-2x .又∵f (x )为奇函数, ∴f (-x )=-f (x )=-x 2-2x .∴f (x )=x 2+2x =x 2+mx ,∴m =2. 答案: 26.若函数f (x )=ax 2+2在[3-a,5]上是偶函数,则a =________.解析: 由题意可知3-a =-5,∴a =8. 答案: 8三、解答题(每小题10分,共20分)7.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解析: ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又f ⎝⎛⎭⎫12=12a 1+14=25,∴a =1, ∴f (x )=x1+x 2.8.已知函数f (x )是定义域为R 的奇函数,当x >0时, f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式; (2)画出函数f (x )的图象.解析: (1)①由于函数f (x )是定义域为R 的奇函数, 则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (x )=-f (-x ) =-[(-x )2-2(-x )] =-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , (x >0)0, (x =0)-x 2-2x . (x <0)(2)图象如图:尖子生题库☆☆☆9.(10分)已知函数y =f (x )不恒为0,且对于任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),求证:y =f (x )是奇函数.证明: 在f (x +y )=f (x )+f (y )中, 令y =-x ,得f (0)=f (x )+f (-x ),令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0. 所以f (x )+f (-x )=0, 即f (-x )=-f (x ), 所以y =f (x )是奇函数.第二章 基本初等函数(Ⅰ)课时作业(十二) 指数与指数幂的运算姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.5m -2可化为( )A .m -25B .m 52C .m 25D .-m 52答案: A2.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果是( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 解析:2-x 有意义,须有2-x ≥0,即x ≤2,x 2-4x +4-x 2-6x +9 =(x -2)2-(x -3)2=2-x -(3-x ) =-1. 答案: C3.计算0.25-0.5+⎝⎛⎭⎫127-13-416的值为( )A .7B .3C .7或3D .5解析: 0.25-0.5+⎝⎛⎭⎫127-13-416=⎝⎛⎭⎫122×⎝⎛⎭⎫-12+⎝⎛⎭⎫133×⎝⎛⎭⎫-13-424=2+3-2=3. 答案: B4.下列式子中,错误的是( )A .(27a 3)13÷0.3a -1=10a 2B .(a 23-b 23)÷(a 13+b 13)=a 13-b 13C .[(22+3)2(22-3)2]12=-1D.4a 3a 2a =24a 11解析: 对于A ,原式=3a ÷0.3a -1=3a 20.3=10a 2,A 正确; 对于B ,原式=(a 13-b 13)(a 13+b 13)a 13+b 13=a 13-b 13,B 正确;对于C ,原式=[(3+22)2(3-22)2]12=(3+22)·(3-22)=1,这里注意3>22,a12(a ≥0)是正数,C 错误;对于D ,原式=4a 3a 52=4a ·a 56=a 1124=24a 11,D 正确. 答案: C二、填空题(每小题5分,共10分) 5.有下列说法: ①3-27=3;②16的4次方根是±2;③481=±3;④(x +y )2=|x +y |.其中,正确的有________(填上正确说法的序号). 解析: 当n 是奇数时,负数的n 次方根是一个负数,故3-27=-3,故①错误;16的4次方根有两个,为±2,故②正确;481=3,故③错误;(x +y )2是正数,故2(x +y )2=|x +y |,故④正确.答案: ②④6.化简(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得________.解析: 原式=-6a -4b134a -4b -53=-32b 2.答案: -32b 2三、解答题(每小题10分,共20分) 7.计算下列各式:(1)481×923;(2)23×31.5×612. 解析: (1)原式=[34×(343)12]14=(34+23)14=3143×14=376 =363.(2)原式=2×312×⎝⎛⎭⎫3213×(3×22)16=21-13+13×312+13+16=2×3=6.8.计算下列各式:(1)823×100-12×(0.25)-3×⎝⎛⎭⎫1681-34; (2)(2a 23b 12)·(-6a 12b 13)÷(-3a 16·b 56).解析: (1)原式=(23)23×(102)-12×(2-2)-3×⎣⎡⎦⎤⎝⎛⎭⎫234-34 =22×10-1×26×⎝⎛⎭⎫23-3=28×110×⎝⎛⎭⎫323=8625.(2)原式=4a 23+12-16·b 12+13-56=4ab 0=4a . 尖子生题库☆☆☆9.(10分)已知a 12+a -12=5,求下列各式的值:(1)a +a -1;(2)a 2+a -2;(3)a 2-a -2.解析: (1)将a 12+a -12=5两边平方,得a +a -1+2=5,则a +a -1=3.(2)由a +a -1=3两边平方,得a 2+a -2+2=9,则a 2+a -2=7. (3)设y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45, 所以y =±35,即a 2-a -2=±3 5.课时作业(十三) 指数函数及其性质姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M N B .M ⊆N C .N M D .M =N 解析: x ∈R ,y =2x >0,y =x 2≥0, 即M ={y |y >0},N ={y |y ≥0}, 所以M N . 答案: A2.函数y =2x +1的图象是( )解析: 函数y =2x的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1的图象单调递增且过点(0,2),故选A.答案: A3.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =( ) A .2或-3 B .-3C .2D .-12解析: ∵函数y =b ·a x 为指数函数,∴b =1.当a >1时,y =a x 在[1,2]上的最大值为a 2,最小值为a , 则a 2+a =6,解得a =2或a =-3(舍);当0<a <1时,y =a x 在[1,2]上的最大值为a ,最小值为a 2,则a +a 2=6,解得a =2(舍)或a =-3(舍)综上可知,a =2. 答案: C4.若函数f (x )与g (x )=⎝⎛⎭⎫12x的图象关于y 轴对称,则满足f (x )>1的x 的取值范围是( ) A .RB .(-∞,0)C .(1,+∞)D .(0,+∞)解析: 根据对称性作出f (x )的图象,由图象可知,满足f (x )>1的x 的取值范围为(0,+∞).答案: D二、填空题(每小题5分,共10分)5.函数y =2x -1的定义域是________. 解析: 要使函数y =2x -1有意义,只须使2x -1≥0,即x ≥0,∴函数定义域为[0,+∞). 答案: [0,+∞)6.函数y =a x -2 013+2 013(a >0,且a ≠1)的图象恒过定点____________. 解析: ∵y =a x (a >0且a ≠1)恒过定点(0,1), ∴y =a x -2 013+2 013恒过定点(2 013,2 014). 答案: (2 013,2 014)三、解答题(每小题10分,共20分) 7.下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ; (4)y =x x ;(5)y =x α(α是常数).解析: (1)y =10x 符合指数函数定义,是指数函数; (2)y =10x +1中指数是x +1而非x ,不是指数函数; (3)y =-4x 中系数为-1而非1,不是指数函数;(4)y =x x 中底数和指数均是自变量x ,不符合指数函数定义,不是指数函数; (5)y =x α中底数是自变量,不是指数函数.8.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x )、g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 解析: (1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3;f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.尖子生题库☆☆☆9.(10分)(2012·山东高考)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,求a .解析: 当a >1时,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,则a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.。
最新【最新+】数学必修一浙江省高中新课程作业本答案优秀名师资料
【最新+免费】数学必修一浙江省高中新课程作业本答案【最新编排】----------------------------------------------------------------------------------------------------------------------数学必修,浙江省高中新课程作业本答案.txt女人谨记:,定要吃好玩好睡好喝好.,旦累死了,就别地女人花咱地钱,住咱地房,睡咱地老公,泡咱地男朋友,还打咱地娃.高中新课程作业本数学必修,答案与提示仅供参考第,章集合与函数概念,(,集合, , ,集合地含义与表示,.D.,.A.3.C.4.{,,-,}.5.{x|x=3n+,,n?N}.6.{,,0,,,}.7.A={(,,5),(,,4),(3,3),(4,,),(5,,)}.8.,.9.,,,,3,6. ,0.列举法表示为{(-,,,),(,,4)},描述法地表示方法不唯,,如可表示为(x,y)|y=x+,, y=x,.,,.-,,,,,,., , ,集合间地基本关系,.D.,.A.3.D.4. ,{-,},{,},{-,,,}.5. .6.???.7.A=B.8.,5,,3.9.a?4.,0.A={ ,{,},{,},{,,,}},B?A.,,.a=b=,(, , 3集合地基本运算(,),.C.,.A.3.C.4.4.5.{x|-,?x?,}.6.4.7.{-3}.8.A?B={x|x,3,或x?5}.9.A?B={-8,-7,-4,4,9}.,0.,.,,.{a|a=3,或-,,,a,,,}(提示:?A?B=A,?B A(而A={,,,},对B进行讨论:?当B= 时,x,-ax+,=0无实数解,此时Δ=a,-8,0,?-,,,a,,,.?当B? 时,B={,,,}或B={,}或B={,};当B={,,,}时,a=3;当B={,}或B={,}时,Δ=a,-8=0,a=?,,,但当a=?,,时,方程x,-ax+,=0地解为x=?,,不合题意( , , 3集合地基本运算(二) ,.A.,.C.3.B.4.{x|x?,,或x?,}.5.,或8.6.x|x=n+,,,n?Z. 7.{-,}.8.{x|x,6,或x?,}.9.A={,,3,5,7},B={,,4,6,8}(,0.A,B地可能情形有:A={,,,,3},B={3,4};A={,,,,4},B={3,4};A={,,,,3,4},B={3,4}.,,.a=4,b=,.提示:?A? 綂 UB={,},?,?A,?4+,a-,,=0 a=4,?A={x|x,+4x-,,=0}={,,-6},?A? 綂 UB={,},?,6 綂 UB,?,6?B,将x=-6代入B,得b,-6b+8=0 b=,,或b=4.?当b=,时,B={x|x,+,x-,4=0}={-6,4},?-6 綂 UB,而,? 綂 UB,满足条件A? 綂 UB={,}.?当b=4时,B={x|x,+4x-,,=0}={-6,,},?, 綂 UB,与条件A? 綂 UB={,}矛盾(,(,函数及其表示, , ,函数地概念(,),.C.,.C.3.D.4.,,.5.-,,3,?3,,+?.6.,,,+?).7.(,),,,34.(,){x|x?-,,且x?-3}(8.-34.9.,.,0.(,)略.(,)7,.,,.-,,,,34., , ,函数地概念(二),.C.,.A.3.D.4.{x?R|x?0,且x?-,}.5.,0,+?).6.0.7.-,5,-,3,-,,,,3.8.(,)y|y?,5.(,),-,,+?).9.(0,,,(,0.A?B=-,,,,;A?B=,-,,+?).,,.,-,,0). , , ,函数地表示法(,),.A.,.B.3.A.4.y=x,00.5.y=x,-,x+,.6.,x.7.略.8.x,,34y8,8589889.略.,0.,.,,.c=-3., , ,函数地表示法(二),.C.,.D.3.B.4.,.5.3.6.6.7.略.8.f(x),,x(-,?x,0),-,x+,(0?x?,).9.f(x)=x,-x+,.提示:设f(x)=ax,+bx+c,由f(0)=,,得c=,,又f(x+,)-f(x)=,x,即a(x+,),+b(x+,)+c-(ax,+bx+c)=,x,展开得,ax+(a+b)=,x,所以,a=,, a+b=0,解得a=,,b=-,.,0.y=,.,(0,x?,0),,.4(,0,x?40),3.6(40,x?60),4.8(60,x?80).,,.略(,(3函数地基本性质, 3 ,单调性与最大(小)值(,),.C.,.D.3.C.4.,-,,0),,0,,),,,,,,.5.-?,3,.6.k,,,( 7.略.8.单调递减区间为(-?,,),单调递增区间为,,,+?).9.略.,0.a?-,( ,,.设,,,x,,x,,,,则f(x,),f(x,),x,x,,-,,x,x,,-,,(x,x,+,)(x,-x,)(x,,-,)(x,,-,),?x,,,,,0,x,,,,,0,x,x,,,,0,x,,x,,0,?(x,x,+,)(x,-x,)(x,,-,)(x,,-,),0,?函数y,f(x)在(,,,,)上为减函数(, 3 ,单调性与最大(小)值(二),.D.,.B.3.B.4.-5,5.5.,5.6.y=3,6(a+3x)(a-x)(0,x,a),3,,a,,5364a,.7.,,.8.8a,+,5.9.(0,,,.,0.,500m,.,,.日均利润最大,则总利润就最大(设定价为x元,日均利润为y元(要获利每桶定价必须在,,元以上,即x,,,(且日均销售量应为440-(x-,3)?40,0,即x,,3,总利润y=(x-,,),440-(x-,3)?40,-600(,,,x,,3),配方得y=-40(x-,8),+840,所以当x=,8?(,,,,3)时,y取得最大值840元,即定价为,8元时,日均利润最大. ,3 ,奇偶性,.D.,.D.3.C.4.0.5.0.6.答案不唯,,如y=x,.7.(,)奇函数.(,)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数. 8.f(x)=x(,+3x)(x?0),x(,-3x)(x,0).9.略.,0.当a=0时,f(x)是偶函数;当a?0时,既不是奇函数,又不是偶函数. ,,.a=,,b=,,c=0.提示:由f(,x)=,f(x),得c=0,?f(x)=ax,+,bx,?f(,)=a+,b=, a=,b-,.?f(x)=(,b-,)x,+,bx.?f(,),3,?4(,b-,)+,,b,3 ,b-3,b,0 0,b,3,.?a,b,c?Z,?b=,,?a=,.单元练习,.C.,.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A. ,0.D.,,.{0,,,,}.,,.-3,.,3.a=-,,b=3.,4.,,,3)?(3,5,. ,5.f,,,f(-,),f-7,.,6.f(x)=-x,-,x-3.,7.T(h)=,9-6h(0?h?,,),-47(h,,,).,8.{x|0?x?,}(,9.f(x)=x只有唯,地实数解,即xax+b=x(*)只有唯,实数解,当ax,+(b-,)x=0有相等地实数根x0,且ax0+b?0时,解得f(x)=,xx+,,当ax,+(b-,)x=0有不相等地实数根,且其中之,为方程(*)地增根时,解得f(x)=,(,0.(,)x?R,又f(-x)=(-x),-,|-x|-3=x,-,|x|-3=f(x),所以该函数是偶函数.(,)略.(3)单调递增区间是,-,,0,,,,,+?),单调递减区间是(-?,-,,,,0,,,. ,,.(,)f(4)=4×,3=5.,,f(5.5)=5×,.3+0.5×3.9=8.45,f(6.5)=5×,.3+,×3.9+0.5×6 5=,3.65.(,)f(x)=,.3x(0?x?5),3.9x-,3(5,x?6),6.5x-,8.6(6,x?7).,,.(,)值域为,,,,+?).(,)若函数y=f(x)在定义域上是减函数,则任取x,,x,?(0,,,且x,,x,,都有f(x,),f(x,)成立,即(x,-x,),+ax,x,,0,只要a,-,x,x,即可,由于x,,x,?(0,,,,故-,x,x,?(-,,0),a,-,,即a地取值范围是(-?,-,)(第二章基本初等函数(?),(,指数函数, , ,指数与指数幂地运算(,),.B.,.A.3.B.4.y=,x(x?N).5.(,),.(,)5.6.8a7.7.原式=|x-,|-|x-3|=-,(x,,),,x-5(,?x?3),,(x,3).8.0.9.,0,,.,0.原式=,yx-y=,.,,.当n为偶数,且a?0时,等式成立;当n为奇数时,对任意实数a,等式成立. , , ,指数与指数幂地运算(二),.B.,.B.3.A.4.94.5.,64.6.55.7.(,)-?,3,.(,)x?R|x?0,且x?-5,.8.原式=5,-,+,,6+,8+,,0=,4380. 9.-9a.,0.原式=(a-,+b-,)?a-,b-,a-,+b-,=,ab.,,.原式=,-,-,8,+,-,8,+,-,4,+,-,,,-,-,8=,,-8,7. , , ,指数与指数幂地运算(三),.D.,.C.3.C.4.36.55.5.,-,a.6.,,5.7.,.8.由8a=,3a=,4=,-,,得a=-,3,所以f(,7)=,7-,3=,9.9.4 7,88,0 0885. ,0.提示:先由已知求出x-y=-(x-y),=-(x+y),-4xy=-63,所以原式=x-,xy+yx-y=-33. ,,.,3., , ,指数函数及其性质(,),.D.,.C.3.B.4.A B.5.(,,0).6.a,0.7.,,5.8.(,)图略.(,)图象关于y轴对称.9.(,)a=3,b=-3.(,)当x=,时,y有最小值0;当x=4时,y有最大值6.,0.a=,. ,,.当a,,时,x,-,x+,,x,-3x+5,解得{x|x,4};当0,a,,时,x,-,x+,,x,-3x+5,解得{x|x,4}., , ,指数函数及其性质(二),.A.,.A.3.D.4.(,),.(,),.(3),.(4),.5.{x|x?0},{y|y,0,或y,-,}.6.x,0.7.56-0.,,,,=π0,0.90.98.8.(,)a=0.5.(,)-4,x?0.9.x,,x4,x3,x,.,0.(,)f(x)=,(x?0),,x(x,0).(,)略.,,.am+a-m,an+a-n., , ,指数函数及其性质(三),.B.,.D.3.C.4.-,.5.向右平移,,个单位.6.(-?,0).7.由已知得0.3(,-0.5)x?0.08,由于0.5,.9,=0.,667,所以x?,.9,,所以,h后才可驾驶.8.(,-a)a,(,-a)b,(,-b)b.9.8,5×(,+,%)3?865(人).,0.指数函数y=ax满足f(x)?f(y)=f(x+y);正比例函数y=kx(k?0)满足f(x)+f(y)=f(x+y).,,.34,57.,(,对数函数, , ,对数与对数运算(,),.C.,.D.3.C.4.0;0;0;0.5.(,),.(,)-5,.6.,.7.(,)-3.(,)-6.(3)64.(4)-,.8.(,)343.(,)-,,.(3),6.(4),. 9.(,)x=z,y,所以x=(z,y),=z4y(z,0,且z?,).(,)由x+3,0,,-x,0,且,-x?,,得-3,x,,,且x?,.,0.由条件得lga=0,lgb=-,,所以a=,,b=,,0,则a-b=9,0.,,.左边分子、分母同乘以ex,去分母解得e,x=3,则x=,,ln3. , , ,对数与对数运算(二),.C.,.A.3.A.4.0 3980.5.,logay-logax-3logaz.6.4. 7.原式=log,748×,,?,4,=log,,,=-,,.8.由已知得(x-,y),=xy,再由x,0,y,0,x,,y,可求得xy=4.9.略.,0.4. ,,.由已知得(log,m),-8log,m=0,解得m=,或,6., , ,对数与对数运算(三),.A.,.D.3.D.4.43.5.,4.6.a+,b,a.7.提示:注意到,-log63=log6,以及log6,8=,+log63,可得答案为,. 8.由条件得3lg3lg3+,lg,=a,则去分母移项,可得(3-a)lg3=,alg,,所以lg,lg3=3-a,a.9., 5.,0.a=log34+log37=log3,8?(3,4).,,.,., , ,对数函数及其性质(,),.D.,.C.3.C.4.,44分钟.5.???.6.-,.7.-,?x?,.8.提示:注意对称关系.9.对loga(x+a)<,进行讨论:?当a>,时,0<x+a<a,得-a<x<0;?当0<a<,时,x+a>a,得x>0. ,0.C,:a=3,,C,:a=3,C3:a=,,0,C4:a=,5.,,.由f(-,)=-,,得lgb=lga-,?,方程f(x)=,x即x,+lga?x+lgb=0有两个相等地实数根,可得lg,a-4lgb=0,将?式代入,得a=,00,继而b=,0., , ,对数函数及其性质(二),.A.,.D.3.C.4.,,,,.5.(-?,,).6.log,0 4,log30.4,log40.4.7.logbab,logba,logab.8.(,)由,x-,,0得x,0.(,)x,lg3lg,. 9.图略,y=log,,(x+,)地图象可以由y=log,,x地图象向左平移,个单位得到. ,0.根据图象,可得0,p,q,,.,,.(,)定义域为{x|x?,},值域为R.(,)a=,., , ,对数函数及其性质(三),.C.,.D.3.B.4.0,,,.5.,,.6.,,53.7.(,)f35=,,f-35=-,.(,)奇函数,理由略.8.{-,,0,,,,,3,4,5,6}. 9.(,)0.(,)如log,x.,0.可以用求反函数地方法得到,与函数y=loga(x+,)关于直线y=x对称地函数应该是y=ax-,,和y=logax+,关于直线y=x对称地函数应该是y=ax-,.,,.(,)f(-,)+f(,)=0.(,)f(-,)+f-3,+f,,+f(,)=0.猜想:f(-x)+f(-,+x)=0,证明略., 3幂函数,.D.,.C.3.C.4.??.5.6.,5,8,0.5-,,,0.,6-,4.6.(-?,-,)?,3,3,.7.p=,,f(x)=x,.8.图象略,由图象可得f(x)?,地解集x?,-,,,,.9.图象略,关于y=x对称. ,0.x?0,3+5,.,,.定义域为(-?,0)?(0,?),值域为(0,?),是偶函数,图象略. 单元练习,.D.,.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D. ,0.B.,,.,.,,.x,,.,3.?.,4.,5 8.提示:先求出h=,0.,5.(,)-,.(,),.,6.x?R,y=,,x=,+lga,-lga,0,讨论分子、分母得-,,lga,,,所以a?,,0,,0.,7.(,)a=,.(,)设g(x),log,,(,0-,x),,,x,则g(x)在,3,4,上为增函数,g(x),m 对x?,3,4,恒成立,m,g(3)=,,78(,8.(,)函数y=x+ax(a,0),在(0,a,上是减函数,,a,+?)上是增函数,证明略. (,)由(,)知函数y=x+cx(c,0)在,,,,,上是减函数,所以当x=,时,y有最大值,+c;当x=,时,y有最小值,+c,.,9.y=(ax+,),-,?,4,当a,,时,函数在,-,,,,上为增函数,ymax=(a+,),-,=,4,此时a=3;当0,a,,时,函数,-,,,,上为减函数,ymax=(a-,+,),-,=,4,此时a=,3.?a=3,或a=,3.,0.(,)F(x)=lg,-xx+,+,x+,,定义域为(-,,,).(,)提示:假设在函数F(x)地图象上存在两个不同地点A,B,使直线AB恰好与y轴垂直,则设A(x,,y),B(x,,y)(x,?x,),则f(x,)-f(x,)=0,而f(x,)-f(x,)=lg,-x,x,+,+,x,+,-lg,-x,x,+,-,x,+,=lg(,-x,)(x,+,)(x,+,)(,-x,)+x,-x,(x,+,)(x,+,)=?+?,可证?,?同正或同负或同为零,因此只有当x,=x,时,f(x,)-f(x,)=0,这与假设矛盾,所以这样地两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数地应用3 ,函数与方程3 , ,方程地根与函数地零点,.A.,.A.3.C.4.如:f(a)f(b)?0.5.4,,54.6.3.7.函数地零点为-,,,,,.提示:f(x)=x,(x-,)-(x-,)=(x-,)(x-,)(x+,).8.(,)(-?,-,)?(-,,,).(,)m=,,(9.(,)设函数f(x)=,ax,-x-,,当Δ=0时,可得a=-,8,代入不满足条件,则函数f(x)在(0,,)内恰有,个零点.?f(0)?f(,),-,×(,a-,-,),0,解得a,,. (,)?在,-,,0,上存在x0,使f(x0)=0,则f(-,)?f(0)?0,?(-6m-4)×(-4)?0,解得m?-,3.,0.在(-,,-, 5),(-0 5,0),(0,0 5)内有零点(,,.设函数f(x),3x-,-xx+,.由函数地单调性定义,可以证明函数f(x)在(-,,+?)上是增函数.而f(0)=30-,=-,,0,f(,)=3,-,,=5,,0,即f(0)?f(,),0,说明函数f(x)在区间(0,,)内有零点,且只有,个.所以方程3x=,-xx+,在(0,,)内必有,个实数根.3 , ,用二分法求方程地近似解(,),.B.,.B.3.C.4.,,,, 5,.5.7.6.x3-3.7.,.8.提示:先画,个草图,可估计出零点有,个在区间(,,3)内,取,与3地平均数, 5,因f(, 5)=0 ,5,0,且f(,),0,则零点在(,,, 5)内,再取出, ,5,计算f(, ,5)=-0 4375,则零点在(, ,5,, 5)内.以此类推,最后零点在(, 375,, 4375)内,故其近似值为, 4375.9., 4375.,0., 4,96875.,,.设f(x)=x3-,x-,,?f(-,)=0,?x,=-,是方程地解.又f(-0 5)=-0 ,,5<0,f(-0 75)=0 078,,5>0,x,?(-0 75,-0 5),又?f(-0 6,5)=0 005859,0,?x,?(-0 6,5,-0 5).又?f(-0 56,5)=-0 05,98<0,?x,?(-0 6,5,-0 56,5),由|-0.6,5+0.56,5|,0.,,故x,=-0.56,5是原方程地近似解,同理可得x3=, 56,5.3 , ,用二分法求方程地近似解(二),.D.,.B.3.C.4.,.5.,.6., 6.7.a,,.8.画出图象,经验证可得x,=,,x,=4适合,而当x,0时,两图象有,个交点,?根地个数为3.9.对于f(x)=x4-4x-,,其图象是连续不断地曲线,?f(-,)=3,0,f(,)=6,0,f(0),0, ?它在(-,,0),(0,,)内都有实数解,则方程x4-4x-,=0在区间,-,,,,内至少有两个实数根.,0.m=0,或m=9,.,,.由x-,,0,3-x,0,a-x=(3-x)(x-,),得a=-x,+5x-3(,,x,3),由图象可知,a,,34或a?,时无解;a=,34或,,a?3时,方程仅有,个实数解;3,a,,34时,方程有两个实数解. 3 ,函数模型及其应用3(,(,几类不同增长地函数模型,.D.,.B.3.B.4.,700.5.80.6.5.7.(,)设,次订购量为a时,零件地实际出厂价恰好为5,元,则a=,00+60-5,0.0,=550(个).(,)p=f(x)=60(0,x?,00,x?N*),6,-x50(,00,x,550,x?N*),5,(x?550,x?N*).8.(,)x年后该城市人口总数为y=,00×(,+,.,%)x.(,),0年后该城市人口总数为y=,00×(,+,.,%),0=,00×,.0,,,0?,,,.7(万).(3)设x年后该城市人口将达到,,0万人,即,00×(,+,.,%)x=,,0,x=log,.0,,,,0,00=log,.0,,,.,=lg,.,lg,.0,,?,5(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x?,0,9,.?y=,,0(9-x)+,5x=,,0(-x+4x+9)=,,0,-(x-,),+,3,,?当x=,,即x=4时,ymax=,.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润,.3万元. ,0.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0?x?a,?8+b(x-a)+c,x,a.?由题意知0,c,5,所以8+c,,3.由表知第,、3月份地费用均大于,3,故用水量,5m3,,,m3均大于am3,将,5,,,分别代入?式,得,9=8+(,5-a)b+c, 33=8+(,,-a)b+c,?b=,,,a=c+,9.?再分析,月份地用水量是否超过最低限量,不妨设9,a,将x=9代入?,得9=8+,(9-a)+c,,a=c+,7与?矛盾,?a?9.,月份地付款方式应选?式,则8+c=9,c=,,代入?,得a=,0.因此a=,0,b=,,c=,.(第,,题),,.根据提供地数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中地遗忘是有规律地,遗忘地进程不是均衡地,而是在记忆地最初阶段遗忘地速度很快,后来就逐渐减慢了,过了相当长地时间后,几乎就不再遗忘了,这就是遗忘地发展规律,即"先快后慢"地规律.观察这条遗忘曲线,你会发现,学到地知识在,天后,如果不抓紧复习,就只剩下原来地,3.随着时间地推移,遗忘地速度减慢,遗忘地数量也就减少.因此,艾宾浩斯地实验向我们充分证实了,个道理,学习要勤于复习,而且记忆地理解效果越好,遗忘得越慢.3 , ,函数模型地应用实例,.C.,.B.3.C.4.,400.5.汽车在5h内行驶地路程为360km.6.,0;越大.7.(,), 5m/s.(,),00.8.从,0,5年开始.9.(,)应选y=x(x-a),+b,因为?是单调函数,?至多有两个单调区间,而y=x(x-a),+b可以出现两个递增区间和,个递减区间.(,)由已知,得b=,,,(,-a),+b=3,a>,,解得a=3,b=,(?函数解析式为y=x(x-3),+,(,0.设y,=f(x)=px,+qx+r(p?0),则f(,)=p+q+r=,,f(,)=4p+,q+r=, ,,f(3)=9p+3q+r=, 3,解得p=-0 05,q=0 35,r=0 7,?f(4)=-0 05×4,+0 35×4+0 7=, 3,再设y,=g(x)=abx+c,则g(,)=ab+c=,,g(,)=ab,+c=, ,,g(3)=ab3+c=, 3,解得a=-0 8,b=0 5,c=, 4,?g(4)=-0 8×0 54+, 4=, 35,经比较可知,用y=-0 8×(0 5)x+, 4作为模拟函数较好.,,.(,)设第n年地养鸡场地个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(,),30,f(6)=,0,且点(n,f(n))在同,直线上,从而有:f(n)=34-4n(n=,,,,3,4,5,6).而g(,)=,,g(6)=,,且点(n,g(n))在同,直线上,从而有:g(n)=n+45(n=,,,,3,4,5,6).于是有f(,)=,6,g(,)=,.,(万只),所以f(,)?g(,)=3,.,(万只),故第二年养鸡场地个数是,6个,全县养鸡3,.,万只.(,)由f(n)?g(n)=-45n-94,+,,54,得当n=,时,,f(n)?g(n),max,3,.,.故第二年地养鸡规模最大,共养鸡3,.,万只.单元练习,.A.,.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A. ,0.D.,,.?6.,,.y=x,.,3.-3.,4.y3,y,,y,.,5.令x=,,则,,-0,0,令x=,0,则,,,0×,0-,,0.选初始区间,,,,0,,第二次为,,,5.5,,第三次为,,,3.,5,,第四次为,,.,,5,3.,5,,第五次为,,.,,5,,.6875,,所以存在实数解在,,,3,内.(第,6题),6.按以下顺序作图:y=,-xy=,-|x|y=,-|x-,|.?函数y=,-|x-,|与y=m 地图象在0<m?,时有公共解,?0<m?,.,7.两口之家,乙旅行社较优惠,三口之家、多于三口地家庭,甲旅行社较优惠. ,8.(,)由题意,病毒总数N关于时间n地函数为N=,n-,,则由,n-,?,08,两边取对数得(n-,)lg,?8,n?,7.6,即第,次最迟应在第,7天时注射该种药物. (,)由题意注入药物后小白鼠体内剩余地病毒数为,,6×,%,再经过n天后小白鼠体内病毒数为,,6×,%×,n,由题意,,,6×,%×,n?,08,两边取对数得,6lg,+lg,-,+nlg,?8,得x?6.,,故再经过6天必须注射药物,即第二次应在第33天注射药物. ,9.(,)f(t)=300-t(0?t?,00),,t-300(,00,t?300),g(t)=,,00(t-,50),+,00(0?t?300). (,)设第t天时地纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-,,00t,+,,t+,75,(0?t?,00),-,,00t,+7,t-,0,5,(,00,t?300).当0?t?,00时,配方整理得h(t)=-,,00(t-50),+,00,?当t=50时,h(t)在区间,0,,00,上取得最大值,00;当,00,t?300时,配方整理得h(t),-,,00(t-350),+,00,?当t=300时,h(t)取得区间,,00,300,上地最大值87.5.综上,由,00,87.5可知,h(t)在区间,0,300,上可以取得最大值,00,此时t=50,即从,月,日开始地第50天时,西红柿纯收益最大.,0.(,)由提供地数据可知,描述西红柿种植成本Q与上市时间t地变化关系地函数不可能是常数函数,从而用函数Q=at+b,Q=a?bt,Q=a?logbt中地任何,个进行描述时都应有a?0,而此时上述三个函数均为单调函数,这与表格提供地数据不吻合.所以选取二次函数Q=at,+bt+c进行描述.将表格所提供地三组数据分别代入Q=at,+bt+c,得到,50=,500a+50b+c,,08=,,,00a+,,0b+c,,50=6,500a+,50b+c.解得a=,,00,b=-3,,c=4,5,.?描述西红柿种植成本Q与上市时间t地关系地函数为:Q=,,00t,-3,t+4,5,.(,)当t=,50时,西红柿种植成本最低为Q=,00(元/,00kg).综合练习(,),.D.,.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B. ,0.B.,,.{x|x?5且x?,}.,,.,.,3.4.,4.0.,5.,0.,6.0.8,,5. ,7.4.,8.{-6,-5,-4,-3,-,,-,,0}.,9.(,)略.(,),-,,0,和,,,5,.,0.略( ,,.(,)?f(x)地定义域为R,设x,,x,,则f(x,)-f(x,)=a-,,x,+,-a+,,x,+,=,x,-,x,(,+,x,)(,+,x,),?x,,x,,?,x,-,x,,0,(,+,x,)(,+,x,),0.?f(x,)-f(x,),0,即f(x,),f(x,),所以不论a取何值,f(x)总为增函数. (,)?f(x)为奇函数,?f(-x)=-f(x),即a-,,-x+,=-a+,,x+,,解得a=,,. ?f(x)=,,-,,x+,.?,x+,,,,?0,,,x+,,,,?-,,-,,x+,,0, ?-,,,f(x),,,,所以f(x)地值域为-,,,,,.综合练习(二),.B.,.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B. ,0.B.,,.log,0.3,,0.3.,,.-,.,3.-4.,4.8.,5.P=,,t5730(t,0). ,6.,.,7.(,,,)和(5,5).,8.-,.,9.(,)由a(a-,)+x-x,,0,得,x-(,-a),?(x-a),0(由,?A,知,,-(,-a),?(,-a),0,解得a?(-?,-,)?(,,+?).(,)当,-a,a,即a,,,时,不等式地解集为A={x|a,x,,-a};当,-a,a,即a,,,时,不等式地解集为A=,x|,-a,x,a,(,0.在(0,+?)上任取x,,x,,则f(x,)-f(x,)=ax,-,x,+,-ax,-,x,+,=(a+,)(x,-x,)(x,+,)(x,+,),?0,x,,x,,?x,-x,,0,x,+,,0,x,+,,0,所以要使f(x)在(0,+?)上递减,即f(x,)-f(x,),0,只要a+,,0即a,-,,故当a,-,时,f(x)在区间(0,+?)上是单调递减函数(,,.设利润为y万元,年产量为S百盒,则当0?S?5时,y=5S-S,,-0.5-0.,5S=-S,,+4.75S-0.5,当S,5时,y=5×5-5,,-0.5-0.,5S=,,-0.,5S,?利润函数为y=-S,,+4.75S-0.5(0?S?5,S?N*),-0.,5S+,,(S,5,S?N*).当0?S?5时,y=-,,(S-4.75),+,0.78,,5,?S?N*,?当S=5时,y有最大值,0 75万元;当S,5时,?y=-0.,5S+,,单调递减,?当S=6时,y有最大值,0 50万元(综上所述,年产量为500盒时工厂所得利润最大(,,.(,)由题设,当0?x?,时,f(x)=,,x?x=,,x,;当,,x,4时,f(x)=,,?,,?,,-,,(x-,)?(x-,)-,,?(4-x)?(4-x)=-(x-3),+3;当4?x?6时,f(x)=,,(6-x)?(6-x)=,,(x-6),.?f(x)=,,x,(0?x?,),-(x-3),+3(,,x,4),,,(x-6),(4?x?6).(,)略.(3)由图象观察知,函数f(x)地单调递增区间为,0,3,,单调递减区间为,3,6,,当x=3时,函数f(x)取最大值为3.。
2018版人教A版浙江专版必修一课后作业:第二章 基本初
2.2.1对数与对数运算第1课时对数学习目标 1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一对数的概念思考解指数方程:3x= 3.可化为3x=123,所以x=12.那么你会解3x=2吗?答案不会,因为2难以化为以3为底的指数式,因而需要引入对数概念.梳理对数的概念:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.常用对数与自然对数:通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数,log10N可简记为lg N,log e N简记为ln N.知识点二对数与指数的关系思考log a1(a>0,且a≠1)等于?答案设log a1=t,化为指数式a t=1,则不难求得t=0,即log a1=0.梳理一般地,有对数与指数的关系:若a>0,且a≠1,则a x=N⇔log a N=x.对数恒等式:log a Na=N;log a a x=x(a>0,且a≠1).对数的性质:(1)1的对数为零;(2)底的对数为1; (3)零和负数没有对数.类型一 对数的概念例1 在N =log (5-b )(b -2)中,实数b 的取值范围是( ) A.b <2或b >5 B.2<b <5 C.4<b <5 D.2<b <5且b ≠4答案 D解析 ∵⎩⎪⎨⎪⎧b -2>0,5-b >0,5-b ≠1,∴2<b <5且b ≠4.反思与感悟 由于对数式中的底数a 就是指数式中的底数a ,所以a 的取值范围为a >0,且a ≠1;由于在指数式中a x =N ,而a x >0,所以N >0. 跟踪训练1 求f (x )=log x 1-x1+x 的定义域.解 要使函数式有意义,需⎩⎪⎨⎪⎧x >0,x ≠1,1-x 1+x >0,解得0<x <1.∴f (x )=log x 1-x1+x 的定义域为(0,1).类型二 应用对数的基本性质求值 例2 求下列各式中x 的值: (1)log 2(log 5x )=0;(2)log 3(lg x )=1.解 (1)∵log 2(log 5x )=0.∴log 5x =20=1,∴x =51=5. (2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1000.反思与感悟 本题利用对数的基本性质从整体入手,由外到内逐层深入来解决问题.log a N =0⇒N =1;log a N =1⇒N =a 使用频繁,应在理解的基础上牢记.跟踪训练2 若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( ) A.9B.8C.7D.6 答案 A解析 ∵log 2(log 3x )=0,∴log 3x =1. ∴x =3.同理y =4,z =2.∴x +y +z =9. 类型三 对数式与指数式的互化命题角度1 指数式化为对数式 例3 将下列指数式写成对数式:(1)54=625;(2)2-6=164;(3)3a =27;(4)⎝⎛⎭⎫13m =5.73. 解 (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)13log 5.73=m .反思与感悟 指数式化为对数式,关键是弄清指数式各部位的去向:跟踪训练3 (1)如果a =b 2 (b >0,b ≠1),则有( ) A.log 2a =b B.log 2b =a C.log b a =2D.log b 2=a(2)将3-2=19,⎝⎛⎭⎫126=164化为对数式.(3)解方程:⎝⎛⎭⎫13m=5. (1)答案 C解析 log b a =2,故选C.解 (2)3-2=19可化为log 319=-2;⎝⎛⎭⎫126=164可化为121log 64=6.(3)m =13log 5.命题角度2 对数式化为指数式 例4 求下列各式中x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x ;(5))1log13+22=x .解 (1)x =2364-=()2334-=4-2=116.(2)因为x 6=8,所以x =()()1111636266822x====2.(3)10x =100=102,于是x =2.(4)由-lne 2=x ,得-x =lne 2,即e -x =e 2.所以x =-2. (5)因为)1log13+22=x ,所以(2-1)x =13+22=1(2+1)2=12+1=2-1, 所以x =1.反思与感悟 要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练4 计算:(1)log 927;(2);(3).解 (1)设x =log 927,则9x =27,32x =33,∴x =32.(2)设x =,则⎝⎛⎭⎫43x=81,43x=34,∴x =16. (3)令x =625,则⎝⎛⎭⎫354x =625,435x =54,∴x =3. 命题角度3 对数恒等式log a Na =N 的应用例5 (1)求33log 3x+=2中的x .(2)求log log log a b c b c Na⋅⋅的值(a ,b ,c 均为正实数且不等于1,N >0).解 (1)∵33log 3x+=33·3log 3x=27x =2,∴x =227.(2)log log log a b c b c Na⋅⋅=()log log log b c a c Nb a⋅=log c Nc=N .反思与感悟 应用对数恒等式注意: (1)底数相同.(2)当N >0时才成立,例如y =x 与y =log a xa 并非相等函数.跟踪训练5 设()5log 2125x -=9,则x =.答案 2 解析 ∵()5log 2125x -=()()5log 2125x -=()()52log 215x -=(2x -1)2=9.∴2x -1=±3,又∵2x -1>0,∴2x -1=3.∴x =2.1.log b N =a (b >0,b ≠1,N >0)对应的指数式是( ) A.a b =NB.b a =NC.a N=bD.b N=a答案 B2.若log a x=1,则()A.x=1B.a=1C.x=aD.x=10答案 C3.下列指数式与对数式互化不正确的一组是()A.e0=1与ln1=0B.138 =12与log812=-13C.log39=2与129=3D.log77=1与71=7答案 C4.已知log x16=2,则x等于()A.±4B.4C.256D.2答案 B5.设10lg x=100,则x的值等于()A.10B.0.01C.100D.1000答案 C1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N⇔log a N=b(a>0,且a≠1,N>0),据此可得两个常用恒等式:(1)log a a b=b;(2)log a Na=N.2.在关系式a x=N中,已知a和x求N的运算称为求幂运算;而如果已知a和N求x的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.课时作业一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1B .2C .3D .4 答案 C解析 ①、③、④正确,②不正确,只有a >0,且a ≠1时,a x =N 才能化为对数式. 2.已知b =log (a -2)(5-a ),则实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5C .2<a <3或3<a <5D .3<a <4 答案 C解析 由⎩⎪⎨⎪⎧5-a >0,a -2>0,a -2≠1,得2<a <3或3<a <5.3.方程2log 3x =14的解是( )A .x =19B .x =33C .x = 3D .x =9答案 A解析 ∵2log 3x =2-2,∴log 3x =-2,∴x =3-2=19.4.下列四个等式:①lg(lg10)=0;②lg(lne)=0;③若lg x =10,则x =10;④若ln x =e ,则x =e 2. 其中正确的是( ) A .①③ B .②④ C .①② D .③④答案 C解析 ①lg(lg10)=lg1=0;②lg(lne)=lg1=0; ③若lg x =10,则x =1010;④若ln x =e ,则x =e e . 5.(12)-1+log 0.54的值为( )A .6B.72C .0D.37答案 C解析 (12)-1+log 0.54=(12)-1+12log 4=2-2=0.6.若log a 3=m ,log a 5=n ,则a 2m +n的值是( )A .15B .75C .45D .225 答案 C解析 由log a 3=m ,得a m =3,由log a 5=n ,得a n =5, ∴a 2m +n =(a m )2·a n =32×5=45.7.log (n +1-n )(n +1+n )等于( )A .1B .-1C .2D .-2答案 B解析 由题意知,知log (n +1-n )(n +1+n )=log (n +1-n )(n +1-n )-1=-1.二、填空题8.已知f (log 2x )=x ,则f (12)=________.答案2解析 令log 2x =12,则x =212=2,即f (12)=f (log 22)= 2.9.=________.答案 8 解析 设=t ,则(3)t=81,23t =34,t2=4,t =8. 10.lg 5+lg 20的值是________. 答案 1解析 lg 5+lg 20=lg 100=lg10=1.11.已知log 7[log 3(log 2x )]=0,那么x -12=________.答案24解析 ∵log 7[log 3(log 2x )]=0,∴log 3(log 2x )=1, ∴log 2x =3,∴23=x . ∴12x-=()132x-=18=122=24.12.设a =log 310,b =log 37,则3a -b =________.答案107解析 ∵a =log 310,b =log 37,∴3a =10,3b =7, ∴3a -b=3a 3b =107. 13.若log π[log 3(ln x )]=0,则x =________. 答案 e 3解析 ∵log π[log 3(ln x )]=0,∴log 3(ln x )=1, ∴ln x =3,∴x =e 3. 三、解答题14.(1)先将下列式子改写成指数式,再求各式中x 的值. ①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示下列各式. ①log 68;②log 62;③log 26.解 (1)①因为log 2x =-25,所以x =2-25=582.②因为log x 3=-13,所以x -13=3,所以x =3-3=127.(2)①log 68=a .②由6a =8得6a =23,即36a =2,所以log 62=a3.③由36a =2得32a=6,所以log 26=3a .15.求22+log 23+32-log 39的值. 解 22+log 23+32-log 39 =22×2log 23+323log 39=4×3+99=12+1=13.16.设M ={0,1},N ={lg a,2a ,a,11-a },是否存在a 的值,使M ∩N ={1}? 解 不存在a 的值,使M ∩N ={1}成立. 若lg a =1,则a =10,此时11-a =1,从而11-a=lg a=1,与集合元素的互异性矛盾;若2a=1,则a=0,此时lg a无意义;若a=1,此时lg a=0,从而M∩N={0,1},与条件不符;若11-a=1,则a=10,从而lg a=1,与集合元素的互异性矛盾.。
2018版人教A版浙江专版必修一课后作业:第二章 基本初
2.1.1指数与指数幂的运算(二)学习目标 1.学会根式与分数指数幂之间的相互转化.2.掌握用有理数指数幂的运算性质化简求值.3.了解无理数指数幂的意义.知识点一分数指数幂思考根据n次方根的定义和数的运算,得出以下式子,你能从中总结出怎样的规律?①5a10=5(a2)5=a2=105a(a>0);②a8=(a4)2=a4=82a(a>0);③4a12=4(a3)4=a3=124a(a>0).答案当a>0时,根式可以表示为分数指数幂的形式,其分数指数等于根式的被开方数的指数除以根指数.梳理一般地,分数指数幂定义:(1)规定正数的正分数指数幂的意义是:mna=n a m(a>0,m,n∈N*,且n>1);(2)规定正数的负分数指数幂的意义是:mna-=1mna(a>0,m,n∈N*,且n>1);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 知识点二有理数指数幂的运算性质思考我们知道32×33=32+3.那么11113232646464+⨯=成立吗?答案成立.11326464⨯=64×364=82×343=8×4=32,112364+=5664=6645=6(25)6=25=32.梳理整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)a r a s=a r+s(a>0,r,s∈Q);(2)(a r)s=a rs(a>0,r,s∈Q);(3)(ab)r=a r b r(a>0,b>0,r∈Q).知识点三无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.类型一根式与分数指数幂之间的相互转化命题角度1分数指数幂化根式例1用根式的形式表示下列各式(x>0,y>0).(1)25x;(2)53x-.解(1)25x=5x2.(2)53x-=13x5.反思与感悟实数指数幂的化简与计算中,分数指数幂形式在应用上比较方便.而在求函数的定义域中,根式形式较容易观察出各式的取值范围,故分数指数幂与根式的互化是学习的重点内容,要切实掌握.跟踪训练1用根式表示2132x y-(x>0,y>0).解2132x y-=23121yx⋅=1x·3y2.命题角度2根式化分数指数幂例2把下列根式化成分数指数幂的形式,其中a>0,b>0.(1)5a6;(2)13a2;(3)4b3a2;(4)(-a)6.解(1)5a6=65 a.(2)13a2=231a=23a-.(3)4b3a2=132133444242bb a a ba--⎛⎫==⎪⎝⎭.(4)(-a)6=a6=62a=a3.反思与感悟指数的概念从整数指数扩充到有理数指数后,当a≤0时,mna有时有意义,有时无意义.如()1 31-=3-1=-1,但()121-就不是实数了.为了保证在m n取任何有理数时,m na 都有意义,所以规定a >0.当被开方数中有负数时,幂指数不能随意约分.跟踪训练2 把下列根式化成分数指数幂: (1)682;(2)a a (a >0);(3)b 3·3b 2;(4)13x (5x 2)2.解 (1)682177621222⎛⎫== ⎪⎝⎭;(2)a a133224a a ⎛⎫=== ⎪⎝⎭;(3)b 3·3b 2=211333b b b ⋅=; (4)13x (5x 2)2=3513935511x xx -=====⎛⎫ ⎪⎝⎭.类型二 运用指数幂运算公式化简求值 例3 计算下列各式(式中字母都是正数): (1)()10.52332770.02721259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭; (2)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)111222m m mm--+++.解 (1)()10.52332770.02721259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=(30.027)2+312527-259=0.09+53-53=0.09; (2)原式=[2×(-6)÷(-3)]211115326236a b+-+-=4ab 0=4a ;(3)2112211122111122222m m m m m m m m m m -----⎛⎫+ ⎪++⎝⎭==+++.反思与感悟 一般地,进行指数幂运算时,可按系数、同类字母归在一起,分别计算;化负指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.跟踪训练3 (1)化简:1318-⎛⎫⎪⎝⎭×(-76)0+80.25×42+(32×3)6;(2)化简:2132111136251546x yx y x y ---⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭; (3)已知1122x x-+=5,求x 2+1x的值.解 (1)原式=()()66111111333424812223⎛⎫-⨯-⎪⎝⎭⎛⎫⎛⎫⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭3123442223112+=++⨯=;(2)2132111136251546x yx y x y ---⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=()()211111332266545x y⎛⎫⎛⎫------- ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯-⨯-⨯⨯ ⎪⎝⎭110662424x y y ==;(3)由1122x x-+=5,两边同时平方得x +2+x -1=25,整理得:x +x -1=23,则有x 2+1x=23.类型三 运用指数幂运算公式解方程例4 已知a >0,b >0,且a b =b a ,b =9a ,求a 的值. 解 方法一 ∵a >0,b >0,又a b =b a , ∴()()()11199a b a bb bab a b a a =⇒=⇒=,∴81999a =⇒a 8=32⇒a =43.方法二 ∵a b =b a ,b =9a ,∴a 9a =(9a )a , 即(a 9)a =(9a )a ,∴a 9=9a ,a 8=9,a =43.反思与感悟 指数取值范围由整数扩展到有理数乃至实数,给运算带来了方便,我们可以借助指数运算法则轻松对指数变形,以达到我们代入、消元等目的.跟踪训练4 已知67x =27,603y =81,求3x -4y 的值.解 由67x=33,得67=33x,由603y=81得603=43y, ∴433y x-=60367=9=32,∴4y -3x =2,故3x -4y=-2.1.化简238的值为( ) A.2 B.4 C.6 D.8答案 B 2.1225-等于( )A.25B.125C.5D.15答案 D3.用分数指数幂表示(a -b )3(a >b )为( ) A.()12a b - B.()12b a - C.()32a b - D.()23a b -答案 C4.(36a 9)4等于( )A.a 16B.a 8C.a 4D.a 2答案 D5.计算122-⨯( )A.32B.16C.64D.128答案 B1.指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.2.指数幂的运算一般先转化成分数指数幂,然后再利用有理数指数幂的运算性质进行运算.在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解.课时作业一、选择题1.化简式子(122-⎡⎤⎢⎥⎣⎦的结果是()A. 3 B.- 3C.33D.-33答案 C解析(122-⎡⎤⎢⎥⎣⎦=123-=13=33.2.下列根式、分数指数幂的互化中,正确的是() A.-x=()12x-B.13x-=-3xC.34xy-⎛⎫⎪⎝⎭=4⎝⎛⎭⎫yx3(x,y≠0)D.6y2=13y答案 C解析-x=-12x,13x-=13x,6y2=1313,0,0y yy y⎧≥⎪⎨⎪-<⎩故选C.3.3a2·a等于()A.512a B.1112aC.56a D.78a答案 B 解析3a 2·a =2134a+=1112a .4.()3432x --中x 的取值范围是( )A .(-∞,+∞)B .(-∞,32)∪(32,+∞)C .(-∞,32)D .(32,+∞)答案 C 解析()3432x --=()34132x -=14(3-2x )3,要使该式有意义,需3-2x >0,即x <32.5.122,133,166这三个数的大小关系为( ) A .166<133<122 B .166<122<133 C .122<133<166 D .133<122<166答案 B解析 122=362=623=68,133=263=632=69,166=66.∵66<68<69,∴166<122<133.6.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( )A.x +1x -1B.x +1xC.x -1x +1D.x x -1答案 D解析 由x =1+2b ,得2b =x -1,y =1+2-b =1+12b=1+1x -1=xx -1.7.设12a -12a -=m ,则a 2+1a等于( )A .m 2-2B .2-m 2C .m 2+2D .m 2答案 C 解析 将12a -12a-=m 两边平方得(12a -12a-)2=m 2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2⇒a 2+1a =m 2+2.二、填空题 8.计算(33=________.答案116解析原式=)334=47-9=4-2=116.9.若25a-=9,则a =________.答案 ±3-5解析 由25a-=9,得(25a-)5=95,即a -2=95=310,所以a =±3-5.10.若a >0,且a x =3,a y=5,则22y x a +=________.答案 9 5 解析 22yx a+=(a x )2·()12y a=32·125=9 5. 11.(3+2)2015×(3-2)2016=________. 答案3- 2解析 (3+2)2015×(3-2)2016=[(3+2)(3-2)]2015×(3-2) =12015×(3-2)=3- 2.12.2327+1216--⎝⎛⎭⎫12-2-23827-⎛⎫⎪⎝⎭=________. 答案 3解析 原式=()2333+()1324--22-23323-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=32+4-1-4-94=3.13.如果a 3=3,a 10=384,a 3317103n aa -⎡⎤⎛⎫⎢⎥⎪⎢⎥⎝⎭⎢⎥⎣⎦=________.答案 3×2n -3解析 原式=3×3173843n -⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦=3317128n -⎛⎫ ⎪⎝⎭=3×2n -3.14.化简12a -÷23--⎛⎫的值为________.答案 1566a b-解析 原式=21321132a ba b -⋅⋅÷2131212a bb a ---⎛⎫⋅ ⎪ ⎪ ⎪⋅⎝⎭=21321132a b ab-⋅⋅÷21131122ab-----⎛⎫ ⎪⎝⎭=22111333322322aba b -+---⎛⎫÷ ⎪⎝⎭=7166a b ÷(ab ) =711166ab--=1566a b-.三、解答题15.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1),若g (2)=a ,求f (2).解 因为f (x )+g (x )=a x -a -x +2,又f (x )是奇函数,g (x )是偶函数,所以f (-x )+g (-x )=-f (x )+g (x )=a -x -a x +2,所以f (2)+g (2)=a 2-a -2+2,-f (2)+g (2)=a -2-a 2+2,两式联立解得a =2,进一步求得f (2)=154.16.已知函数f (x )=11335x x --,g (x )=11335x x --.(1)求证:f (x )在(0,+∞)上是增函数;(已知y =13x 在R 上是增函数)(2)分别计算f (4)-5f (2)g (2)和f (9)-5f (3)g (3)的值,由此概括出涉及函数f (x )和g (x )对所有不等于零的实数x 都成立的一个等式,并加以证明. (1)证明 设x 1>x 2>0,∵y =13x 在R 上是增函数, ∴131x >132x .又∵()1312x x ->0,∴f (x 1)-f (x 2)=15(131x -131x --132x +132x -)=15(131x -132x )[1+()1312x x -]>0. ∴f (x )在(0,+∞)上是增函数.(2)解 经计算知f (4)-5f (2)g (2)=0,f (9)-5f (3)·g (3)=0,由此猜想:f (x 2)-5f (x )g (x )=0. 证明如下: f (x 2)-5f (x )g (x )=15(23x -23x -)-15(13x +13x -)(13x -13x -) =15(23x -23x -)-15(23x -23x -)=0.。
人教A版新课程标准数学必修1课后习题解答【中】
新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m ∙∙∙=4165413121mm m m m ∙∙=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx=x 4y -9; (4)4a 32b31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ; (5))2516(462r ts -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts =6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-yx =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=; (2)22lg1002lg1002lg104lg104====;(3)5lg0.00001lg105lg105-==-=-; (4)11ln ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞ ; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x= (4)173x=(5) 100.3x= (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2ba+===+=+; (4)3lg lg 3lg 22b a =-=-5. (1)x ab =; (2) m x n =; (3) 3n x m =; (4)x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位. B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称 又∵ ()()l o g (1)l o g (1)()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3x y =,0.1x y =. 习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=ba b b a a b b a a -++++-2121212122=b a b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2∙=3lg 2lg 22lg 1+-,所以log 125=b a a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgb ba a +-++-11lg 11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数. B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x =1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2x x e e -+,所以g (2x )=222xx e e -+,[g (x )]2+[f (x )]2=(2x x e e -+)2+(2x x e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。
2018版人教A版浙江专版必修一课后作业:第二章 基本初
学习目标 1.理解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图象与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念思考 y =1x ,y =x ,y =x 2三个函数有什么共同特征?答案 底数为x ,指数为常数.梳理 一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 知识点二 五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质知识点三 一般幂函数的图象特征思考 类比y =x 3的图象和性质,研究y =x 5的图象与性质.答案 y =x 3与y =x 5的定义域、值域、单调性、奇偶性完全相同.只不过当0<x <1时,x 5=x 3·x 2<x 3,当x >1时,x 5=x 3·x 2>x 3,结合两函数性质,可得图象如下:梳理 一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称;(5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.类型一 幂函数的概念 例1 已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.反思与感悟 幂函数与指数函数、对数函数的定义类似,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数.跟踪训练1 在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A.0B.1C.2D.3答案 B解析 因为y =1x 2=x -2,所以是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常数函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1), 所以常数函数y =1不是幂函数. 类型二 幂函数的图象及应用例2 若点(2,2)在幂函数f (x )的图象上,点(-2,14)在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以,将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2.同理可求得g (x )=x -2.在同一坐标系里作出函数f (x )=x 2和g (x )=x-2的图象(如图所示),观察图象可得:(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ). 引申探究若对于例2中的f (x ),g (x ),定义h (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),试画出h (x )的图象.解 h (x )的图象如图所示:反思与感悟 注意本题中对f (x )>g (x ),f (x )=g (x )的几何解释.这种几何解释帮助我们从图形角度解读不等式方程,是以后常用的方法.跟踪训练2 幂函数y =x α(α≠0),当α取不同的正数时,在区间[0,1]上它们的图象是一簇美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =MN =NA .那么αβ等于( ) A.1B.2C.3D.无法确定答案 A解析 由条件知,M (13,23)、N (23,13),∴13=(23)α,23=(13)β, ∴(13)αβ=[(13)β]α=(23)α=13, ∴αβ=1.故选A.类型三 幂函数性质的综合应用 命题角度1 比较大小 例3 设a =2323⎛⎫ ⎪⎝⎭,b =1323⎛⎫ ⎪⎝⎭,c =2325⎛⎫⎪⎝⎭,则a ,b ,c 的大小关系是( ) A.a >b >c B.b >a >c C.b >c >a D.c >b >a答案 B解析 ∵y =⎝⎛⎭⎫23x 在R 上为减函数,∴2323⎛⎫ ⎪⎝⎭<1323⎛⎫ ⎪⎝⎭,即a <b ;∵f (x )=23x 在(0,+∞)上为增函数, ∴2323⎛⎫⎪⎝⎭>2325⎛⎫⎪⎝⎭,即a >c .∴b >a >c .故选B. 反思与感悟 此类题在构建函数模型时要注意幂函数的特点:指数不变.比较大小的问题主要是利用函数的单调性,特别是要善于应用“搭桥”法进行分组,常数0和1是常用的中间量.跟踪训练3 比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.3与⎝⎛⎭⎫130.3; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)⎝⎛⎭⎫250.3与()250.3. 解 (1)∵0<0.3<1,∴y =x 0.3在(0,+∞)上为增函数. 又25>13,∴⎝⎛⎭⎫250.3>⎝⎛⎭⎫130.3. (2)∵y =x-1在(-∞,0)上是减函数,又-23<-35.∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵y =x 0.3在(0,+∞)上为增函数, ∴由25>0.3,可得⎝⎛⎭⎫250.3>0.30.3.① 又y =0.3x 在(-∞,+∞)上为减函数, ∴0.30.3>250.3.② 由①②知⎝⎛⎭⎫250.3>250.3.命题角度2 幂函数性质的综合应用例4 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足()31m a -+<()332m a --的a 的取值范围.解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为()()1133132a a ---<-.因为y =13x-在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得23<a <32或a <-1.故a 的取值范围是{a |a <-1或23<a <32}.反思与感悟 幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.跟踪训练4 已知幂函数f (x )=21mmx +(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数还经过(2,2),试确定m 的值,并求满足f (2-a )>f (a -1)的实数a 的取值范围. 解 (1)∵m ∈N *,∴m 2+m =m ×(m +1)为偶数. 令m 2+m =2k ,k ∈N *,则f (x )=2k x ,∴定义域为[0,+∞),在[0,+∞)上f (x )为增函数. (2)∵2=122=212m m+,∴m 2+m =2,解得m =1或m =-2(舍去), ∴f (x )=12x ,由(1)知f (x )在定义域[0,+∞)上为增函数. ∴f (2-a )>f (a -1)等价于2-a >a -1≥0, 解得1≤a <32.1.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12B.1C.32D.2 答案 C解析 由幂函数的定义知k =1.又f ⎝⎛⎭⎫12=22, 所以⎝⎛⎭⎫12α=22,解得α=12,从而k +α=32. 2.已知幂函数f (x )的图象经过点(2,22),则f (4)的值等于( ) A.16 B.116 C.2 D.12答案 D3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,3答案 A4.下列是y =23x 的图象的是( )答案 B5.以下结论正确的是( )A.当α=0时,函数y =x α的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大D.幂函数的图象不可能在第四象限,但可能在第二象限 答案 D1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是不是幂函数的重要依据和唯一标准.2.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α>0时,图象过点(0,0),(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性,α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.3.在具体应用时,不一定是y =x α,α=-1,12,1,2,3这五个已研究熟的幂函数,这时可根据需要构造幂函数,并针对性地研究某一方面的性质.课时作业一、选择题1.下列函数中是幂函数的是( ) A .y =x 4+x 2 B .y =10x C .y =1x 3D .y =x +1答案 C解析 根据幂函数的定义知,y =1x 3是幂函数,y =x 4+x 2,y =10x ,y =x +1都不是幂函数.2.已知y =(m 2+m -5)x m 是幂函数,且在第一象限内是单调递减的,则m 的值为( ) A .-3 B .2 C .-3或2 D .3答案 A解析 由y =(m 2+m -5)x m 是幂函数,知m 2+m -5=1,解得m =2或m =-3.∵该函数在第一象限内是单调递减的,∴m <0.故m =-3.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( ) A .f (a )<f (b )<f (1a )<f (1b )B .f (1a )<f (1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a )D .f (1a )<f (a )<f (1b )<f (b )答案 C解析 因为函数f (x )=12x 在(0,+∞)上是增函数, 又0<a <b <1b <1a ,故选C.4.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭,c =2525⎛⎫⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a答案 A解析 根据幂函数与指数函数的单调性直接可以判断出来,y =25x 在x >0时是增函数,所以a >c ,y =(25)x 在x >0时是减函数,所以c >b .5.已知幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( ) A .-3B .1C .2D .1或2 答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1适合题意,故选B.6.若α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使幂函数y =x α为奇函数且在(0,+∞)上单调递增的α值的个数为( ) A .3 B .4 C .5 D .6答案 A解析 ∵幂函数y =x α是奇函数,∴α=-1,13,1,3.又∵幂函数y =x α在(0,+∞)上单调递增, ∴α=13,1,3.故选A.7.幂函数y =x 2,y =x -1,y =13x y =12x-在第一象限内的图象依次是图中的曲线( )A .C 2,C 1,C 3,C 4B .C 4,C 1,C 3,C 2 C .C 3,C 2,C 1,C 4D .C 1,C 4,C 2,C 3答案 D解析 由于在第一象限内直线x =1的右侧时,幂函数y =x α的图象从上到下相应的指数α由大变小,故幂函数y =x 2在第一象限内的图象为C 1,同理,y =x -1在第一象限的图象为C 4,y =13x 在第一象限内的图象为C 2,y =12x -在第一象限内的图象为C 3,故选D.二、填空题8.判断大小:5.25-1________5.26-2.(填“>”或“<”)答案 > 解析 ∵y =x-1在(0,+∞)上是减函数,5.25<5.26,∴5.25-1>5.26-1;∵y =5.26x 是增函数,-1>-2,∴5.26-1>5.26-2.综上,5.25-1>5.26-1>5.26-2.9.函数f (x )=(x +3)-2的单调增区间是________.答案 (-∞,-3)解析 y =x -2=1x 2的单调增区间为(-∞,0),单调减区间为(0,+∞),y =(x +3)-2是由y =x-2向左平移3个单位得到的.∴y =(x +3)-2的单调增区间为(-∞,-3).10.已知幂函数f(x)=xm2-1(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f(x)的解析式是__________________.答案f(x)=x-1解析∵函数的图象与x轴,y轴都无交点,∴m2-1<0,解得-1<m<1.∵图象关于原点对称,且m∈Z,∴m=0,∴f(x)=x-1.11.已知x2>13x,则x的取值范围是________________.答案(-∞,0)∪(1,+∞)解析作出函数y=x2和y=13x的图象(如图所示).由图象易知x<0或x>1.12.已知函数f(x)=13ax-在(-∞,0)上是增函数,在(0,+∞)上是减函数,那么最小的正整数α=________. 答案 3解析取值验证.当α=1时,y=x0,不满足;当α=2时,y=13x-,在(0,+∞)上是减函数.∵它为奇函数,∴在(-∞,0)上也是减函数,不满足;当α=3时,y=23x-满足题意.13.已知实数a,b满足等式12a=13b,下列五个关系式:①0<b<a<1;②-1<a<b<0;③1<a<b;④-1<b<a<0;⑤a=b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 答案①③⑤解析首先画出y1=12x与y2=13x的图象(如图),已知12a=13b=m,作直线y=m.若m=0或1,则a=b;若0<m<1,则0<b<a<1;若m>1,则1<a<b.从图象知,成立的是①③⑤.三、解答题14.已知幂函数f (x )=x 3m -5(m ∈N )在(0,+∞)上是减函数,且f (-x )=f (x ),求m 的值. 解 因为f (x )=x 3m -5(m ∈N )在(0,+∞)上是减函数,所以3m -5<0,故m <53. 又因为m ∈N ,所以m =0或m =1,当m =0时,f (x )=x -5,f (-x )≠f (x ),不符合题意; 当m =1时,f (x )=x -2,f (-x )=f (x ),符合题意. 综上知,m =1.15.已知幂函数f (x )=xm 2-2m -3(m ∈Z )在(0,+∞)上单调递减,且为偶函数.(1)求f (x )的解析式;(2)讨论F (x )=af (x )+(a -2)x 5·f (x )的奇偶性,并说明理由.解 (1)由于幂函数f (x )=xm 2-2m -3在(0,+∞)上单调递减,所以m 2-2m -3<0,求得-1<m <3,因为m ∈Z ,所以m =0,1,2.因为f (x )是偶函数,所以m =1,故f (x )=x -4. (2)F (x )=af (x )+(a -2)x 5·f (x )=a ·x -4+(a -2)x . 当a =0时,F (x )=-2x ,对于任意的x ∈(-∞,0)∪(0,+∞)都有F (x )=-F (-x ), 所以F (x )=-2x 是奇函数;当a =2时,F (x )=2x 4,对于任意的x ∈(-∞,0)∪(0,+∞)都有F (x )=F (-x ), 所以F (x )=2x 4是偶函数; 当a ≠0且a ≠2时,F (1)=2a -2,F (-1)=2,因为F (1)≠F (-1),F (1)≠-F (-1),所以F (x )=a x 4+(a -2)x 是非奇非偶函数. 16.已知幂函数f (x )的图象过点(25,5).(1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域.解 (1)设f (x )=x α,则由题意可知25α=5,∴α=12,∴f (x )=12x . (2)∵g (x )=f (2-lg x )=2-lg x ,∴要使g (x )有意义,只需2-lg x ≥0,即lg x ≤2,解得0<x ≤100.∴g(x)的定义域为(0,100],又2-lg x≥0,∴g(x)的值域为[0,+∞).。
浙江省普通高中新课程作业本数学选修4-2、4-4答案
8 NM= .
( )
0 0
0 0 0烌 烌 x 烄 x 烄 , 变换 = 槡 1 , =NM = 槡 1 = 槡 3 3 3 1 ′ 0 1 槡 y y y x+ y 3 1 2 烎 烆2 2烎 烆2 烆2 2 烎 烆2 2烎
( ) ()
2+ x y 2 y
()
3 后的图形是y 轴上的一条线段, 长度为槡 + 1 2 2 9 () .1
(
1 0
)
3 烄1 -槡 烌 烄1 2 2 = 2
3 槡烌 - 2
3 1 槡 烆2 2 烎 烆0 2 烎 2
3 烄′=2 -槡y, x x 2 , 坐标变换公式为烅 = 3 1 1 -槡 1 3 1 槡 0 y 烆2 2 烎 烆 2 烎 烆′= 2y
(
1 0
)
3 烄 -槡 烌 2
1 .A .B .B 2 3 . 4 7 ()MA= .1 0 0 1 2 0 1 0 1 =
4
()A 2 Bα= 8 ()A = .1 B
()矩阵 A 所对应的变换的坐标变换公式 2 B
答 案 与 提 示
( )烆
′ y
=
x ′
烄 1烌 2 0 x 1 2
0 1 0 2 y 1 2
( )() ( )() ( ) 烎
= 0 2 y =
2 1 x
, ∴
{
x = x+ ′ 2 y ′= y y 2
3
→ ()AC = 2 ′ ′
()→ ()
2 ,D= A ′ ′
烄2
2, 2 1 .( ) 1 1 2 - () 3 3
(
)
3 2
1 - 烌 3 1 3烎
- 烆 3
人教A版新课程标准数学必修1课后习题答案【上】
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页) 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x-=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N(或{0,1}N ⊆) {0,1}是自然数集合N的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=)2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ; (2)当2k z =时,36k z =;当21k z =+时,363kz =+, 即B 是A 的真子集,B A ; (3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}A B A B =-=-.3.解:{|}A B x x =是等腰直角三角形,{|}A B x x =是等腰三角形或直角三角形.4.解:显然{2,4,6}UB =,{1,3,6,7}UA =,则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4)2R ∈ 2是实数;(5)9Z ∈93=是个整数; (6)2(5)N ∈ 2(5)5=是个自然数. 2.(1)5A ∈;(2)7A ∉; (3)10A -∈.当2k=时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x-≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠;(3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.(1)4B -∉; 3A -∉; {2}B ; B A ; 2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形; 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x xB x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =,{3,4,5,6}A C =,而{1,2,3,4,5,6}B C =,{3}B C =,则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =. 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}AB x x =是邻边不相等的平行四边形,{|}SA x x =是梯形.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}RA x x x =<≥或,{|2,10}RB x x x =≤≥或,得(){|2,10}RA B x x x =≤≥或,(){|3,7}RA B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y Dx y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y Dx y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U=,由U A B =,得UB A ⊆,即()U UA B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}UB =,而()UU B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤, 得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a=⨯+⨯=+,同理得22()3()2()32f a a a a a-=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32;因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45.1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4x f x x =-; (2)2()f x x =; (3)26()32f x x x =-+; (4)4()1x f x x -=-.1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320xx -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠,即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞ 值域是[2,)-+∞(4)定义 域是(,)-∞+∞值域 是(,)-∞+∞4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+, 即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-,即点(3,14)不在()f x 的图象上; (2)当4x=时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即22d x y =+,得22100(0)d x x x=+>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()lx y =+,而22210,xy d x y ==+,得22222()22220(0)l x y x y xy d d =+=++=+>,即2220(0)ld d =+>.9.解:依题意,有2()2d x vt π=,即24v x t dπ=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤,得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩. B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如右4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤,即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈. 第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值 练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.图象如下3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.1.3.2练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x=-,其定义域为(,)-∞+∞,因为对定义域内每一个x都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x=-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x都有22()11()()x x f x f x x x -++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)函数在5(,)2-∞上 (2) 递减;函数在5[,)2+∞上递增;(2) 函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明: (1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x -> 即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<, 即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-, 当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+, 即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x = 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4] 且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数, 所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =, 即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断. 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->, 因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x=,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线; (2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的,垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a=; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55A B B C =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠, 得函数的定义域为[4,5)(5,)+∞. 7.解:(1)因为1()1x f x x -=+, 所以1()1af a a-=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x -=+,所以1(1)(1)112a a f a a a -++==-+++, 即(1)2af a a +=-+. 8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=; (2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x ++===---, 即1()()f f x x =-. 9.解:该二次函数的对称轴为8k x =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数; 4)函数2y x -=在(,0)-∞上是增函数. B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人), 即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =集合A B 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b=+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b a x x b ++++==++,所以1212()()()22x x f x f x f ++=;(2)因为2()g x x ax b =++得22121212121()(2)()242x x x x g x x x x a b++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b+=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+,所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21ax x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-, 又因为函数()f x 是奇函数,则21()()fx f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数. 7.解:设某人的全月工资、薪金所得为x元,应纳此项税款为y元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
新课标高中数学必修1全册导学案和答案
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形 例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合(B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
【创新设计】高中数学浙江专用人教版必修一练习:3.2习题课(含答案解析)
基础过关1.若对于 x 的方程 x2+ mx+ 1= 0 有两个不相等的实数根,则实数m 的取值范围是 ()A.( - 1, 1)B.(- 2, 2)C.( -∞,- 2)∪(2,+∞ )D.( -∞,- 1)∪ (1,+∞)分析∵方程 x2+ mx+1= 0 有两个不相等的实数根,∴= m2- 4>0 ,∴ m>2 或 m<- 2.答案 C2.在区间 (3,5) 上必定有零点的函数是 ()A.f(x) = 2xln(x - 2)- 3B.f(x) =- x3- 3x+ 5C.f(x) = 2x- 4D.f(x) =-1+ 2 x分析对于选项 A , f(x) 在 (3, 5)上存心义,且f(3) =- 3<0, f(5) =10ln 3 - 3>10ln e- 3= 10- 3>0 ,所以 f(x) = 2xln(x - 2)- 3 在区间 (3 ,5)上有零点,而对于选项B,C,D ,都有 f(3) f(5)>0·,所以函数在区间(3, 5)上不必定有零点 .答案A2- |x|, x≤23.已知函数 f(x) =,函数 g(x) = 3- f(2- x),则函数 y=f(x) - g(x) 的零点个( x- 2)2,x>2数为 ()A.2B.3C.4D.5分析由已知条件可得|x- 2|+ 1,x≥0,g(x) = 3- f(2 - x)=函数 y=f(x) - g(x) 的零点个3- x2, x<0.数即为函数 y=f(x) 与 y=g(x) 图象的交点个数,在平面直角坐标系内作出函数y= f(x) 与 y = g(x)的图象如下图 .由图可知函数y= f(x) 与 y=g(x) 的图象有 2 个交点,所以函数y= f(x) -g(x) 的零点个数为2.答案A14.已知函数 f(x) = x+ log2x,则 f(x) 在2, 2内的零点的个数是 ________.1易知g(x)=x与h(x)=log2x均为增函数,故函数f(x)为增函数,且f(2) f· <0,故2函数有且只有一个零点 .答案 15.某种病毒经30 分钟生殖为本来的 2 倍,且知病毒的生殖规律为y= y0e kt (此中 k 为常数,t 表示时间,单位:小时, y0表示初始病毒数,y 表示病毒个数 ) ,则 k= ________,经过5 小时, 1 个病毒能生殖为 ________ 个.分析当 t= 0.5 时, y= 2y0,12tln 2k,∴ 2= e2,∴ k= 2ln 2 ,∴ y= y0e∴当 t= 5, y0= 1 时, y= e10ln 2= 210=1 024.答案 2ln 2 1 0246.对于 x 的方程 mx2+ 2(m+ 3)x + 2m+ 14= 0 有两实根,且一个大于4,一个小于 4,务实数 m 的取值范围 .解令 f(x) = mx2+ 2(m+ 3)x+ 2m+ 14.m>0,m<0 ,依题意得或f ( 4) <0 f ( 4)>0,m>0,m<0,19即26m+ 38<0或26m+ 38>0 ,解得-13<m<0.故实数 m 的取值范围是-19, 0 .137.心理学家发现,学生对观点的接受能力y 与提出观点所用的时间x(单位:分 )之间知足函数关系式 y=- 0.1x2+2.6x + 43(0 ≤x≤30).值y越大,表示接受能力越强 .(1)x 在什么范围内,学生的接受能力逐渐加强?x 在什么范围内,学生的接受能力逐渐降低?(2) 第 10 分钟时,学生的接受能力是多少?(3) 第几分钟时,学生的接受能力最强?解(1)y =- 0.1x 2+ 2.6x +43=- 0.1(x- 13)2+59.9,所以当 0≤x≤13时,学生的接受能力逐渐加强;当13< x≤30时,学生的接受能力逐渐降低 .(2) 当 x= 10 时, y=- 0.1 ×(10- 13)2+ 59.9=59,故第 10 分钟时,学生的接受能力为59.(3) 当 x= 13 时, y 获得最大值,所以在第13 分钟时,学生的接受能力最强 .8.已知函数 f(x) = a x+x- 2(a> 1). x+ 1(1)求证: f(x) 在 ( -1,+∞)上为增函数;(2)若 a= 3,求方程 f(x) =0 的正根所在的区间 .(1) 证明任取 x1, x2∈ (- 1,+∞),且 x1<x2,则 x2- x1> 0, a x2-x1>1,且 a x1> 0,x2x1x1x2- x1- 1)> 0,所以 a- a= a(a因为 x1+ 1>0, x2+ 1>0,所以x2- 2x1- 23( x2- x1)> 0,-=x2+ 1x1+ 1 ( x1+1)( x2+ 1)于是 f(x 2)-f(x x2x1x2-2-x1- 21)=a-a+x2+ 1x1+> 0. 1故函数 f(x) 在 (- 1,+∞)上为增函数 .(2) 解由 (1) 知当 a=3x x- 2,+∞)上也单时, f(x) = 3 +在 (- 1,+∞)上单一递加,故在 (0x+ 1调递加,所以 f(x) = 0的正根最多有一个 .5因为 f(0) =- 1<0, f(1) => 0,所以方程的正根在(0, 1)内 .能力提升9.方程 0.9x-2x= 0 的实数解的个数是 () 21A.0B.1C.2D.3x2x2x2分析由 0.9-21x=0知 0.9=21x,令 y1= 0.9 , y2=21x,作图 (图略 )可知,两图象有 1个交点,即原方程有 1个实数解 .答案 B10.函数 f(x) = ax2+ bx+c,若 f(1) > 0, f(2)< 0,则 f(x) 在 (1, 2)上零点的个数为 ()A. 至多有一个B. 有一个或两个C. 有且仅有一个D. 一个也没有分析若 a= 0,则 f(x) = ax2+ bx+ c 是一次函数,由已知f(1) f(2)·< 0,得只有一个零点;若 a≠0,则f(x) = ax2+ bx+ c 为二次函数,若在(1,2)上有两个零点,则应有f(1) f(2)·> 0,与已知矛盾.故恰有一个零点.答案C11.已知某市 2010 年末的人口为35 万,若人口的年均匀增加率为x%,2020 年末的人口为y 万,则 2020 年末此市人口y 与 x 的函数关系式为 ________.分析∵ 2010 年末人口为35 万,∴ 2011 年末为 35(1 +x%) ,2012 年末为 35(1+x%) 2,同理可得2020 年末为 35(1+ x%)10,故函数关系式为: y= 35(1+ x%) 10.答案y= 35(1+ x%) 1012.设函数 f(x) =x2+ bx+ c,x≤0,3, x>0,若 f( -4)= f(0) , f( - 2)=- 2,则函数 g(x) = f(x) - x 的零点个数为 ________.分析由 f( -4)= f(0) 可知,抛物线y= x2+ bx+ c 的对称轴是直线x=- 2,所以-b=- 2,解得 b= 4.又 f( - 2)= (- 2)2+4×(- 2)+ c=- 2,解得 c= 2,2x2+ 4x+ 2, x≤0,f(x) - x= 0 的根,而方程故 f(x) =又函数 g(x) = f(x) - x 的零点即为方程3,x> 0.x2+ 4x+ 2=x,或x> 0,解得 x=- 2 或 x=- 1 或 x= 3,f(x) =x?3= x,x≤0即函数 g(x) =f(x) - x 有 3个零点 .答案3x-2x+1b 的取值范围 .13.设对于 x 的函数 f(x) = 4- b(b∈ R),若函数有零点,务实数解原函数有零点等价于方程4x x+1- 2 - b= 0(b∈ R)有根,x x +1有解,即方程 b= 4 -2∴函数 y= b 与函数 y=4x-2x+1有交点,∵y= 4x- 2x+1=(2 x)2- 2×2x= (2x- 1)2- 1≥-1,∴ b≥- 1,∴当 b∈ [- 1,+∞)时函数存在零点 .研究创新14.如下图, A 、B 两城相距100 km ,某天然气企业计划在两地之间建一天然气站 D 给 A 、 B 两城供气 .已知 D 地距 A 城 x km ,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设花费y(万元 )与A 、B 两地的供气距离(km) 的平方和成正比.当日然气站 D 距 A 城的距离为40 km 时,建设花费为 1 300 万元 (供气距离指天然气站距到城市的距离).(1)把建设花费 y(万元 )表示成供气距离 x(km) 的函数,并求定义域;(2)天然气供气站建在距 A 城多远,才能使建设供气花费最小,最小花费是多少?解 (1)由题意知 D 地距 B 地 (100- x)km ,则10≤ 100- x,所以 10≤x≤90. x≥ 10,设比率系数为 k,则 y= k[x 2+ (100-x) 2](10≤ x≤,90)又 x= 40 时, y= 1300,所以 1 300=k(40 2+ 602),112212-100x+ 5 000)(10≤x≤90).即 k=,所以 y= [x+(100- x) ] = (x44212(2) 因为 y= (x - 100x+ 5 000)12= (x- 50)+ 1 250,2所以当 x= 50 时, y 有最小值为 1 250 万元 .所以当供气站建在距 A 城 50 km 处,能使建设花费最小,最小花费是1250万元.。
2018版人教A版浙江专版必修一课后作业:第二章 基本初
2.2.2 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.掌握对数型复合函数奇偶性的判定方法.3.会解简单的对数不等式.4.了解反函数的概念及它们的图象特点.知识点一 y =log a f (x )型函数的单调区间思考 我们知道y =2f (x )的单调性与y =f (x )的单调性相同,那么y =log 2f (x )的单调区间与y =f (x )的单调区间相同吗?答案 y =log 2f (x )与y =f (x )的单调区间不一定相同,因为y =log 2f (x )的定义域与y =f (x )定义域不一定相同.梳理 一般地,形如函数f (x )=log a g (x )的单调区间的求法:①先求g (x )>0的解集(也就是函数的定义域);②当底数a 大于1时,g (x )>0限制之下g (x )的单调增区间是f (x )的单调增区间,g (x )>0限制之下g (x )的单调减区间是f (x )的单调减区间;③当底数a 大于0且小于1时,g (x )>0限制之下g (x )的单调区间与f (x )的单调区间正好相反. 知识点二 对数不等式的解法 思考 log 2x <log 23等价于x <3吗?答案 不等价.log 2x <log 23成立的前提是log 2x 有意义,即x >0, ∴log 2x <log 23⇔0<x <3.梳理 一般地,对数不等式的常见类型: 当a >1时,log a f (x )>log a g (x )⇔⎩⎪⎨⎪⎧f (x )>0(可省略),g (x )>0,f (x )>g (x );当0<a <1时,log a f (x )>log a g (x )⇔⎩⎪⎨⎪⎧f (x )>0,g (x )>0(可省略),f (x )<g (x ).知识点三 不同底的对数函数图象的相对位置思考 y =log 2x 与y =log 3x 同为(0,+∞)上的增函数,都过点(1,0),怎样区分它们在同一坐标系内的相对位置?答案 可以通过描点定位,也可令y =1,对应x 值即底数.梳理 一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴.知识点四反函数的概念思考如果把y=2x视为A=R→B=(0,+∞)的一个映射,那么y=log2x是从哪个集合到哪个集合的映射?答案如图,y=log2x是从B=(0,+∞)到A=R的一个映射,相当于A中元素通过f:x→2x对应B中的元素2x,y=log2x的作用是B中元素2x原路返回对应A中元素x.梳理一般地,像y=a x与y=log a x(a>0,且a≠1)这样的两个函数互为反函数.(1)y=a x的定义域R,就是y=log a x的值域,而y=a x的值域(0,+∞)就是y=log a x的定义域.(2)互为反函数的两个函数y=a x(a>0,且a≠1)与y=log a x(a>0,且a≠1)的图象关于直线y =x对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.类型一对数型复合函数的单调性命题角度1求单调区间log(-x2+2x+1)的值域和单调区间.例1求函数y=12解设t=-x2+2x+1,则t=-(x-1)2+2.log t为减函数,且0<t≤2,≧y=12log2=-1,即函数的值域为[-1,+≦).≧y=12log(-x2+2x+1)的定义域为-x2+2x+1>0,由二次函数的图象知1-2<x<1+再由函数122.log t为减函数.≨t=-x2+2x+1在(1-2,1)上递增,而在(1,1+2)上递减,而y=12log(-x2+2x+1)的增区间为(1,1+2),≨函数y=12减区间为(1-2,1).反思与感悟求复合函数的单调性要抓住两个要点:(1)单调区间必须是定义域的子集,哪怕一个端点都不能超出定义域;(2)f(x),g(x)单调性相同,则f(g(x))为增函数;f(x),g(x)单调性相异,则f (g (x ))为减函数,简称“同增异减”. 跟踪训练1 已知函数f (x )=12log (-x 2+2x ).(1)求函数f (x )的值域; (2)求f (x )的单调性.解 (1)由题意得-x 2+2x >0,≨x 2-2x <0, 由二次函数的图象知,0<x <2.当0<x <2时,y =-x 2+2x =-(x 2-2x )∈(0,1], ≨12log (-x 2+2x )≥12log 1=0.≨函数y =12log (-x 2+2x )的值域为[0,+≦).(2)设u =-x 2+2x (0<x <2),v =12log u ,≧函数u =-x 2+2x 在(0,1)上是增函数,在(1,2)上是减函数,v =12log u 是减函数,≨由复合函数的单调性得到函数f (x )=12log (-x 2+2x )在(0,1)上是减函数,在(1,2)上是增函数.命题角度2 已知复合函数单调性求参数范围例2 已知函数y =12log (x 2-ax +a )在区间(-∞,2)上是增函数,求实数a 的取值范围.解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-≦,a 2上是减函数,≧0<12<1,≨y =12log g (x )是减函数,而已知复合函数y =12log (x 2-ax +a )在区间(-≦,2)上是增函数,≨只要g (x )在(-≦,2)上单调递减,且g (x )>0在x ∈(-≦,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0, ≨22≤a ≤2(2+1),故所求a 的取值范围是[22,2(2+1)].反思与感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练2 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3]D.[3,+∞)答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B. 类型二 对数型复合函数的奇偶性 例3 判断函数f (x )=ln 2-x2+x 的奇偶性.解 由2-x 2+x>0可得-2<x <2,所以函数的定义域为(-2,2),关于原点对称. 方法一 f (-x )=ln 2+x 2-x =ln(2-x 2+x )-1=-ln 2-x2+x=-f (x ), 即f (-x )=-f (x ),所以函数f (x )=ln 2-x2+x 是奇函数.方法二 f (x )+f (-x )=ln 2-x 2+x +ln 2+x2-x=ln(2-x 2+x ·2+x2-x )=ln1=0,即f (-x )=-f (x ),所以函数f (x )=ln 2-x2+x 是奇函数.引申探究若已知f (x )=ln a -xb +x 为奇函数,则正数a ,b 应满足什么条件?解 由a -x b +x>0得-b <x <a .≧f (x )为奇函数,≨-(-b )=a ,即a =b . 当a =b 时,f (x )=ln a -xa +x .f (-x )+f (x )=ln a +x a -x +ln a -xa +x=ln ⎝⎛⎭⎪⎫a +x a -x ·a -x a +x=ln1=0,≨有f (-x )=-f (x ),≨此时f (x )为奇函数. 故f (x )为奇函数时,a =b .反思与感悟 (1)指数函数、对数函数都是非奇非偶函数,但并不妨碍它们与其他函数复合成奇函数(或偶函数).(2)含对数式的奇偶性判断,一般用f (x )±f (-x )=0来判断,运算相对简单. 跟踪训练3 判断函数f (x )=lg(1+x 2-x )的奇偶性. 解 方法一 由1+x 2-x >0可得x ∈R , 所以函数的定义域为R 且关于原点对称, 又f (-x )=lg(1+x 2+x ) =lg (1+x 2+x )(1+x 2-x )1+x 2-x=lg11+x 2-x=-lg(1+x 2-x )=-f (x ), 即f (-x )=-f (x ).所以函数f (x )=lg(1+x 2-x )是奇函数. 方法二 由1+x 2-x >0可得x ∈R , f (x )+f (-x )=lg(1+x 2-x )+lg(1+x 2+x ) =lg[(1+x 2-x )(1+x 2+x )] =lg(1+x 2-x 2)=0. 所以f (-x )=-f (x ),所以函数f (x )=lg(1+x 2-x )是奇函数. 类型三 对数不等式例4 已知函数f (x )=log a (1-a x )(a >0,且a ≠1).解关于x 的不等式:log a (1-a x )>f (1). 解 ≧f (x )=log a (1-a x ),≨f (1)=log a (1-a ). ≨1-a >0.≨0<a <1.≨不等式可化为log a (1-a x )>log a (1-a ).≨⎩⎪⎨⎪⎧ 1-a x >0,1-a x<1-a ,即⎩⎪⎨⎪⎧a x<1,a x >a ,≨0<x <1. ≨不等式的解集为(0,1).反思与感悟 对数不等式解法要点 (1)化为同底log a f (x )>log a g (x );(2)根据a >1或0<a <1去掉对数符号,注意不等号方向; (3)加上使对数式有意义的约束条件f (x )>0且g (x )>0.跟踪训练4 已知A ={x |log 2x <2},B ={x |13<3x <3},则A ∩B 等于( )A.⎝⎛⎭⎫0,12B.(0,2)C.⎝⎛⎭⎫-1,12D.(-1,2)答案 A解析 log 2x <2,即log 2x <log 24,等价于⎩⎪⎨⎪⎧x >0,x <4,≨A =(0,4).13<3x <3,即3-1<3x <123, ≨-1<x <12,B =⎝⎛⎭⎫-1,12.≨A ∩B =⎝⎛⎭⎫0,12.1.如图所示,曲线是对数函数f (x )=log a x 的图象,已知a 取3,43,35,110,则对应于C 1,C 2,C 3,C 4的a 值依次为( ) A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,35 答案 A2.如果12log x <12log y <0,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x答案 D3.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )等于( ) A.log 2x B.12x C.12log xD.2x -2答案 A4.函数f(x)=lg 1-x1+x(x∈R)是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数答案 A5.函数f(x)=ln x2的减区间为____________.答案(-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y=a x与x=log a y图象是相同的,只是为了适应习惯用x表示自变量,y表示因变量,把x =log a y换成y=log a x,y=log a x才与y=a x关于y=x对称,因为(a,b)与(b,a)关于y=x对称.课时作业一、选择题1.函数f(x)=12log(x2-4)的单调递增区间为()A.(0,+∞) B.(-∞,0)C.(2,+∞) D.(-∞,-2)答案 D解析由x2-4>0得x<-2或x>2.令u=x2-4,则u的单调递增区间为(2,+≦),单调递减区间为(-≦,-2).又y=12log u为减函数,故f(x)的单调递增区间为(-≦,-2).2.函数y=a x与y=-log a x (a>0,且a≠1)在同一坐标系中的图象只可能是()答案 A解析 当a >1时,指数函数y =a x 为增函数,而对数函数y =-log a x =1log ax 为减函数.故选A.3.已知log a 12<1,那么a 的取值范围是( )A .0<a <12B .a >12C.12<a <1 D .0<a <12或a >1答案 D解析 当a >1时,由log a 12<log a a 知a >12,故a >1;当0<a <1时,由log a 12<log a a 知0<a <12,故0<a <12.综上知:a 的取值范围是0<a <12或a >1.4.若函数y =log a |x -2|(a >0,且a ≠1)在区间(1,2)上是增函数,则f (x )在区间(2,+∞)上的单调性为( ) A .先增后减 B .先减后增 C .单调递增 D .单调递减答案 D解析 当1<x <2时,函数f (x )=log a |x -2|=log a (2-x )在区间(1,2)上是增函数,所以0<a <1;函数f (x )=log a |x -2|在区间(2,+≦)上的解析式为f (x )=log a (x -2)(0<a <1),故在区间(2,+≦)上是一个单调递减函数.5.已知函数y =log 2(x 2-2kx +k )的值域为R ,则k 的取值范围是( ) A .0<k <1 B .0≤k <1 C .k ≤0或k ≥1 D .k =0或k ≥1答案 C解析 令t =x 2-2kx +k ,由y =log 2(x 2-2kx +k )的值域为R ,得函数t =x 2-2kx +k 的图象一定恒与x 轴有交点,所以Δ=4k 2-4k ≥0,即k ≤0或k ≥1.6.已知函数y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2) D .[2,+∞)答案 C解析 由已知可得a >1,当x ∈[0,1]时,2-ax >0恒成立,≨a <2.≨1<a <2. 7.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 答案 A解析 因为f (x )=ln(1+x )-ln(1-x )=ln 1+x1-x , 又f (-x )=ln 1-x 1+x =ln ⎝ ⎛⎭⎪⎫1+x 1-x -1=-ln 1+x 1-x=-f (x ),所以f (x )是奇函数.设u =1+x1-x ,则y =ln u ,又因为u =1+x1-x 在(0,1)上为增函数,且y =ln u 为增函数,所以由复合函数性质得y =f (x )在(0,1)上是增函数. 二、填空题8.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(32,23),则a =________.答案2解析 因为点(32,23)在y =f (x )的图象上,所以点(23,32)在y =a x 的图象上,则有32=a 23,即a 2=2,又因为a >0,所以a = 2.9.函数y =log 2(x 2-1)的增区间为________.答案 (1,+∞)解析 由x 2-1>0解得定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+≦)上单调递增,≨函数的增区间为(1,+≦).10.不等式12log (4x +2x +1)>0的解集为_________________________________________.答案 (-∞,log 2(2-1))解析 由12log (4x +2x +1)>0,得4x +2x +1<1,即(2x )2+2·2x <1,配方得(2x +1)2<2, 所以2x <2-1,两边取以2为底的对数, 得x <log 2(2-1).11.已知函数f (x )为奇函数,且当x >0时,f (x )=log 2x ,则满足不等式f (x )>0的x 的取值范围是____________. 答案 (-1,0)∪(1,+∞)解析 ≧函数f (x )为奇函数,≨f (x )=-f (-x ). ≧x <0时,-x >0,≨f (-x )=log 2(-x )=-f (x ), 即f (x )=-log 2(-x ).当x >0时,由log 2x >0,解得x >1; 当x <0时,由-log 2(-x )>0,解得x >-1, ≨-1<x <0.综上,x 的取值范围为(-1,0)∪(1,+≦).12.已知函数f (x )=lg(x +1),则不等式0<f (1-2x )-f (x )<1的解集为________________. 答案 (-23,13)解析 不等式0<f (1-2x )-f (x )<1, 即0<lg(2-2x )-lg(x +1)=lg2-2xx +1<1. 由⎩⎪⎨⎪⎧2-2x >0,x +1>0,得-1<x <1. 由0<lg2-2x x +1<1得1<2-2xx +1<10. 因为x +1>0,所以x +1<2-2x <10x +10, 解得-23<x <13.由⎩⎪⎨⎪⎧-1<x <1,-23<x <13, 得-23<x <13. 13.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数,≨f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,≨a +log a 2+1=a ,≨log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,≨f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,≨a +log a 2+1=a ,≨a =12.综上所述,a =12. 三、解答题14.已知函数y =lg(21+x-a )是奇函数,求实数a 的值. 解 由函数y =lg(21+x-a )是奇函数,得 lg(21-x -a )=-lg(21+x -a )=lg 121+x-a , 即21-x -a =121+x -a , 化简得4-4a +a 2(1-x 2)=1-x 2,所以⎩⎪⎨⎪⎧4-4a =0,a 2=1,解得a =1. 15.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在(-∞,-12)上为增函数,求实数a 的取值范围. 解 (1)当a =-1时,f (x )=12log (x 2+x +1),≧x 2+x +1=(x +12)2+34≥34,≨12log (x 2+x +1)≤12log 34=2-log 23, ≨f (x )的值域为(-≦,2-log 23].y =x 2+x +1在(-≦,-12]上递减,在[-12,+≦)上递增,y =12log x 在(0,+≦)上递减, ≨f (x )的增区间为(-≦,-12], 减区间为[-12,+≦). (2)令u =x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ≧f (x )在⎝⎛⎭⎫-≦,-12上为单调增函数, 又≧y =12log u 为单调减函数,≨u 在(-≦,-12)上为单调减函数,且u >0在⎝⎛⎭⎫-≦,-12上恒成立.⎝⎛⎭⎫提示:⎝⎛⎭⎫-≦,-12⊆⎝⎛⎭⎫-≦,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12. 16.如图所示,过函数f (x )=logc x (c >1)的图象上的两点A ,B 作x 轴的垂线,垂足分别为M (a,0),N (b,0)(b >a >1),线段BN 与函数g (x )=log m x (m >c >1)的图象交于点C ,且AC 与x 轴平行.(1)当a =2,b =4,c =3时,求实数m 的值;(2)当b =a 2时,求m b -2c a的最小值; (3)已知h (x )=a x ,φ(x )=b x ,若x 1,x 2为区间(a ,b )内任意两个变量,且x 1<x 2,求证:h [f (x 2)]<φ[f (x 1)].(1)解 由题意得A (2,log 32),B (4,log 34),C (4,log m 4),因为AC 与x 轴平行,所以log m 4=log 32,所以m =9.(2)解 由题意得A (a ,log c a ),B (b ,log c b ),C (b ,log m b ),因为AC 与x 轴平行,所以log m b =log c a ,因为b =a 2,所以m =c 2,所以m b -2c a =c 2a 2-2c a=⎝⎛⎭⎫c a -12-1, 所以c a =1时,m b -2c a取得最小值-1. (3)证明 因为a <x 1<x 2<b ,且c >1, 所以log c a <log c x 1<log c x 2<log c b , 又因为a >1,b >1,所以a log c x 2<a log c b ,b log c a <b log c x 1, 又因为log c b ·log c a =log c a ·log c b , 所以log c a log c b =log c b log c a , 所以a log c b =b log c a ,所以a log c x 2<b log c x 1, 即h [f (x 2)]<φ[f (x 1)].。
2020-2021年高一数学作业本必修一答案
2020-2021年高一数学作业本必修一答案高中新课程作业本数学必修1答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠ 时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩ 綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂UB={2},∴-6 綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2 时,B={x|x2+2x-24=0}={-6,4},∴-6 綂UB,而2∈綂UB,满足条件A∩ 綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2}, ∴2 綂UB,与条件A∩ 綂UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2, a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润,则总利润就.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得值840元,即定价为18元时,日均利润.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有的实数解,即xax+b=x(*)只有实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立. 2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a<1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=log328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)1时,00.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2. 2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x 对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1 )(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1,2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 12575)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298|-0.625+0.5625|<0.1,故x2=-0.5625是原方程的近似解,同理可得x3=1 5625. 3 1 2用二分法求方程的近似解(二)1.D.2.B.3.C.4.1.5.1.6.2 6.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a>134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解. 3 2函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个).(2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1.012≈15(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y 万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1. (第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)1 5m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.(2)由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max =31.2.故第二年的养鸡规模,共养鸡31.2万只.单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在017.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg).综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125.17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0, ∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0).16.2.17.(1,1)和(5,5).18.-2.19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞).(2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a<x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)(x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有值10 75万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有值10 50万元.综上所述,年产量为500盒时工厂所得利润.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)=-(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2), -(x-3)2+3(2<x <4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取值为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念.集合集合地含义与表示.{}.{∈}.{,-}.{(),(),(),(),()}..列举法表示为{(),()},描述法地表示方法不唯一,如可表示为(),..集合间地基本关系. ,{},{},{}. .①③⑤.≥{ ,{},{},{}}∈..集合地基本运算(一).{≤≤}.{}.∪{<,或≥}∪{}..{,或<<}.提示:∵∪,∴.而{,},对进行讨论:①当时,无实数解,此时Δ<,∴<<.②当≠时,{}或{}或{};当{}时,;当{}或{}时,Δ,±,但当±时,方程地解为±,不合题意.b5E2R。
集合地基本运算(二).{≥,或≤}或∈..{}.{>,或≤}{}{}.地可能情形有{}{}{}{}{}{}..提示:∵∩綂{},∴∈,∴,∴{}{},∵∩綂{},∴-綂,∴-∈,将代入,得,或.①当时{}{},∴綂,而∈綂,满足条件∩綂{}.②当时{}{},p1Ean。
∴綂,与条件∩綂{}矛盾..函数及其表示函数地概念(一)∪∞.[∞)..().(){≠,且≠}...()略.().函数地概念(二).{∈≠,且≠}.[,∞)..()≠.()[∞)..(].∩∪[∞).[).函数地表示法(一).略...略.函数地表示法(二).略.()=(≤<),(≤≤).().提示:设(),由(),得,又()(),即()()(),展开得(),所以,,解得,.(<≤),(<≤),(<≤),(<≤).略..函数地基本性质单调性与最大(小)值(一).[),[),[]∞<..略.单调递减区间为(∞),单调递增区间为[∞).略≥..设-<<<,则()-()=-=()()()(),∵-<-<+<->,∴()()()()>,∴函数=()在(-,)上为减函数.DXDiT。
单调性与最大(小)值(二).()()(<<).(]..日均利润最大,则总利润就最大.设定价为元,日均利润为元.要获利每桶定价必须在元以上,即>.且日均销售量应为()·>,即<,总利润()[()·](<<),配方得(),所以当∈()时,取得最大值元,即定价为元时,日均利润最大.RTCrp。
奇偶性.答案不唯一,如..()奇函数.()偶函数.()既不是奇函数,又不是偶函数.()既是奇函数,又是偶函数.()()(≥),()(<).略..当时,()是偶函数;当≠时,既不是奇函数,又不是偶函数. ,,.提示:由(-)-(),得,∴(),∴() .∴()().∵()<,∴()<<<<.∵∈,∴,∴.5PCzV。
单元练习..{}.[)∪(].<()<().()(≤≤),(>).{≤≤}.()只有唯一地实数解,即(*)只有唯一实数解,当()有相等地实数根,且≠时,解得(),当()有不相等地实数根,且其中之一为方程(*)地增根时,解得().jLBHr。
.()∈,又()()(),所以该函数是偶函数.()略.()单调递增区间是[],[∞),单调递减区间是(∞],[].xHAQX。
.()()×()××()×××.()()(≤≤),(<≤),(<≤)..()值域为[∞).()若函数()在定义域上是减函数,则任取∈(]且<,都有()>()成立,即()>,只要<即可,由于∈(],故∈(),<,即地取值范围是(∞).LDAYt。
第二章基本初等函数(Ⅰ).指数函数指数与指数幂地运算(一)(∈).().()..原式(<),(≤≤),(>).原式..当为偶数,且≥时,等式成立;当为奇数时,对任意实数,等式成立.指数与指数幂地运算(二)..()∞.()∈≠,且≠.原式..原式()·..原式.指数与指数幂地运算(三)..由,得,所以() ..提示:先由已知求出()(),所以原式..指数函数及其性质(一).()>..()图略.()图象关于轴对称..().()当时有最小值;当时有最大值..当>时,>,解得{>};当<<时,<,解得{<}. 指数函数及其性质(二).()<.()<.()>.()>..{≠},{>,或<}<>π>..().()<≤>>>..()()(≥),(<).()略>.指数函数及其性质(三).向右平移个单位.(∞)..由已知得()≤,由于,所以≥,所以后才可驾驶..()>()>()×()≈(人)..指数函数满足()·()();正比例函数(≠)满足()()()...对数函数对数与对数运算(一).().()..().().().().().().().()..(),所以()(>,且≠).()由><,且≠,得<<,且≠..由条件得,所以,则..左边分子、分母同乘以,去分母解得,则.对数与对数运算(二)..原式×÷..由已知得(),再由>>>,可求得.略..由已知得(),解得或.对数与对数运算(三)..提示:注意到以及,可得答案为..由条件得,则去分母移项,可得(),所以.∈(,).对数函数及其性质(一)分钟.①②③.≤≤.提示:注意对称关系..对()<进行讨论:①当>时<<,得<<;②当<<时>,得>. :,,,..由(),得①,方程()即·有两个相等地实数根,可得,将①式代入,得,继而.对数函数及其性质(二).(∞) <<.<<.()由>得>.()>..图略,()地图象可以由地图象向左平移个单位得到..根据图象,可得<<<.()定义域为{≠},值域为.().对数函数及其性质(三),..().()奇函数,理由略.{,,,,,,,}..().()如..可以用求反函数地方法得到,与函数()关于直线对称地函数应该是,和关于直线对称地函数应该是..()()().()()().猜想()(),证明略.幂函数.①④<<..(∞)∪()..图象略,由图象可得()≤地解集∈[].图象略,关于对称. ∈.定义域为(∞)∪(,∞),值域为(,∞),是偶函数,图象略. 单元练习.>.④.提示:先求出..().().∈,>,讨论分子、分母得<<,所以∈..().()设()=()-,则()在[]上为增函数()>对∈[]恒成立,<()-..()函数(>),在(]上是减函数,[∞)上是增函数,证明略. ()由()知函数(>)在[]上是减函数,所以当时有最大值;当时有最小值.()≤,当>时,函数在[,]上为增函数,(),此时;当<<时,函数[,]上为减函数,(),此时.∴,或.Zzz6Z。
.()(),定义域为().()提示:假设在函数()地图象上存在两个不同地点,使直线恰好与轴垂直,则设()()(≠),则()(),而()()()()()()()()①②,可证①,②同正或同负或同为零,因此只有当时()(),这与假设矛盾,所以这样地两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数地应用dvzfv。
函数与方程方程地根与函数地零点.如:()()≤..函数地零点为,,.提示:()()()()()()..()(∞)∪().()..()设函数(),当Δ时,可得,代入不满足条件,则函数()在(,)内恰有一个零点.∴()·()=×()<,解得>.rqyn1。
()∵在[,]上存在,使(),则()·()≤,∴()×()≤,解得≤. .在(,),(),( )内有零点..设函数()=.由函数地单调性定义,可以证明函数()在(∞)上是增函数.而()<()>,即()·()<,说明函数()在区间(,)内有零点,且只有一个.所以方程在(,)内必有一个实数根.Emxvx。
用二分法求方程地近似解(一).[,]..提示:先画一个草图,可估计出零点有一个在区间(,)内,取与地平均数,因( ) >,且()<,则零点在(,)内,再取出,计算( ) ,则零点在()内.以此类推,最后零点在()内,故其近似值为.SixE2。
..设(),∵(),∴是方程地解.又( ) <( ) >,∈( ),又∵( ) >,∴∈( ).又∵( ) <,∴∈( ),由<,故是原方程地近似解,同理可得.6ewMy。
用二分法求方程地近似解(二)>..画出图象,经验证可得,适合,而当<时,两图象有一个交点,∴根地个数为..对于(),其图象是连续不断地曲线,∵()>,()>,()<,∴它在(,),(,)内都有实数解,则方程在区间[,]内至少有两个实数根.,或..由>,>,()(),得(<<),由图象可知,>或≤时无解;或<≤时,方程仅有一个实数解;<<时,方程有两个实数解.kavU4。
函数模型及其应用..几类不同增长地函数模型..()设一次订购量为时,零件地实际出厂价恰好为元,则(个). ()()(<≤∈*),(<<∈*),(≥∈*)..()年后该城市人口总数为×().()年后该城市人口总数为×()×≈(万).()设年后该城市人口将达到万人,即×()≈(年)..设对乙商品投入万元,则对甲商品投入万元.设利润为万元,∈[].∴()()[()],∴当,即时,.所以,投入甲商品万元、乙商品万元时,能获得最大利润万元.y6v3A。
.设该家庭每月用水量为,支付费用为元,则≤≤,①()>.②由题意知<<,所以<.由表知第、月份地费用均大于,故用水量,均大于,将,分别代入②式,得(),M2ub6。
(),∴.③再分析月份地用水量是否超过最低限量,不妨设>,将代入②,得()与③矛盾,∴≥月份地付款方式应选①式,则,代入③,得.因此.0YujC。
(第题).根据提供地数据,画出散点图如图:由图可知,这条曲线与函数模型接近,它告诉人们在学习中地遗忘是有规律地,遗忘地进程不是均衡地,而是在记忆地最初阶段遗忘地速度很快,后来就逐渐减慢了,过了相当长地时间后,几乎就不再遗忘了,这就是遗忘地发展规律,即“先快后慢”地规律.观察这条遗忘曲线,你会发现,学到地知识在一天后,如果不抓紧复习,就只剩下原来地.随着时间地推移,遗忘地速度减慢,遗忘地数量也就减少.因此,艾宾浩斯地实验向我们充分证实了一个道理,学习要勤于复习,而且记忆地理解效果越好,遗忘得越慢.eUts8。
函数模型地应用实例.汽车在内行驶地路程为.;越大.() .().从年开始..()应选(),因为①是单调函数,②至多有两个单调区间,而()可以出现两个递增区间和一个递减区间.()由已知,得,(),>,解得.∴函数解析式为()..设()(≠),则(),() ,() ,解得,∴() ××,再设(),则(),() ,() ,解得,,,∴() ×,经比较可知,用×( ) 作为模拟函数较好..()设第年地养鸡场地个数为(),平均每个养鸡场养()万只鸡,则()=,(),且点(())在同一直线上,从而有:()(,,,,).而()(),且点(())在同一直线上,从而有()(,,,,,).于是有()()(万只),所以()·()(万只),故第二年养鸡场地个数是个,全县养鸡万只.sQsAE。