四种方法巧求最小公倍数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种方法巧求最小公倍数
在学习求两个数的最小公倍数时,我们学习小组通过认真思考,总结出了求最小公倍数的巧方法,我们愿介绍给大家:
一、特殊情况特殊处理
首先观察题目中两个数的关系,特殊情况有两种。
1、大数是小数的倍数,那么大数就是它们的最小公倍数。如:求12和48的最小公倍数,因为48是12的倍数,所以12和48的最小公倍数是48。
2、两数是互质数,那么它们的乘积就是它们的最小公倍数。如:求5和9的最小公倍数,因为5和9互质,5×9=45就是它们的最小公倍数。
二、一般情况下,有四种方法
1、排列倍数法:将两个数的倍数从小到大依次排列,直到出现相同的倍数。如:求12和18的最小公倍数。
12的倍数有:12243648……
18的倍数有:183654……
那么12和18的最小公倍数就是36.
2、分解质因数法:将两个数分别写成质因数相乘的形式,找出公有因数和独有因数,求出它们的积,就是这两个数的最小公倍数。如:求12和18的最小公倍数。
12=2×2×318=2×3×3其中2、3为公有因数,另一个2、3为独有因数,它们的最小公倍数为2×3×2×3=36。
3、短除法:就是用短除法将两个数分解质因数,然后再求它们的最小公倍数,如:求30和45的最小公倍数:
30= 2×3×5 45=3×3×5 30和45有共同的质因素3、5 ,所以30和45的最小公倍数为:2×3×3×5=90
4、大数扩大法:如果两数不是互质,也没有倍数关系时,就是将较大的数依次扩大2倍,3倍,4倍……等,直到出现第一个为较小数的倍数的数,就是它们的最小公倍数。
如:求12和20的最小公倍数。
先用20×2=4040不是12的倍数。
再用20×3=6060是12的倍数,那么60就是12和20的最小公倍数。
如何简便求出三个数的最小公倍数
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。最小公倍数的表示:数学上常用方括号表示。如[12,18,20]即12、18和20的最小公倍数。最小公倍数的求法:求几个自然数的最小公倍数,有两种方法:
(1)分解质因数法。先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因数以及每个数的独有的质因数全部连乘起来,所得的积就是它们的最小公倍数。例如,求[12,18,20],因为12=2^2×3,18=2×3^2,20=2^2×5,其中三个数的公有的质因数为2,两个数的公有质因数为2与3,每个数独有的质因数为5与3,所以,[12,18,20]=2^2×3^2×5=180。(可用短除法计算)
(2)公式法。由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。