傅里叶变换光学
傅里叶光学第4章-透镜的位相调制和傅里叶变换性质课件
其中,
tl
x,
y
exp
j
k 2f
x2 y2
P
x,
y
exp
j
k 2f
x2 y2
表示透镜对入射波前的位相调制;
P x, y 表示透镜对于入射波前大小范围的限制。
2、透镜的傅里叶变换性质
✓ 回顾一下:利用透镜实现夫琅和费衍射,可以在透镜的焦平面上得到 入射场的空间频谱,即实现傅里叶变换的运算。
下面具体分析一下厚度函数(x,y)和透镜主要结构参数(构成透镜的两个球 面的曲率半径R1和R2)之间的关系。
x, y 1 x, y 2 x, y
将透镜一剖为二
x2 y2
1 R12
1
x2 y2 2R12
1
x,
y
01
R1
R12
x2 y2
01
R1
1
1
x2 y2
U f
xf , yf
Af jd
2
exp
j
k 2d
xf 2 yf 2
•T
xf d
,
yf d
对应的强度分布为
I f
xf , yf
Af d 2
2
T
xf d
,
yf d
2
2、透镜的傅里叶变换性质
总结一下:
✓ 在单色平面波照明下,无论物体位于透镜前方、后方还是紧靠透镜, 在透镜的后焦面上都可以得到物体的功率谱;对于这样的照明方式,透 镜后焦面常称为傅里叶变换平面或(空间)频谱面。
2、透镜的傅里叶变换性质
✓ 如果d=f,物体在透镜前 焦面,二次位相弯曲消失, 后焦面的光场分布是物体准 确的傅里叶变换。
✓ 如果d=0,物体在透镜前端面, 由于变换式前的二次位相因子, 使物体的频谱也产生一个位相 弯曲。
傅里叶变换光学系统
傅里叶变换光学系统傅里叶变换光学系统,简称FT光学系统,是一种通过光学方法对物体进行分析的技术。
其基本原理是利用傅里叶变换的思想,将物体在空间域的信息转换为频域的信息,然后通过相同的方式将频域信息还原为空间域信息。
一、傅里叶变换的基本原理傅里叶变换是一种将函数从时域转换到频域的技术。
其基本原理是将一个函数按照不同频率分解成一系列正弦波的和。
具体来说,傅里叶变换可以分为以下几个步骤:1. 对原函数在时间域上进行分段,使其转化为一系列长度为Δt 的小区间。
2. 对每一个小区间的函数值进行离散化处理,生成离散的数据序列。
3. 对离散的数据序列进行傅里叶变换,求出在频域上的频率分量。
4. 通过反傅里叶变换,将在频率域的信息还原为在时间域上的信息。
二、傅里叶变换在光学系统中的应用在光学系统中,傅里叶变换可以将一个物体的透射率函数转换为空间域和频域的关系。
通过加入透镜、像差校正等光学器件,可以实现将频域信息转换为对应的光学信号,进而生成一个光学图像。
这种光学图像可以对物体进行解析,便于对物体形状、大小、结构等信息进行研究。
FT光学系统广泛应用于生物医药、材料科学、光学工程等领域中。
三、傅里叶变换光学系统的优点与不足优点:1. 精度高:通过光学技术,可以获取高精度的物体信息,尤其是对于那些复杂的结构物体。
2. 兼容性好:FT光学系统可以与其他光学测量仪器、成像系统等进行互相配合,丰富了光学分析工具的功能。
3. 速度快:由于光子的速度极快,FT光学系统的成像速度也可以达到很高的水平。
不足:1. 设备成本高:由于FT光学系统需要使用高质量、高精度的光学仪器,因而设备成本较高。
2. 实验难度大:FT光学系统需要经过实验测试,对于初学者来说,实验难度比较大。
3. 约束条件多:FT光学系统对光源、光路、光学器件等条件的约束较多,安装过程比较繁琐。
总之,傅里叶变换光学系统在解析复杂物体、研究物体结构等方面有很大优势,并得到了广泛应用。
傅里叶变换光学
傅里叶变换光学LT22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R=-- (5)代入(3)得: 220(,)exp()exp[()]2k t x y jknD j xy f =-+(6)式(6)即是透镜位相调制的表达式,它表明复振幅(,)LU x y 通过透镜时,透镜各点都发生位相延迟。
从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
第二项22exp[()]2k j xy f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。
而且与透镜的焦距有关。
当考虑透镜孔径后,有:22(,)exp[()](,)2kt x y jx y p x y f=-+(7)其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ⎧=⎨⎩ 孔径内其 它(8)2、透镜的傅里叶变换性质在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。
衍射图像的强度分布正比于衍射屏的功率谱分布。
一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。
如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。
为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。
图2 透镜的傅里叶变换性质设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)ffE x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。
傅里叶光学的实验报告(3篇)
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
信息光学中的傅里叶变换
为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪
光学傅里叶变换原理
光学傅里叶变换原理傅里叶变换是一种数学工具,用于将一个函数( 或信号)从时间 或空间)域转换到频率域。
在光学中,傅里叶变换也具有重要的应用,尤其是在描述光波传播、光学系统和图像处理等方面。
傅里叶变换原理涉及到以下重要概念和原则:1.(傅里叶级数:傅里叶级数指的是将周期性函数分解为一系列正弦和余弦函数的和的过程。
它表明任何周期性函数都可以表示为不同频率的正弦和余弦函数的叠加。
2.(连续傅里叶变换 Continuous(Fourier(Transform):对于连续信号,傅里叶变换将信号从时域转换到频域。
它描述了信号在频率空间中的频谱特性,展示了信号由哪些频率分量组成。
3.(离散傅里叶变换 Discrete(Fourier(Transform):对于离散数据集合,比如数字图像或采样信号,离散傅里叶变换用于将这些离散数据从时域转换到频域。
它在数字信号处理和图像处理中得到广泛应用,用于分析和处理频率特性。
4.(光学中的应用:在光学中,傅里叶变换可以描述光的传播和衍射现象。
例如,傅里叶光学理论表明,光学系统(如透镜、光栅等)可以看作是对光波进行空间域的傅里叶变换。
这种理论有助于理解光的传播特性,并在光学系统设计和成像技术中发挥重要作用。
5.(变换原理:傅里叶变换原理表明,任何一个信号都可以通过傅里叶变换分解成一系列不同频率的正弦和余弦函数。
这种变换可以帮助我们理解信号的频率成分,并对信号进行处理、滤波或合成。
总的来说,傅里叶变换原理提供了一种从时域到频域的转换方法,在光学中,它被广泛应用于光波传播、光学系统设计和图像处理等领域,为我们理解和处理光学现象提供了重要的工具。
光学4f系统的傅里叶变换原理
光学4f系统的傅里叶变换原理
光学4f系统是一种常见的光学传递系统,由两个透镜组成,分别称为前透镜和后透镜,它们之间的距离为f。
该系统可以实现对输入光场的傅里叶变换。
傅里叶变换原理是指输入光场通过光学4f系统后,可以得到输出光场的傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法,可以将一个信号分解成一系列的频率成分。
在光学4f系统中,输入光场首先经过前透镜,前透镜将输入光场进行傅里叶变换,将其分解成一系列的平面波。
这些平面波经过后透镜后,再次叠加在一起,形成输出光场。
输出光场可以通过适当选择前透镜和后透镜的焦距以及它们之间的距离f,来实现对输入光场的傅里叶变换。
具体来说,如果前透镜的焦距为f1,后透镜的焦距为f2,则前透镜和后透镜之间的距离为f=f1+f2。
根据傅里叶变换的性质,输入光场经过前透镜后,可以表示为前透镜的传递函数H1与输入光场的乘积。
同样地,输出光场可以表示为后透镜的传递函数H2与前透镜的传递函数H1与输入光场的乘积。
因此,输出光场可以表示为H2H1与输入光场的乘积。
通过选择合适的传递函数H1和H2,可以实现对输入光场的傅里叶变换。
常见
的选择是使H1和H2为透镜的传递函数,即H1和H2都为复振幅调制函数。
这样,输出光场可以表示为输入光场的傅里叶变换。
总之,光学4f系统的傅里叶变换原理是通过选择适当的透镜传递函数,使得输入光场经过前透镜和后透镜后,可以得到输出光场的傅里叶变换。
这一原理在光学信号处理和图像处理中有广泛的应用。
第五章傅里叶变换光学
会聚 exp[ik x2 y2 ] 2z
5.1.3 相因子分析法
近轴条件下典型光波场在平面波前(x,y)上的相因子
轴上物点球面波(续)
(1 x) 1 x, (x 0) 2
x
r
(x, y)
z
Oz y
r
z2 2 z
1
2
z2
z(1
1 2
2
z2
)
x2 y2
exp[ikr] exp[ikz]exp[ik
(1)若已知衍射屏的屏函数,就可以确定衍射场,进而完全确定接收场。
(2)但由于衍射屏的复杂性以及衍射积分求解的困难,多数情况下解析 的完全确定屏函数几乎是不可能的。
(3)因此,只能采取一定的近似方法获取衍射场的主要特征。
(4)如果知道了屏函数的相位,则能通过研究波的相位改变来确定波场 的变化。这种方法称为相因子判断法。
场或者波面产生改变的因素,它们的作用都可以应用变换的方法处理。
5.1.1 傅里叶变换光学概述
傅里叶变换光学与经典波动光学的关系(衍射)
傅里叶变换光学
傅里叶光谱仪
空间滤波与信 息处理
像质评价与传 递函数
光栅光谱仪
晶体衍射
阿贝成像 原理
点扩展 函像
衍射波前 再现
衍射应用
x
(x, y)
yOz
z
近轴条件 r0 z
r (x x0 )2 ( y y0 )2 z2
z2 x02 y02 x2 y2 2(xx0 yy0 )
r0
1 x2 y2 2(xx0 yy0 )
r02
r02
r0(1
x2 y2 2r02
xx0 yy0 r02
)
光学经典理论傅里叶变换
光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
光学_郭永康_第六章1傅里叶变换
二. 任意光栅的屏函数及其傅里叶级数展开
严格空间周期性函数的衍射屏 (透射式或反射式) 光栅
一 周期性 T (x d) T (x)
正弦光栅 黑白光栅
维 衍 射
尺寸D 有限
x
D , or
N
D
其他屏函数
1
2
d
屏
在一定的较大范围内的周期函数—准周期函数
(1) 正弦余弦式
x a
)
1 0
x x
a 2
a
2
傅 二维矩形函数
里 叶
rect(
x a
)rect(
y b
)
1 0
xa,y b 22
其它各处
变
圆函数 circ(
x2 y2 1 )
x2 y2 a
a
0 其它各处
换 对
1cos(2f0 x ) g( x )
x L 2 L
0
x 2
高斯函数 g(x) exp(ax2 )
一幅图像是一种光的强度和颜色按空间的分布,这种 分布的特征可用空间频率表明。把图象看作是由各种 方向、各种间距的线条组成。
2. 空间频谱(spatial frequency spectrum)
简谐振动是最简单的周期性运动,几个简谐运动可合 成一个较复杂的周期性运动。 傅里叶分析:已知一周期性运动,求组成它的各个简 谐运动频率及相应振幅的方法。 所得的频率及相应振幅的集合为该周期性运动的频谱。
阿贝成像原理 Abbe imaging principle
空间频谱滤波 spatial frequency filtering 光全息术 holography
CH 6-1
光学第六篇傅里叶变换光学简介
复杂波场: 分解为一系列平面波或球面波成分
波的类型和特性 波前相因子
波前相因子
方向角的余角
线性相因子
系数(cosx,cosy)或 (sin1,sin2)与平面 波的传播方向一一对应。
U2 U1
ik x2 y2
e 2fBiblioteka 凹透镜和凸透镜的情况相同,
只是焦距一个为负,一个为正。
相位型
例题:求薄透镜傍轴成像公式:
在傍轴条件下:U1 ( x,
y)
ik x2 y2
A1e 2s
ik x2 y2
透镜函数:tL (x, y) e 2 f
s
s’
ik x2 y2
ik x2 y2
U2 (x, y) tL (x, y)U1(x, y) e 2 f
二维 tP ( x, y) eik (n1() 1x+2 y)
例题:推导棱镜傍轴成像公式:
傍轴条件:
ik x2 y2
s
U1(x, y) A1e 2s
ik x2 y2 ik (n1) x
U2 (x, y) tP (x, y) U1(x, y) A1e 2s
(n1)s 2 x(n1)s 2 y2
第六章 傅里叶变换光学简介
第六章 傅里叶变换光学简介
1、衍射系统 波前变换 2、相位衍射元件 3、波前相因子分析法 4、余弦光栅的衍射场 5、傅里叶变换 6、超精细结构的衍射 隐失波 7、阿贝成像原理与空间滤波 8、光学信息处理列举 9、泽尼克的相衬法
惠更斯-菲涅耳原理 光波衍射
菲涅耳衍射 夫琅禾费衍射
二维波前 决定 三维波场
二维波前 决定 三维波场
Double-helix Point Spread Function (DH-PSF) DH-PSF transfer function obtained from the iterative obtimization procedure, and its GL modal plane decomposition, which forms a cloud around the GL modal plane line. The DH-PSF transfer function does not have any amplitude component, and consequently is not absorptive.
《傅里叶光学》课件
光通信
利用傅里叶光学原理实现高速光信号的传输和处 理,提高通信容量和速度。
3
光学仪器设计
傅里叶光学在光学仪器设计中的应用,如干涉仪 、光谱仪等。
傅里叶光学的发展前景和挑战
发展前景
随着光子技术的不断发展,傅里叶光学在光通信、光学仪器、生物医学等领域的应用前 景广阔。
傅里叶光学在光学显微镜、光谱仪和 OCT等生物医学成像技术中被广泛应 用。
光电子器件
利用傅里叶光学原理设计的光电子器 件,如光调制器、光滤波器和光开关 等。
02
傅里叶变换
傅里叶变换的定义和性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过正弦和余弦函数的线性组合 来表示信号。
傅里叶变换的性质
傅里叶变换在信号处理中的应用
频域滤波
通过在频域对信号进行滤波,可以实现信号的降噪、增强等处理 。
信号压缩
利用傅里叶变换可以将信号从时域转换到频域,从而实现对信号的 压缩和编码。
图像处理
傅里叶变换在图像处理中也有广泛应用,如图像滤波、图像增强、 图像压缩等。
03
光学信号的傅里叶分析
光学信号的表示和测量
05
傅里叶光学的实践应用
傅里叶光学的实验技术
光学干涉实验
利用干涉现象研究光的波动性质,验证傅里叶光学的 基本原理。
光学衍射实验
通过衍射实验观察光的衍射现象,理解傅里叶光学中 的衍射理论。
光学频谱分析实验
利用傅里叶变换对光信号进行频谱分析,研究光波的 频率成分。
傅里叶光学的应用案例
1 2
图像处理
干涉和衍射在光学系统中的应用
高二物理竞赛傅里叶变换光学课件
第这1、二样阿步 ,贝是在成各输像衍出理射平论班面(作上1为得87新到3年的两)次个波函源数发乘出积球的面傅次里波叶,变在换o像,(面或x1上两,y互个1相函)e叠数x加乘p,积{i形的成傅f物里(体叶x1的逆2 像变。换y(12 )在}采e用xp的{反演i 坐2标f 系(x下1)x,1 输y出1平y面1)光}d场x的1d复y振1幅分布为
费衍射,在透镜后焦面P2上形成一系列衍射斑;
从频域来看,通过乘法运算,系统改变了输入信息的空间频谱结构,这就是空间滤波或频域综合的含义;
根④成据方,系 向 因统滤此的波它光器的学,频参它谱数阻分,挡布得〔在知或X、所允Y成许轴的〕的的像特附严放定近考大方格。率向虑为上推的-到1导。频透谱是分镜量:通孔过,径可影以突响出某,些4方f向系性特统征成,检像查集过成程电路中掩膜,时透,因镜为集的成电傅路里的图叶形都变是换由一些规则的、互相垂直的矩型线段组
2
y1y
2 )}dx1dy 1
不怕路远,就怕志短。 无所求则无所获。
cFF {P(x ,y1)}F {o(x1,y1)}
志之所向,金石为开,谁能御之? 才自清明志自高。
cP
(x
2
,y
2
)O(
x2 f
,y2 f
) cP(ffx
, ffy
)O(fx
,fy
)
光
学
第五章 变换光学与全息照相
1、4f 系统 物理意义:
儿童有无抱负,这无关紧要,可成年人则不可胸无大志。
f
[(x1
x 2 )2
(y1 y 2 )2)}
dudv
虽长不满七尺,而心雄万丈。
c F 男子千年志,吾生未有涯。
第五章 傅立叶变换光学-wsf-复习提纲
棱镜傍轴成像公式
s
~ 傍轴条件:U1 ( x, y ) A1e
f
f
f
f
物平面
频谱面
像平面
光
傅里叶频谱面的光学分析优势
光
图象识别和比较
(1)振幅型
把标准图象放在物平面上,在频谱平面上放一张照相底片,以单色相 干光照明而获得频谱图的负片,把负片放在原来频谱的位置上,由于原来 频谱图的亮斑恰好为负片的暗处,而原来的频谱图的暗处正好为负片的亮 斑。把待检测的图样放在物平面上,如果待检测图样和标准图象完全一样, 频谱图和负片互补,这样在像平面出现一片黑暗。如果两个图样有一点不 图,则在像面上出现亮点。
第五章 傅立叶变换光学
复习内容
1、 波前变换和相因子分析
2、 余弦光栅的衍射场 3、 傅立叶变换光学 4、 阿贝成像原理与空间滤波 5、 泽尼克的相衬法
对于一些结果的推导,不要去记忆结果是什么,而是要知道结果 是怎么来的。
一、波前变换和相因子分析
(x,y) (x’,y’)
U1 U2
U
~ ~ ~ 入射场U1 ( x, y) 衍射屏的作用 出射场U 2 ( x, y) 波的传播行为 衍射场U ( x' , y' )
光经物平面发生夫琅和费衍射 , 在透镜焦面(频谱面) 上形成一系列衍射光斑 , 各衍射光斑发出的球面次波在 相面上相干叠加,形成像.
F
A B C C’ B’ A’
傅里叶光学
傅里叶光学
傅里叶光学的原理是根据傅里叶分析的原理,利用光的波动特性,将一个复杂的光波分解成多个简单的光波,然后利用这些简单的光波来描述复杂的光波的特性。
这种分析方法可以用来研究光的传播,衍射,折射,反射和其他光学相关的现象,可以研究光的空间分布,特性,调制,幅度,相位等特性。
傅里叶光学是一种基于傅里叶变换的光学理论,它用来描述光线的行为,其中光线的行为可以用傅里叶变换的形式表示。
它是由法国物理学家和数学家约瑟夫·傅里叶发现的,他在1822年发表了一篇论文,提出了“傅里叶光学”的概念,并且将其用于描述光线的行为。
傅里叶光学的基本原理是,光线可以用一系列的正弦函数来表示,这些正弦函数的频率和振幅可以用傅里叶变换来表示。
换句话说,傅里叶光学可以用来描述光线如何传播,如何反射,如何折射,以及如何在介质中传播,等等。
傅里叶光学的原理被广泛应用于光学,以及其他科学和工程领域。
它可以用来解释和模拟光线在不同环境中的传播特性,以及光线在介质中的反射、衍射和折射等现象。
傅里叶变换与光学
傅里叶变换与光学傅里叶变换与光学,哎呀,这听起来挺复杂的,不过别担心,咱们慢慢聊,搞懂它其实没那么难。
想象一下你手里有一个光线的图案,比如说那种炫酷的彩虹光环。
然后,傅里叶变换就像是一个神奇的工具,可以把这个图案拆解成不同的波段。
就好比拆开一个大礼包,里面可能藏着不同的小玩意儿,乐趣无穷。
哇,想象一下,能从这五颜六色的光中提取出它们背后的秘密,那简直太酷了。
说到光学,很多人脑海中首先浮现的可能是那种闪闪发光的眼镜,或者是透过玻璃窗照进来的阳光。
光在这里扮演着一个重要的角色。
你看,光就像是个舞者,在空间中翩翩起舞,而傅里叶变换就是一个能看懂它舞蹈的观众。
它能够把光的各种频率和波长都一一呈现出来。
就像你把一首复杂的交响乐拆解成简单的音符,听起来每一个音符都是那么清晰。
你可能会想,为什么要这么麻烦呢?了解光的本质,对很多科学领域都有巨大的帮助,尤其是图像处理、信号分析这些领域。
再说说傅里叶变换的应用。
想象一下,你拍了一张特别模糊的照片,看着就像是被浓雾笼罩了一样。
哎,真是令人懊恼!不过,别急,这时候傅里叶变换就可以派上用场。
它能将这张模糊的图片“分析”开,找出那其中的细节,帮助我们把照片变得清晰起来。
你可以想象自己在和朋友分享一张自拍,大家都说“这张好模糊啊”,你心里就默念:“没关系,傅里叶来救场!”然后照片瞬间变得清晰,哇,简直是魔法!再说说光的干涉现象,听起来有点高深,不过别担心。
就像是水面上打出的涟漪,光线也会相互交错、重叠,形成各种奇妙的图案。
傅里叶变换可以帮助我们理解这些复杂的干涉图案,找到其中的规律。
就像你看一场精彩的烟花表演,光芒四射,最终形成了美丽的花朵。
每一朵烟花的绽放,背后都有着光的干涉和叠加。
你想想,那种美丽的瞬间,傅里叶变换就像是摄影师,抓住了每一个细节。
不过,说到傅里叶变换,很多人可能会觉得它有些抽象。
别担心,咱们用生活中的例子来比喻一下。
你是不是有时候在听音乐时,特别喜欢那种清脆的高音或者低沉的低音?傅里叶变换就像是你耳朵里的“调音师”,它能把这些音频分开,让你听得更清楚。
傅里叶光学成像
傅里叶光学成像
傅里叶光学成像是一种基于傅里叶变换的光学成像方法。
通过将物体的光学信息转换为频率域信息,可以更加清晰地观察物体的细节与结构。
傅里叶光学成像的原理是将物体的光学信息通过透镜聚焦到光
学传感器上,形成物体的像。
然后将这个像通过傅里叶变换转换成频域信息,再通过反向傅里叶变换将频域信息转换为空域信息,即原始物体的图像。
傅里叶光学成像在医学、生物学、材料科学等领域中有广泛的应用。
在医学中,傅里叶光学成像可以用于检测肿瘤、神经退化等疾病。
在生物学中,傅里叶光学成像可以用于研究细胞、分子等微观结构。
在材料科学中,傅里叶光学成像可以用于研究材料的晶体结构、表面形貌等。
需要注意的是,傅里叶光学成像需要高质量的光学元件和高精度的信号处理算法。
同时,物体的采样率也会影响到成像质量。
因此,在进行傅里叶光学成像时需要注意这些因素的影响。
- 1 -。
信息光学中的傅里叶变换
傅里叶变换的物理意义
频域分析
通过傅里叶变换可以将信号从时域转换到频域,从而可以分析信号的频率成分 和频率变化。
时频分析
傅里叶变换可以用于时频分析,即同时分析信号的时域特性和频域特性,对于 非平稳信号的处理尤为重要。
信息光学中的傅里叶变换
目 录
• 傅里叶变换基础 • 信息光学基础 • 傅里叶变换在信息光学中的应用 • 傅里叶变换的实验实现 • 傅里叶变换的未来发展与展望
01 傅里叶变换基础
定义与性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过使用傅里叶级数或傅里叶积 分进行转换。
傅里叶变换的性质
THANKS FOR WATCHING
感谢您的观看
核磁共振成像等,能够提供更准确的图像分析和诊断。
通信技术
02
傅里叶变换在通信技术领域中用于信号调制、解调以及频谱分
析等方面,有助于提高通信系统的性能和稳定性。
地球物理学
03
傅里叶变换在地球物理学领域中用于地震信号处理和分析,有
助于揭示地球内部结构和地质构造。
傅里叶变换面临的挑战与机遇
数据安全与隐私保护
傅里叶变换的应用领域
01
02
03
信号处理
傅里叶变换在信号处理领 域应用广泛,如滤波、频 谱分析、调制解调等。
图像处理
傅里叶变换在图像处理中 用于图像压缩、图像增强、 图像去噪等。
通信系统
在通信系统中,傅里叶变 换用于信号的调制和解调, 以及频谱分析和频分复用 等。
02 信息光学基础
信息光学的定义与特点
傅里叶光学变换
傅里叶光学变换
傅里叶光学变换是一种将光学信号从时域转换到频域的数学工具。
它通过将光学信号分解为不同的频率成分,可以帮助我们更好地理解和分析光学现象。
傅里叶光学变换基于傅里叶变换的原理,在光学领域广泛应用于光波的传播、衍射和成像等问题。
通过傅里叶光学变换,我们可以把一个光学信号表示为一系列不同频率的正弦波的叠加,这些正弦波的振幅和相位信息可以提供有关原始信号的详细特征。
傅里叶光学变换的数学公式如下:
F(ν) = ∫f(t)e^(-2πiνt)dt
其中,F(ν)表示频率为ν的光学信号的傅里叶变换结果,f(t)表示原始光学信号,e为自然对数的底。
傅里叶光学变换的一个重要应用是光学成像。
通过将光场的复振幅进行傅里叶变换,可以获得物体的光学频谱信息,从而实现对物体的高分辨率成像。
此外,傅里叶光学变换还可以应用于光衍射、光波前传播和信号处理等方面。
通过分析不同频率成分的振幅和相位信息,我们可以了解光场在不同空间位置和时间点的变化规律,从而对光学现象进行更深入的研究。
总之,傅里叶光学变换是光学领域中一种重要的数学工具,它能够帮助我们从频域的角度来理解和分析光学信号的特性和行为,为光学研究和应用提供了有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中山大学光信息专业实验报告:傅里叶光学变换系统一、实验目的和内容1、了解透镜对入射波前的相位调制原理。
2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。
4、在4f 系统的变换平面(T种试件相应的频谱处理图像。
二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析各处走过的光程差不同,即所受时间延迟不同,调制能力。
图1 为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ϕ后变为(,)L U x y ':图1(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ϕ=-+=+- (2)(2)中的k =2π/λ,为入射光波波数。
用位相延迟因子(,)t x y 来表示即为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为: 22012111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f=-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。
从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
第二项22exp[()]2k j x y f-+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。
而且与透镜的焦距有关。
当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f=-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为:1(,)0p x y ⎧=⎨⎩孔径内 其 它 (8) 2、透镜的傅里叶变换性质在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。
衍射图像的强度分布正比于衍射屏的功率谱分布。
一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。
如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。
为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。
图2 透镜的傅里叶变换性质设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)f f E x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。
由于透镜的相位调制特性,输出平面与输入平面出光波场之间的关系由下式决定: 221111E (,)E(,)exp[()]2k x y x y i x y f'=-+ (9) 而从透镜输出平面到像方焦平面,光波相当于经历一次菲涅耳衍射。
夫朗和斐近似下观察到平面上的衍射光场复振幅 :=221001()22111111{E(,)exp[()]}iz ikz x y z e e F x y i x y i z z λπλλ++ (10) 式中u 和v 分别表示1x 和1y 方向的空间频率。
于是由(9)和(10)式,透镜像方焦平面上的光波场复振幅(,)f f E x y 分布应具有如下形式:=22211{E(,)}f f x y ikf ik f e e F x y i f λ+ ( ,f f x y u v f fλλ== ) (11) 在单位振幅的平面波垂直照射下,透镜衍射屏的光波场复振幅分布(,)E x y 即等于衍射屏的透射系数(,)t x y ,故其频谱分布为:{(,)}{(,)}(,)F E x y F t x y T u v == (12) 该频谱分量从衍射屏传播到透镜的输入平面处,产生一个相位延迟(,,)u v z ϕ,即有: (,)(,)exp[(,,)]E u v T u v i u v z ϕ= (13) 在傍轴条件下(,,)u v z ϕ具有如下的形式: 222(,,)()2k u v z kz z u v ϕλ=-+ (14)由此可以得到透镜输入平面处光波场的频谱分布为: 22211{(,)}(,)(,)exp[()]2k F E x y E u v T u v ikz i z u v λ==-+ (15) 代入(11)得透镜像方焦平面处的广场分布为:=22()(1)2(,)f fx y z ik z f ik f f e e T u v i f λ++- (,ffx y u v f f λλ==) (16)从上式可以看到,在单色平面波垂直照射下,透镜像方焦平面处的光场除了一个常数因子外和一个二次因子外,其余的反应了衍射屏透射系数得傅里叶变换。
经过进一步的分析我们可以得到在用透镜对二维关学图像进行傅里叶变换时,若将图像放置在透镜的物方焦平面上,则在透镜的像方焦平面上得到输入图像准确的傅里叶变换。
若将输入图像放置在透镜与其像方焦平面之间,则像方焦平面上频谱图样的大小可随衍射屏到像方焦平面的距离的变化而改变;并且当输入图像紧贴透镜后放置时可获得最大的频谱图样。
而对于球面波照射时,傅里叶变换平面将不是在透镜的像方平面。
而是光源的共轭像平面上。
3.透镜孔径的衍射与滤波特性由于孔径的衍射效应,任何具有有限大小通过光孔径的光学成像系统,均不存在如几何光学中所说的理想像点。
所谓共轭像点,实际上是由系统孔径引起的,以物点的几何像点为中心的夫琅和斐衍射图样的中央亮斑——艾里斑。
其次,透镜有限大小的通光孔径,也限制了衍射屏函数的较高频率成分(具有较大入射倾角的平面波分量)的传播。
这可以从图3可以看出:图3:透镜孔径引起渐晕效应透过衍射屏的基频平面波分量1可以全部通过透镜,具有较高(空间)频率的平面波分量2只能部分通过,而高频平面波分量3则完全不能通过。
这样,在透镜像方焦平面上的光波场中就缺少了衍射屏透射光场中部分高频成分,因此,所得衍射屏函数的频谱将不完整。
这种现象称为衍射的渐晕效应。
由此可将,从光信息处理角度来讲,透镜孔径的有限大小,使得系统存在着有限大小的通频宽带和截止频率;从光学成像的角度来讲,则使得系统存在着一个分辨极限。
4.相干光学图像处理系统(4f 系统)用夫琅和斐衍射来实现图像的频谱分解,最重要的意义是为空间滤波创造了条件,由于衍射场就是屏函数的傅里叶频谱面,空间频率(u ,v )与衍射场点位置(,ξη)一一对应,使得人们可见从改变频谱入手来改造图像,进行信息处理。
为此,设计了图4所示的图像处理系统。
图4 4f 图像处理系统在此系统中,两个透镜1L 、2L 成共焦组合,1L 的前焦面(x ,y )为物平面O ,图像由此输入,2L 的后焦面(',')x y 为像平面I ,图像在此输出。
共焦平面(,ξη)称为变换平面T ,在此可以安插各种结构和性能的屏(即空间滤波器)。
当平行光照射在物平面上时,整个OTI 系统成为相干成像系统。
由于变换平面上空间滤波器的作用,使输出图像得以改造,所以OTI 系统又是一个相干光学信息处理系统。
这里先研究它的成像问题。
我们将相干光学系统的成像过程看作两步:第一步,从O 面到T 面,使第一次夫琅和斐衍射,它起分频作用。
第二步,从T 面到I 面,再次夫琅和斐衍射,起合成作用,即综合频谱输出图像。
在这样的两步中,变换平面T 处于关键地位,若在此处设置光学滤波器,就能起到选频作用。
要想作到图像的严格复原,T 面必须完全畅通无阻。
此处的4f 系统每次衍射都是从焦面到焦面,这就保证了复振幅的变换是纯粹的傅里叶变换。
如果光波能够自由通过变换平面,即连续两次的傅里叶变换,函数的形式基本复原,只是自变量变号, ),(),(01y x U y x U --∝''即图像倒置。
在有源滤波器的情况下,001U t U U T ≠=这里为滤波器的透过率函数,这也是我们进行滤波实验的依据。
5. 空间滤波实验要从输入图像中提取或排除某种信息,就要事先研究这类信息的频谱特征,然后针对它制备相应的空间滤波器置于变换平面,经过第二次衍射合成后,就可以达到预期的效果,光信息处理的原理也就是基于如此。
三、实验仪器与装置图实验仪器:激光器、准直系统、傅里叶透镜、傅里叶变换试件、频谱处理器、CCD 光电接收器;实验装置图:如图5图5 实验装置图四、实验内容1. 根据傅里叶变换光路装置简图摆好光路,打开激光电源,调整光路。
2. 开启电脑,运行csylaser 软件。
调节光路中各器件的位置,以得到样品较为清晰的傅里叶变换图像(根据所用样品,最终应得到“米”字图像)。
并将图像保存,作为原始数据。
3. 根据反傅里叶变换光路装置简图(4f 系统)摆好光路,调节器件位置,以得到样品最为尖锐的反傅里叶变换图像,并保存。
在调节时,主要是调节CCD的位置,傅里叶透镜的位置摆放好不要轻易乱动。
4.在频谱处理器的位置加上带有狭缝的滤波片,将激光依次透过狭缝,观察不同的狭缝对于光波的透过作用的不同,保存图像,并分析。
5.关闭激光器和电脑电源,整理好仪器。
实验结束。
四、实验数据记录与分析1. 观察样品的傅里叶频谱图图样。
图6所示为样品的原图样,图7为其频谱图:图6 样品示意图图7 样品傅里叶变换频谱图由图可知,样品经过傅里叶变换得到的频谱图理论验证:用Mat Lab程序编辑一个二维矩阵做出一个图6所示的图像,使其发光部分值为1,不发光部分为0。