单色仪的定标与滤光片光谱透射率的测定
大学基础物理实验报告-单色仪
【结果分析】
滤色片透过率曲线特征
滤色片
特征描述
指标
红
数据曲线整体较集中,605nm之前数据几乎为0,606nm处开始有数据,并达到峰值
截止波长:不清楚
长波透过率(峰值):88.0%
青
数据较离散,630nm之前有数据,波动状态
中心波长:超数据范围半高宽:超数据范围
峰值透过率:73.5%
紫红
数据非常离散,540nm之前和600nm之后有数据,波动
调节好基线后先测量红色滤波片透过的光再测量青色滤波片透过的光最后测量蓝紫色滤波片透过的光别记录下来每次的试验数据做出相应图像如下图所示
姓名
学号
院系
时间
地点
段兰君
201211211060
信息科学与技术学院
2013.09.27
北京师范大学物理实验教学中心
普通物理实验室
王绮静
201211211059
信息科学与技术学院
截止波长:503.0nm 535.0nm
短波透过率(峰值):66.8%
长波透过率(峰值)是红色滤色片在长波区间的最大透过率。
短波透过率(峰值)是蓝色滤色片在短波区间的最大透过率。
峰值透过率对绿色、黄色等颜色(透过率曲线有一个或几个峰)的滤色片而言的。
截止波长是透过率降到峰值一半时的波长。
三.发光二极管的光谱(选做)(附图:不同颜色发光二极管的光谱)
2013.09.27
北京师范大学物理实验教学中心
普通物理实验室
【实验题目】光栅光谱仪的使用
【实验记录】
一.波长校准
仪器参数扫描步长:1.0nm扫描范围:400nm~700nm
测量汞灯光谱线
大学物理实验---单色仪的定标和光谱测量.docx
实验题目:单色仪的定标和光谱测量实验目的:了解光栅单色仪的原理,结构和使用方法,通过测量钨灯和汞灯的光谱了解单色仪的特点。
实验原理:一.光栅单色仪的结构和原理如下图所示,光栅单色仪由三部分组成:1、光源和照明系统,2、分光系统,3、接受系统。
单色仪的光源有:火焰、电火花、激光、高低压气体灯(钠灯、汞灯等)、星体、太阳等。
如下图所视,当入射光与光栅面的法线N的方向的夹角为©(见图)时,光栅的闪耀角为a取一级衍射项时,对于入射角为©而衍射角为e时,光栅方程式为:d(sin H sin 0)=入式中N 为光栅的总线数,在本实验中 N 为64 *200=76800, m 为所用的光的衍射级次,本实验中m 二雹实验中由于光学系统的象差和调整误差,杂散光和噪声的影响, 加上光源的谱线由于各种效应而发生增 宽,所以实际的谱线半角宽度远远大于理论值, 因此光谱仪的实际分辨本领远远小于 76800。
实验数据及数据处理:(数据以文本文档中为准)■ ■ » 11、 光栅单色仪的定标 ----- 钠灯光谱与标准值之间误差:??= --------------- =0.00%入Nd cos=d 9 = m d 入 d cos 9R= d x =mNFigure 1钠灯光谱主线系峰值数据: 1、589.0002、589.625实验报告589 .0BY 王有识页3实验报告?? =0.004%-|589 .625-589 .6|Figure 2钠灯光谱锐线系峰值数据: 1 、615.413 2 、616.050 与标准值之间误差:??=--------------- =0.002%1615 413-615 .4|?? —6154---------- =0.008%1616.050-616 ,0|2 = 616.0Figure 3钠灯光谱漫线系1页4 BY王有识?? = ------------------ =0.006%1497.812-497 .78|?? 49778 =0.01%|498 .250-498 .2| 2=498.22、 低压汞灯光谱测量峰值数据:1、568.250 、568.825与标准值之间误差:??= =0.009%1568 .250-568 .3|与标准值之间误差:??568・3 ------ =0.006% |568 .7-568 .86|22=568 .86Figure 4钠灯光谱漫线系2峰值数据:1、497.812 2 、498.250实验报告Figure 5低压汞灯黄光强峰值数据:1、576.925 2 、579.050与标准值之间误差:??= =0.006%1576 .925-576 .96|?? 576・96------- =0.003%|579 .050-579 ,07|2二579.07Figure 6低压汞灯蓝绿光强峰值数据:1、491.637 与标准值之间误差:??二 ------------- =0.008%|491 .637-491 .60|峰值数据: 1 、585.925ure 7低压汞灯2黄光589.000与标准值之间误差:??==0.0009%1585 .925-585 .92| ?? —585.92 =0.003%1589 .000 -589 .021本组实验由于测蓝绿光的弱光谱,而实验环境中并不是完全黑暗,难免会有光对实验产生干扰, 所以实验所得的图像很不理想, 但是还 是可以分辨出波峰。
单色仪的定标和光谱测量实验(1321室)
单色仪的定标和光谱测量实验(1321室)实验要求:实验前准备认真预习(1)认真阅读实验讲义或实验教材(2)准备预习报告注明:1、加入自己对实验原理的理解;2、实验课时必须带来,作为当堂打实验操作分的依据;3、认真预习者方可进入实验室进行操作准时进入实验室(1)不准迟到,请假需要提前上交书面申请(2)注意保持实验室卫生(3)严禁携带零食,注重仪表!例如:不穿拖鞋等行为(4)雨天请将雨伞放置在实验室门外仔细阅读听讲(1)认真听讲每个仪器的名称,作用及使用方法(2)阅读实验指导书实验进行时严肃认真,不得在实验室内打闹、嬉戏!严格遵守操作规程,严禁手碰透镜等光学仪器的光学面不得直视激光,以免损伤视网膜!严禁损坏仪器经指导老师签字或同意后,并清洁整理完毕方可离开!实事求是(1)认真观察、分析实验现象(2)如实记录实验数据,不得抄袭勇于创新积极思考并提出自己的建议或意见实验结束后及时认真完成实验报告!(实验目的、内容、实验原理、实验仪器、实验操作步骤、实验结果(包括数据处理分析和现象分析)、回答思考题)下次上课时必须交上,不得延误!单色仪的定标和光谱测量实验(1321室)实验目的:(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解;(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
实验简介单色仪(monochromator)是指从一束电磁辐射中分离出波长范围极窄单色光的仪器。
按照色散元件的不同可分为两大类:以棱镜为色散元件的棱镜单色仪和以光栅为色散元件的光栅单色仪。
单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜时被分解成七色光的彩色光光谱,牛顿首先将此分解现象称为色散。
1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并研究发现了太阳光谱中的吸收谱线(夫琅和费谱线)。
单色仪定标实验报告
单色仪定标实验报告实验目的,通过单色仪定标实验,掌握单色仪的使用方法,了解光的色散规律,掌握用单色仪测定光的波长的方法。
实验仪器,单色仪、汞灯、钠灯、氢灯、汞镁灯、透射光栅、测微目镜、波长计。
实验原理,单色仪是一种用来分离和测定光谱的仪器。
当白光通过单色仪时,不同波长的光被分散成不同的角度,形成光谱。
利用透射光栅,可以将光谱中的各个波长分离开来,然后用测微目镜和波长计来测定各个波长的位置,从而得到光的波长。
实验步骤:1. 调整单色仪,将单色仪放在实验台上,调整仪器使得入射光垂直射入单色仪的入射口,并使得出射光垂直射向透射光栅。
2. 测定汞灯谱线,打开汞灯,调整单色仪使得汞灯的光谱线通过透射光栅,用测微目镜和波长计测定各个谱线的波长。
3. 测定钠灯谱线,同样的方法,测定钠灯的光谱线的波长。
4. 测定氢灯谱线,同样的方法,测定氢灯的光谱线的波长。
5. 测定汞镁灯谱线,同样的方法,测定汞镁灯的光谱线的波长。
实验结果:汞灯的谱线位置及波长:谱线1,位置 450 波长 579.1nm。
谱线2,位置 550 波长 576.9nm。
谱线4,位置 750 波长 491.6nm。
谱线5,位置 850 波长 435.8nm。
钠灯的谱线位置及波长:谱线1,位置 460 波长 590.0nm。
谱线2,位置 560 波长 589.4nm。
谱线3,位置 660 波长 588.9nm。
谱线4,位置 760 波长 587.1nm。
谱线5,位置 860 波长 589.6nm。
氢灯的谱线位置及波长:谱线1,位置 470 波长 656.3nm。
谱线2,位置 570 波长 486.1nm。
谱线3,位置 670 波长 434.0nm。
谱线4,位置 770 波长 410.1nm。
谱线5,位置 870 波长 397.0nm。
汞镁灯的谱线位置及波长:谱线1,位置 480 波长 435.8nm。
谱线2,位置 580 波长 404.7nm。
谱线3,位置 680 波长 365.0nm。
单色仪的定标和光谱测量
光栅单色仪的定标和光谱测量一、实验目的(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解。
(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
二、实验原理(见预习报告)三、实验仪器光栅光谱仪(单色仪)是一个光谱分析研究的通用设备,其元件主要包括:光栅及反射镜,准光镜和物镜,入射出射狭缝旋钮,信号接收设备(光电倍增管/CCD),计算机及软件系统,图7给出了典型光栅单色仪的结构图。
光栅光谱仪(单色仪)可以研究诸如氢氘光谱,钠光谱等元素光谱(使用元素灯作为光源),也可以作为更为复杂的光谱仪器的后端分析设备,比如激光喇曼/荧光光谱仪。
光栅由计算机软件控制步进电机驱动,可以获得较高的精度。
从图7可知,光源或照明系统发出的光束均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜的焦平面上,光通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。
当光栅转动时,从S2出射的光由短波到长波依次出现。
如果S2出射狭缝位置连接信号接收设备(光电倍增管/CCD ,),则可对出射光谱进行数据采集分析(部分内容请参考《大学物理实验》第二册中的“单色仪的使用和调整” )。
本实验使用的仪器:WDS-8型组合式多功能光栅光谱仪,焦距f=500 mm.光栅条数:1200 L/mm 。
狭缝宽度在0-2 mm 连续可调,示值精度0.01 mm 。
光电倍增管的测量范围:200-800 nm ;CCD 的测量范围:300-900 nm 。
图7 光栅单色仪的结构和原理四、实验内容(1):光栅单色仪的定标单色仪的定标指的是借助于波长已知的线光谱光源来对单色仪测量的波长进行标定,校正在使用过程中产生的波长位置误差,来保证测量的波长位置的准确性。
光栅单色仪实验报告
光栅单色仪实验报告实验人:宋易知指导老师:白在桥实验日期:2015.6.8【实验目的】(1) 了解单色仪的结构原理,学会使用平面光栅单色仪。
(2) 利用单色仪测量干涉滤光片的光谱透射率曲线。
【实验仪器】WGD-5型光谱光栅仪,装有软件的电脑,溴钨灯,滤色片及汞灯等。
【实验原理】1. 平面光栅单色仪的结构原理光学系统主要由以下三部分组成:(1)入射准直部分由入射狭缝S1和抛物凹面镜M1组成,用以产生适用于光栅衍射的平行光束。
(2)色散系统平面光栅G构成色散系统,达到分光以后产生各种波长单色光的要求。
(3)出射聚焦系统由抛物凹面反射镜M1、平面反射镜M2和狭缝S2组成。
由光栅色散系统产生的单色光经由M1和M2反射作用后会聚至出射狭缝S2,产生窄光束的单色光。
2.单色仪主机电路仪器主机内主要是步进电动机信号发生器电路,用来控制步进电动机的转动。
3.光电倍增管及测光仪广电倍增管是把微弱的输入光转换成电子,并使电子数获得倍增的电真空器件。
当光信号强度发生变化时,阴极发射出的光电子数发生相应的变化,由于各倍增极因子基本保持常数,所以阳极电流亦随光信号的变化而变化。
4.滤光片的透射率滤光片对不同波长的透射能力不一样。
当波长为λ,光强I0(λ)的单色光垂入射在滤光片上时,透过滤光片的光强若为IT(λ),我们定义其光谱透射率为T(λ)=I T(λ) I0(λ)若以白光为光源,出舍得单色光所产生的光电流i0(λ)与入射光光强I0(λ)、单色仪的光谱透射率T0(λ)和光电器件的光谱响应率S(λ)成正比,即:i0(λ)=KI0(λ)T0(λ)S(λ)现将光谱投射仪为T(λ)的滤光片插入光路,放置在入射狭缝之前,在光电流变为:i T(λ)=KI0(λ)T(λ)S(λ)所以:T(λ)=i T(λ) i0(λ)【实验过程与数据处理】1.利用汞灯校准波长将范围选为350~600进行扫描,获得结果如图。
寻峰发现共有9个能量高于50的峰,峰值对应波长如下对照发现相差小于1nm,无须校准。
单色仪的定标和光谱测量
方案 高速,USB2.0接口,即插即用接口,无需PCI卡,16-bit动态
域,2MHz读出速度,无需PCI卡 单层光输入窗口玻璃,最小的光损耗 特制CCD芯片及UV镀膜,具有高灵敏度及分辨率 双放大器结构和独立的增益设定。无可比拟的多功能性 触发及快门控制,先进(xiānjìn)的操作尽在您的掌握
m=1, N=64mm1200/mm=76800
精品资料
闪耀(shǎnyào)光栅的原理
n为刻槽面法线方向
为光线的入射角
N为光栅面法线方向
为光线的衍射角
N
b 光栅的闪耀角
n -b
角度的符号规定(顺 时针为正)
-
b
精品资料
入射角与闪耀波长(bōcháng)的关
系
n ,m , .
光强曲线(qūxiàn)
精品资料
单色仪狭缝(xiá fénɡ)宽度的讨论
1、设照明狭缝的光是完全非相干的(即每一点为独立的点光源)。 2、设狭缝为无限细,由衍射(yǎnshè)理论可知谱线的半宽度为: 3、当狭缝a逐渐变宽时的变化如下图所示:
f = 500 mm
w0
w
.
f
D
f
an D
a/an
精品资料
(jǔxíng)
单色仪的分光(fēn ɡuānɡ)系统—光 栅
矩 形
光 栅
凹 面 平 场 光 栅
精品资料
入射光垂直(chuízhí)矩形光栅时衍射光强的分布公式:
II0(si n)2(sN in siN n)2
单缝衍射因子(yīnzǐ) 干涉 因子(yīnzǐ)
大学物理实验---单色仪的定标和光谱测量
G
M2 M1
S2 PMT
S1:入射狭缝 G:闪耀光栅 S2:出射狭缝 M2:反光镜 M1:离轴抛物镜 PMT:光电倍增管
如下图所视,当入射光与光栅面的法线N 的方向的夹角为φ(见图) 时,光栅的闪耀角为θ 。 取一级衍射项时,对于入射角为φ,而衍射角 为θ时,光栅方程式为: d(sinφ+sinθ)= λ
������2 =
|497.812−497.78| 497.78 498.2
2、498.250 =0.006% =0.01%
|498.250−498.2|
2、
低压汞灯光谱测量
页 5
BY 王有识
实 验 报 告
Figure 5 低压汞灯 黄光 强
峰值数据:1、576.925 与标准值之间误差:������1 =
λf
D;
= a= W0 0.86 a = n
Hale Waihona Puke λfD 时最佳 (D 为光栅的宽度, f 为等效会聚透
镜的焦距) 3、
单色仪的理论分辨本领如何计算?实际分辨本领如何测量和 计算?
答:理论分辨本领 R 的 R = λ = mN 计算: dλ m=1, 为光栅的总线条数。 N
m 为干涉级次,
实际分辨本领的测量和计算,原理和操作如下:
页 11
BY 王有识
实 验 报 告
LED 灯能让很小的通过电流几乎全部转化成可见光。 LED 灯具有以下优点: 一、高光效 LED 光效达 50~200 流明/瓦,光谱窄,单色性好,
几乎所有发出的光都可利用,且无需过滤直接发出色光。 二、高节能 具有电压低、电流小、亮度高的特性。一个 10~
12 瓦的 LED 光源发出的光能与一个 35~150 瓦的白炽灯发出的光能 相当。同样照明效果 LED 比传统光源节能 80%~90%。 三、 光色多 可以选择白色或彩色光, 红色、 黄色、 蓝色、 绿色、
单色仪的定标和光谱测量
距 f=500 mm.光栅条数:1200 L/mm。狭缝宽度在 0-2 mm 连续可调, 示值精度 0.01 mm。光电倍增管的测量范围:200-800 nm;CCD 的测 量范围:300-900 nm。
四、实验内容
(1):光栅单色仪的定标 单色仪的定标指的是借助于波长已知的线光谱光源来对单色仪测量的波长 进行标定, 校正在使用过程中产生的波长位置误差,来保证测量的波长位置的准 确性。 定标用光源:氦氖激光器(632.8 nm) 低压钠灯(589.0 nm 和 589.6 nm) 要求设计和调整光路把光导入入射狭缝,测量时须找出合适的负高压值, 并利用采集程序设定合理的测量范围获取双光谱线(钠灯)完全分离开的光谱 曲线。并记录负高压值和保存光谱曲线。测量低压钠灯的光谱,钠原子光谱一般 可观察到四个线系:主线系、第一辅线系(又称漫线系) 、第二辅线系(又称锐 线系)和柏格曼线系(又称基线系) 。由同一谱线的波数差即可得到钠的里德伯 常数。( 该单色仪可测得谱线的精细结构,对精细结构处理后即可得到谱线波 数)。 在仪器调整较好的情况下我们可测得主线系的 589.0 nm 和 589.6 nm,
二、 实验原理(见预习报告) 三、实验仪器
光栅光谱仪(单色仪)是一个光谱分析研究的通用设备,其元件主要包括:光 栅及反射镜,准光镜和物镜,入射出射狭缝旋钮,信号接收设备( 光电倍增管 /CCD), 计算机及软件系统, 图 7 给出了典型光栅单色仪的结构图。 光栅光谱仪(单 色仪)可以研究诸如氢氘光谱,钠光谱等元素光谱(使用元素灯作为光源) ,也可 以作为更为复杂的光谱仪器的后端分析设备,比如激光喇曼/荧光光谱仪。光栅 由计算机软件控制步进电机驱动,可以获得较高的精度。
2
3
p
单色仪的定标和光谱测量
光栅单色仪的定标和光谱测量实验实验目的:(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解。
(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
实验简介单色仪(monochromator)是指从一束电磁辐射中分离出波长范围极窄单色光的仪器。
按照色散元件的不同可分为两大类:以棱镜为色散元件的棱镜单色仪和以光栅为色散元件的光栅单色仪。
单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜时被分解成七色光的彩色光光谱,牛顿首先将此分解现象称为色散。
1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并研究发现了太阳光谱中的吸收谱线(夫琅和费谱线)。
棱镜的色散起源于棱镜材料折射率对波长的依赖关系,对多数材料而言,折射率随着波长的缩短而增加(正常色散),及波长越短的光,在介质中传播速度越慢。
1860年克希霍夫和本生为研究金属光谱设计完成较完善的现代光谱仪—这标志着现代光谱学的诞生。
由于棱镜光谱是非线性的,人们开始研究光栅光谱仪。
光栅光谱仪是利用衍射作为光学元件用光栅衍射的方法获得单色光的仪器,光栅光谱仪具有比棱镜单色仪更高的分辨率和色散率。
衍射光栅的可以工作于从数十埃到数百微米的整个光学波段,比色散棱镜的工作波长范围宽。
此外在一定范围内,光栅产生的是均排光谱,比棱镜光谱的线性要好的多。
它也可以从复合光的光源(即不同波长的混合光的光源)中提取单色光,即通过光栅一定的偏转的角度得到某个波长的光,并可以测定它的数值和强度。
因此可以进行复合光源的光谱质量分析。
实验原理光栅光谱仪是利用衍射作为色散元件,因此光栅作为分光器件就成为决定光栅光谱仪的性能的主要因素。
1、衍射光栅:现代衍射光栅的种类非常多,按照工作方式分为反射光栅和透射光栅;按照表面形状可分为平面光栅和球面光栅;按照制造方法可分为刻划光栅、复制光栅和全息光栅;按照刻划形状可分为普通光栅、闪耀光栅和阶梯光栅等。
单色仪的定标和滤光片光谱透射率的测定
1 §3.14 单色仪的定标和滤光片光谱透射率的测定 目的1.了解棱镜单色仪的构造原理和使用方法.2.以高压汞灯的主要谱线为基准,对单色仪在可见光区进行定标.3.测定滤光片的透射率曲线.仪器及用具反射式棱镜单色仪、稳压电源、溴钨灯、汞灯、硅光电池、光点检流计、读数显微镜、滤光片、会聚透镜、读数小灯等.实验原理1.单色仪的基本结构单色仪是一种分光仪器,它通过色散元件的分光作用,把一束复色光分解成它的“单色”组成.单色仪采用色散元件的不同,可分为棱镜单色仪和光栅单色仪两大类.单色仪运用的光谱区很广,从紫外、可见、近红外一直到远红外.对于不同的光谱区域,一般需换用不同的棱镜或光栅.例如,用石英棱镜作为色散元件,则主要应用紫外光谱区,并需用光电倍增管作为探测器;若棱镜材料用NaCl (氯化钠)、LiF (氟化锂)或KBr (溴化钾)等,可运用于广阔的红外光谱区,用真空热电偶等作为光探测器.本实验所用国产WDF 型反射式单色仪,棱镜材料是重火石玻璃,仅适用于可见光区,用人眼或光电池作为光探测器. 图 3.14-1是反射式棱镜单色仪的光路图,它的光学系统主要由三部分组成:(1)入射准直部分由入射狭缝S 1和准直凹面反射镜M 1组成.(2)色散系统是仪器的核心部分,由固定在一起的平面反射镜M 2和三棱镜P 组成.它们置于色散工作台上,可一起绕O 轴转动,以保证在转动色散系统时,只有“以最小偏向角通过棱镜的那种波长的光”才能从S 2缝射出.(3)出射聚光系统由聚焦凹面反射镜M 3和出射狭缝S 2组成.光源发出的光经透镜L 照亮入射狭缝S 1,进入S 1后射向准直镜M 1,经M 1反射后成为平行光射向平面反射镜M 2,M 2反射后仍为平行光射向三棱镜P .由于棱镜的色散作用经棱镜折射后成为不同方向的平行光,各种不同波长的光束方向各不相同,波长长的偏向角小些,波长短的偏向角大些,同种波长的二束平行光沿着自己的方向进行,射到聚焦镜M 3上经反射后会聚于M 3焦面上的一点.由入射狭缝S 1上各点产生的同种波长但方向不同的平行光束会聚于M 3焦面上的不同点,所有这些点形成一条谱线.谱线即狭缝S 1的像.若光源包含多种波长成分,则在M 3的焦面上便获得很多谱线(也可以是连续的).出射狭缝S 2位于M 3的焦面上,因S 2较窄,于是落在S 2处的单色光就从狭缝射出了.在仪器的底部有读数鼓轮,它与万向接头转动杆及把手相连.当转动把手时,棱镜就图3.14-12转动,鼓轮读数反映了棱镜转动后的位置,从而也反映了出射光的波长.鼓轮旁有反光镜,便于读数.2.单色仪波长的定标单色仪的鼓轮读数R 与出射光的波长λ有一一对应关系.以R 为纵坐标,λ为横坐标,画出R —λ曲线,称为单色仪的校准曲线(又叫定标曲线).单色仪出厂时虽然附有校准曲线的数据或图表供查阅,但经过运输及长期使用或重新装调后,其数据会有偏离,因此需要重新标定,作出校准曲线,这样就可以由鼓轮读数得知出射光的波长,便于使用.单色仪定标是借助于一些波长已知的线状光谱的光源进行的.本实验选用汞灯作光源.实验时将汞灯的光照亮入射狭缝S 1,使其一些已知波长的光,依次先后从出射狭缝S 2射出,记下相应的鼓轮读数R ,便得到λ与R 的一一对应关系.3.物体的透光特性当波长为λ,光强为I 0 (λ)的单色光束垂直照射到透明物体上时,若透过物体的光强为I T (λ)则定义I T (λ)/I 0(λ)为该物体对此波长的光的透射率,即同一物体对不同波长的光的透射能力是不一样的,即T 是波长λ的函数.由于物体的吸收、表面的反射和散射等损失,所以物体实际的透光率总是小于l .若以白炽灯为光源,出射的单色光由光电池接收,用光点检流计显示其读数,则出射的单色光所产生的光电流i 0(λ)与入射光强I 0(λ)、单色仪的光谱透射率T 0(λ)和光电池的光谱灵敏度S (λ)成正比,即式中K 为比例系数.若将一光谱透射率为T (λ)的透明物体(滤光片)插入被测光路,则相应的光电流可表示为由(3.14-2)和(3.14-3),得 本实验要求用单色仪测定滤光片的光谱透射率T (λ),作出T (λ)—λ曲线,并求出光谱透射率的半宽度(透射率降到最大值的一半的波长范围∆λ).实验内容1.定标单色仪在可见光区定标,光路图如图3.14-2所示.(1)光路调节:点亮汞灯,先不放透镜L ,使汞灯发光体中部与入射缝S 1大致对正,将入射缝S 1和出射缝S 2开大(如S 1≈0.5mm ,S 2≈2mm ,注意顺时针旋转为打开狭缝)用眼睛从出射缝S 2处向单色仪内观察,适当转动鼓轮,可清楚看见光源的不同颜色光的像.调节光源的高低和左右,使光源的像正好位于聚焦物镜M 3的中央.将S 1缝宽减小到0.1mm 左右,在光源与S 1缝之间加入聚光透镜L ,使光源经L 在S 1处成像.)()()()(114.30-=λλλI I T T )214.3()()()()(000-=λλλλS T KI i )314.3()()()()()()()()(000-==λλλλλλλλS T T KI S T KI i T T )414.3()()(00-==λλλλλi i I I T T T )()()(图3.14-2(2)调显微镜:在出射缝S2后面水平放置读数显微镜,使显微镜对S2缝的刀口调焦.调节显微镜的叉丝对准出射缝S2的中心位置.注意调好后的显微镜位置不能再移动了.(3)调节缝宽:调S1的缝宽,使汞灯的579.07nm与576.96nm两条黄谱线能明显分开.为使谱线细锐并有适当的亮度,入射缝S1的宽度一般不大于0.lmm.而出射缝S2可开得宽些(如2mm左右),以便能同时看到二至四条谱线.(4)识别谱线:在正式测定校准曲线之前,要先定性观察全过程,以识别谱线,即转动鼓轮,从红光到紫光再从紫光到红光,观察汞灯的所有谱线,认准谱线(对照表l,从谱线的颜色、强弱、谱线间距等方面去识别).(5)测量:以显微镜的叉丝交点为标准,缓慢转动鼓轮(应向一个方向转动,例如从红光到紫光),使汞灯的各条谱线中心依次对准叉丝交点,分别记下鼓轮读数R和它所对应的已知波长λ.以鼓轮读数R为纵坐标,以谱线波长λ为横坐标,在坐标纸上画曲线,便得到单色仪的校准曲线R-λ.2.测定滤光片的T—λ曲线(选作)在可见光区测定,用溴钨灯做光源,用光电池和光点检流计组成的光电接收器来测量相对光强.在单色仪定标的基础上,测定滤光片的T—λ曲线.(1)将光电接收器套在出射缝S2处,检流计选取合适的量程,并调好检流计的零点.(2)将光源换成溴钨灯,电流暂取4A,调溴钨灯使其经透镜L在S1处成像.转动鼓轮,观察检流计偏转格数随波长变化的情况,使鼓轮停在检流计偏转最大的波长位置处,逐步增大溴钨灯的电流,使检流计偏转较大(如100格左右),注意溴钨灯的电流不得超过其额定值5A.(3)选测量点:将滤光片插入光路,转动鼓轮,观察滤光片对不同波长的透光情况,考虑选取哪些点进行测量.在弱吸收附近.测量点可少一些,在强吸收附近,测量点要密些.(4)测量:将鼓轮R沿一个方向(例如从红光到紫光)旋到适当位置,记录光点检流计偏转格数i0(λ),对再加上滤光片,记录光点检流计偏转的格数i T.(5)作T(λ)—λ曲线.为了简便,可使T(λ)—λ曲线与R-λ校准曲线做在同一张大小合适的坐标纸上.(6)根据T(λ)—λ曲线计算中心波长λ0及半宽度∆λ的值.思考题1.对单色仪定标的目的是什么?2.从单色仪出射狭缝S2射出的光是真正的“单色光”吗?3.试比较分光计、单色仪、棱镜摄谱仪的异同点.3。
单色仪定标与谱测量2011413131206
实验名称: 光栅单色仪的定标和光谱测量实验目的:(1)了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2)掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3)测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解。
(4)测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
实验原理:一、光栅单色仪的结构和原理如下图所示,光栅单色仪由三部分组成:1、光源和照明系统,2、分光系统,3、接受系统。
单色仪的光源有:火焰、电火花、激光、高低压气体灯(钠灯、汞灯等)、星体、太阳等。
单色仪中等效会聚透镜的焦距f=500mm 光栅的面积64⨯64mm 2光栅的刻划密度为1200线/mm 二、狭缝宽度缝宽过大时实际分辨率下降,缝宽过小时出射狭缝上得到光强太小。
最佳狭缝宽度为:Dfa n λ=86.0。
其中f 为抛物镜的焦距,D 是由光栅和抛物镜的口径限制的光束的直径,实验中f =500mm ,D=64mm 。
三、光栅的色散和分辨本领根据光学的理论知识可知,光栅的特性主要有:谱线的半角宽度、角色散率和光谱分辨本领。
根据光学的理论知识可以知道,光栅的特性主要有:谱线的半角宽度、角色散率和光谱分辨本领。
理论上它们分别为:式中N 为光栅的总线数,在本实验中N 为64⨯1200=76800,m 为所用的光的衍射级次,本实验中m=1。
实验中由于光学系统的象差和调整误差,杂散光和噪声的影响,加上光源的谱线由于各种效应而发生增宽,所以实际的谱线半角宽度远远大于理论值,因此光谱仪的实际分辨本领远远小于76800。
四、闪耀光栅当入射光与光栅面的法线n 的方向的夹角为 (见图2)时,光栅的闪耀角为 b ,取一级衍射项时,对于入射角为 ,而衍射角为 时,光栅方程式为:()sin sin d ϕθλ+=因此当光栅位于某一个角度时( 、 一定),波长 与d 成正比。
本次实验所用光栅(每毫米1200条刻痕,一级光谱范围为200 nm —900nm, 刻划尺寸为64 64 mm 2)。
单色仪使用
单色仪的调整和使用实验目的1.了解单色仪的结构原理,掌握标定单色仪的方法;2.利用单色仪测定滤色片的透射曲线。
实验原理与方法单色仪是一种常用的分仪器,适用于单色光的产生、光谱分析和光谱特性测量等方面。
仪器原理如图1 ,光源或照明系统发出的光束均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜的焦平面上,光通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。
当光栅转动时,从S2出射的光由短波到长波依次出现。
图1 光栅单色仪的结构和原理本仪器光学系统为李特洛式光学系统,这种系统结构简单、尺寸小、象差小、分辨率高。
更换光栅方便。
光栅单色仪的核心部件是闪耀光栅,闪耀光栅是以磨光的金属板或镀上金属膜的玻璃板为坯子,用劈形钻石尖刀在其上面刻画出一系列锯齿状的槽面形成的光栅(注1:由于光栅的机械加工要求很高,所以一般使用的光栅是由该光栅复制的光栅),它可以将单缝衍射因子的中央主极大移至多缝干涉因子的较高级位置上去。
因为多缝干涉因子的高级项(零级无色散)是有色散的,而单缝衍射因子的中央主极大集中了光的大部分能量,这样做可以大大提高光栅的衍射效率,从而提高了测量的信噪比图2当入射光与光栅面的法线N 的方向的夹角为ϕ(见图2)时,光栅的闪耀角为θb,取一级衍射项时,对于入射角为ϕ,而衍射角为θ时,光栅方程式为:d(sinϕ+sinθ)= λ因此当光栅位于某一个角度时(ϕ、θ一定),波长λ与d成正比。
本次实验所用光栅(2号光栅,每毫米1200条刻痕,一级光谱范围为380nm—1000nm, 刻划尺寸为64⨯64mm2)。
当光栅面与入射平行光垂直时,闪耀波长为570nm。
由此可以求出此光栅的闪耀角为21.58︒。
当光栅在步进电机的带动下旋转时可以让不同波长以现对最强的光强进入出射狭缝,从而测出该光波的波长和强度值。
(注意计算时角度的符号规定和几何光学方向为闪耀波长的方向)实验内容首先了解光栅单色仪的原理、结构和使用方法。
光谱透过率测试实验
光谱透过率测试实验实验目的(1)了解单色仪结构、原理和使用方法;进一步了解锁定放大器的工作原理以及其使用方法。
(2)掌握单色仪的定标方法及用单色仪测定滤光片光谱透过滤的方法。
深入理解微弱信号检测的原理。
(3)学会设计检测试样的光谱透过率的方法。
实验原理1.单色仪工作原理光栅单色仪的光路结构如图1所示,入射到光栅单色仪的自然光或复色光,经入射狭缝S1后投射到球面反射镜M1上。
S1处于M1的聚焦面上。
因此反射光为平行光束。
这束平行光束经闪耀光栅G分光后,分成不同波长的平行光束以不同的衍射角投向球面反射经M2。
球面镜M2起照相物镜的作用,这些平行光束经过M2、M3反射后成像在他的聚焦面上,从而得到一系列的光谱。
出射狭缝位于球面镜M2的聚焦面上。
根据它开启的宽度大小,允许波长间隔非常狭窄的一部分光束射出狭缝S2。
图1 WDG30型光栅单色仪原理图当旋转转轮带动光栅旋转时,可以在狭缝S2处得到光谱纯度高的不同波长的单色光束。
这样单色仪就起到了将入射的复色光分解成一系列独立的单色光的作用。
使用单色仪时首先要用标准光源对单色仪的读数进行校准,本实验光源采用的是高压汞灯,它有404.7nm、407.8nm、435.8nm、546.1nm、577nm、579.1nm几条特征谱线,根据这些谱线可以对单色仪的读数进行校准。
2.锁定放大器工作原理本实验选用南京大学生产的HB-211型精密双相锁定放大器,它是一种新型正交锁定放大器,能精确地测量被淹没在嗓声、干扰背景中的微弱信号。
该锁定放大器采用了多点信号平均和相敏检波联合使用的技术,完成对被测信号同相分量和正交分量的检测。
并具有动态范围大、漂移小等特点。
仪器原理框图如图2所示,主要包括以下几大部分:输入信号部分、参考信号部分、信号处理部分、单片机功能控制及测量值显示PC机接口部分、电源及其它部分。
图2 HB-211型精密双相锁定放大器原理框图(1)输入信号通道输入信号通道由低噪声前置放大器,量程控制放大器,高通、低通滤波器三部分组成。
单色仪的定标和滤光片光谱透过率的测定(优选)word资料
单色仪的定标和滤光片光谱透过率的测定(优选)word资料《单色仪的定标和滤光片光谱透过率的测定》教案实验方式:讲解与演示相结合(25-30分钟),学生实验(100-120分钟)实验要求:1、了解单色仪结构、原理和使用方法;2、掌握单色仪的定标方法;3、掌握用单色仪测定滤光片光谱透过滤的方法。
实验仪器:棱镜反射式单色仪、会聚透镜、滤光片、检流计、汞灯等。
讲解及演示主要内容:(20分钟)1.单色仪的构造:入射准直系统、色散系统、出射系统。
2.单色仪的定标要观察到清晰的光谱线,通过显微镜观察出射光谱线,适当减小入射狭缝宽度,增大出射狭缝宽度,使得双黄谱线分开。
3.滤光片光谱透过滤测定此时,要适当增大入射狭缝宽度,减小出射狭缝宽度,同时要保证不放滤光片时,检流计偏转格数尽量大(2/3满偏)。
4.制作定标曲线和光谱透过率曲线。
5.实验中注意事项:A.照明光路中,透镜的位置选取以均匀照亮入射狭缝为准;B.定标时,显微镜中叉丝竖线要与被测谱线重合,且读数鼓轮向一个方向转动以防止回程差;C.光谱透过率测定过程中,入射光波波长改变,入射和出射狭缝宽度要跟着变。
6.思考题:A.三棱镜的分光原理是什么?单色仪为什么要用平行光通过三棱镜?它是如何实现的?B.什么叫三棱镜色散的最小偏向角?单色光实现最小偏向角的条件是什么?C.如发现单色仪定标曲线上相对于已知波长λ的鼓轮刻度L偏离了ΔL,能否将原定标曲线平移ΔL后继续使用,为什么?7.数据表格A.定标表格第二章遥感物理基础—电磁辐射和地物光谱特征本章主要内容电磁波与电磁波谱地物的光谱特性大气和环境对遥感的影响一、电磁辐射电磁辐射1.电磁波波 :振动在空间的传播电磁波(ElectroMagnetic Spectrum) :电磁振荡电磁波(在空间的传播。
电磁波是通过电场和磁场之间相互联系传播的:当电磁振荡进入空间时,变化的磁场激发了变化的电场,使电磁振荡在空间传播,形成电磁波,也称电磁辐射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单色仪的定标与滤光片光谱透射率的测定
【实验目的】
1.了解棱镜单色仪的构造、原理和使用方法;
2.以汞灯的主要谱线为基准,对单色仪在可见光区进行定标;
3.掌握用单色仪测定滤光片光谱透射率的方法。
【实验仪器】
反射式棱镜单色仪,汞灯,硅光电池,灵敏电流计,低倍显微镜,滤光片,会聚透镜,毛玻璃
【实验原理】
单色仪是一种分光仪器,它通过色散元件的分光
作用,把复色光分解成它的单色组成。
根据采用色散
元件的不同,可分为棱镜单色仪和光栅单色仪两大类,
其应用的光谱区很广,从紫外、可见、近红外一直到
远红外。
对不同的光谱区域,一般需换用不同的棱镜
或光栅。
若采用石英棱镜作为色散棱镜,主要应用于
紫外光谱区,
并用光电倍增管作为探测器;棱镜材料用NaCl、LiF或
KBr等,则可用于广阔的红外光谱区,用真空热电偶等作
为光探测器。
本实验为玻璃棱镜单色仪,仅适用于可见光
区,用人眼或光电池作为光探测器。
图1所示为反射式棱镜单色仪的结构示意图,其
外壳是圆形的,下方有驱动棱镜台转动的丝杆和读数鼓轮,
外侧装有缝宽可调的入射狭缝S
1和出射狭缝S
2。
其光学系
统由下列三部分组成:1.入射准直系统
由入射狭缝S
1和凹面镜M
1
组成,因S
1
固定在M
1
的
焦面上,它使S
1发出的入射光束经M
1
后成为平行光束。
2.瓦兹渥斯(Wadsworth)色散系统
由玻璃棱镜P和平面镜M联合组成一整体,安装在同图1
一转台上,可以绕通过O点垂直于图面的轴线(棱镜顶角的等分面和底面的交线)转动,该系统的特点是平行光束通过后,以最小偏向角出射的单色光仍平行于原入射光。
即该系统为恒偏向色散装置。
3.出射聚光系统
由凹面镜M
2和出射缝S
2
组成,它将色散后沿不同方向传播的单色光经M
2
反
射后,会聚在M
2的焦面,即出射缝S
2
的平面上,因S
2
缝宽较小,从S
2
输出的是
波段很窄的光,通常称为单色光。
随着棱镜台绕O轴转动,以最小偏向角通过棱镜的光束的波长也跟着改变,当最小偏向角由小变大时,从S
2
输出的单色光的波长将依此由长变短。
单色仪能输出不同波长的单色光,是依赖于棱镜台的转动而实现,棱镜台的位置是由鼓轮刻度标志的,而鼓轮刻度的每一数值都和一定波长的单色光输出相对应。
因此,必须制作单色仪的鼓轮读数和对应光波波长的关系曲线——定标曲线(又称色散曲线),一旦鼓轮读数确定,便可从定标曲线上查知输出单色光的中心波长。
练习一单色仪的定标
单色仪出厂时,一般都附有定标曲线的数据或图表供查阅,但经过长期使用或重新装调后,数据会发生变化,需重新定标,以对原数据进行修正。
单色仪的定标是借助于波长已知的线光谱以获取对应的鼓轮读数。
为了获得较多的点,必须有一组光源。
通常采用汞灯、氢灯、钠灯、氖灯以及用铜、锌、铁做电极的弧光光源等。
本实验选用汞灯作为已知线光谱的光源,在可见光区域(400nm—760nm)进行定标。
在可见光波段,汞灯主要谱线的相对强度和波长如图2及表1所示。
表1 汞灯主要谱线波长表
【实验内容】
1.观察入射狭缝和出射狭缝的结构,了解缝宽的调节、读数以及狭缝使用时的注意事项,选取适当的缝宽以获取足够的强度及较好的单色性。
2.在入射狭缝前放置汞灯,为了充分利用进入单色仪的光能,光源应放置
在入射准直系统(S
1和M
1
)的光轴上。
使入射狭缝减小到50m
,再在光源与入
射缝之间加入聚光透镜,适当选择透镜的焦距和口径,使其相对口径与仪器的相对口径(1:7)匹配。
这样,可获得最大亮度的出射谱线,同时又减少了仪器内部的杂散光。
调节聚光透镜的位置,用一块毛玻璃置于出射狭缝处,使毛玻璃上
呈现的谱线最明亮。
3.将低倍显微镜置于出射
狭缝处,对出射狭缝S
2
进行调
焦,使显微镜视场中观察到的
汞谱线最清晰。
为使谱线尽量
细锐并有足够的亮度,应使入
射缝S
1
尽可能小,保证汞灯的
两条黄色的亮谱线分开,出射狭缝可适当大些。
根据可见光区汞灯主要谱线的波长、颜色、相对强度和谱线间距辨认谱线。
并选表1中打“*”者为定标谱线。
图2
4.使显微镜的十字叉丝对准出射狭缝的中心位置,缓慢地转动鼓轮,直到各谱线中心依次对准显微镜的叉丝时,分别记下鼓轮读数(L )与其所对应的波长(λ)。
为了避免回程差,应采用从紫光到红光(或相反)的过程,重复测量几次,取其平均值。
5.以光谱线波长(λ)为横坐标,鼓轮读数(L )为纵坐标画曲线,即能得到单色仪的定标曲线。
练习二 用单色仪测定滤光片的光谱透射率
当波长为λ、光强为)(0λI 的单色光束垂直入射于透明物体上时,由于物体对不同波长的光的透射能力不同,透过物体后的光强)(λT I 也不同。
通常定义物体的光谱透射率)(λT 为
)()
()(0λλλI I T T =
若以白炽灯为光源,出射的单色光由光电池接收,用灵敏电流计显示其读数,则出射的单色光所产生的光电流)(0λi 与入射光强)(0λI 、单色仪的光谱透射率
)(0λT 和光电池的光谱灵敏度)(λS 成正比,即
)()()()(000λλλλS T kI i =
式中k 为比例系数。
若将一光谱透射率为)(λT 的透明物体(滤光片)插入被测光路,则相应的光电流可表示为
)
()()()()()()()(000λλλλλλλλS T T kI S T kI i T T ==
由以上两式可得
)()
()()()(00λλλλλi i I I T T T =
=
本实验要求用单色仪测定滤光片的光谱透射率)(λT ,作出)(λT -λ曲线,并求出光谱透射率的半宽度——透射率降到最大值一半时的波长范围。
【实验内容】
1.按图3所示安排好实验仪器,光源用白炽灯,它的发射光谱是连续光谱。
选择适当的缝宽(S 2应尽量的小,
S 1可适度改变)。
2.转动鼓轮,使单色仪输出中心波长为690nm 。
不加滤光片,记录电流计偏转格数)(0λi (调节S 1使其尽量大),加上滤光片时偏转为)(λT i 。
求滤光片对该波长的透射率)(λT 。
3.继续转动鼓轮,使输出中心波长从690nm 向紫光区移动,每隔一定的波长间隔(约20nm )测量一次,求出透射率)(λT 并记录波长λ。
4.作)(λT -λ曲线,求出光谱透射率的半宽度。
也可选用汞灯作为光源,分别测出435.84nm ,491.60nm(或496.03nm),546.07nm ,576.96nm(或579.07nm),623.44nm 五条谱线滤光片的透射率,重复以上过程。
图3
5.注意事项:
(1)狭缝是单色仪的精密元件,使用时要特别小心。
旋转测微螺旋时,操作要慢些,减小狭缝宽度时,切勿使狭缝的二刀口相碰,即不允许螺旋读数小于零。
(2)入射缝S
1的光经棱镜折射后,在出射狭缝S
2
平面上形成S
1
的象是弯曲
的,定标时显微镜的叉丝应对准弯曲谱线的中部。
(3)因棱镜色散不均匀和探测器光谱灵敏度的限制,测定透明介质的光谱透射率时,当测量从长波段向短波段改变时,应适当增加缝宽(可增加S
1
的缝宽,为什么?),使电流计有较大的偏转。
(4)应选取低内阻的灵敏电流计(为什么?)。
注意防止强光照射光电池。
(5)若选用汞灯作为光源,测量任一谱线
的透过率时,应使S
2
的宽度较小(0.1mm),对
不同谱线,其强度及探测器光谱灵敏度不同,
应改变S
1
的宽度,保证不加滤光片时检流计偏
转格数尽量大(如2/3满偏)。
【思考】
1.如发现单色仪定标曲线上相对于已知
波长λ的鼓轮刻度L 偏离了L ∆,能否将原定
标曲线平移L ∆后继续使用,为什么?
2. 证明瓦兹渥斯色散装置(图4)的光 束恒偏向特性,即φπδ2-=。
图4。