高中数学必修1教案14:函数的奇偶性
【高中数学】高一数学《函数的奇偶性》教案
【高中数学】高一数学《函数的奇偶性》教案课题:1.3.2函数的奇偶性一、 3D目标:与技能:使理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境,培养学生的判断和推理能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的品质。
二、重点和难点:重点:函数的奇偶性的概念。
难点:功能对等的判断。
三、学法指导:学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对功能对等的全面体验和理解。
采用教学与实践相结合的方式,使学生在实践中学习,并及时巩固。
四、知识链接:1.学习轴对称图形和中心对称图形的定义:2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。
五、学习过程:函数的奇偶性:(1)对于函数,其域与原点对称:如果______________________________________,那么函数为奇函数;如果,那么函数是偶数函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)对称区间上奇函数的增减;对称区间偶函数的增减。
六、达标训练:A1。
判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;(3) f(x)=x+(4) f=a2、二次函数()是偶函数,则b=___________.B3。
已知,常数在哪里,如果是,那么_______.B4。
如果该函数是R上定义的奇数函数,则该函数的映像约为()(a)轴对称(b)轴对称(c)原点对称(d)以上均不对B5。
如果区间上定义的函数是奇数函数,则=__c6、若函数是定义在r上的奇函数,且当时,,那么当什么时候___d7、设是上的奇函数,,当时高中化学,,则等于()(a) 0.5(b)(c)1.5(d)d8、定义在上的奇函数,则常数____,_____.七、学习总结:本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。
3.1.3 高中必修一数学教案《函数的奇偶性》
高中必修一数学教案《函数的奇偶性》教材分析函数的奇偶性是高中数学必修一人教版B版第三章第一单元第三节的内容,是函数的一条重要性质。
教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称,感受奇函数和偶函数的图象特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。
从知识结构上而言,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础,起着承上启下的作用。
学情分析从学生的认知基础来看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,学生刚刚学习了函数的单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。
教学目标1、理解函数奇偶性的概念和图像特征,能判断一些简单函数的奇偶性。
2、经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
3、通过自主探索,体会数形结合的思想,感受数学的对称美;通过分组讨论,培养合作交流的精神,学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
教学重点函数奇偶性的概念及其建立过程,判断函数的奇偶性。
教学难点对函数奇偶性的概念理解与认识。
教学方法讲授法、讨论法、练习法教学过程一、复习导入初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。
例如,(-2,3)关于y轴的对称点(2,3),关于原点的对称点(2,-3)二、学习新知1、偶函数填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数图象应具有的特征。
不难发现,上述两个函数,当自变量取为相反数的两个值x和-x,对应的函数值相等。
f(-x)= (-x)2 = x2 = f(x)g(-x)= 1|−x| = 1|x|= g(x)一般地,设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)= f(x)则称y = f(x)为偶函数。
人教A版高中数学必修一《函数的奇偶性》教案
函数的奇偶性人教A版必修一第一章第三节课题函数的奇偶性课型新授课课时安排一课时教学目标1、知识目标:〔1〕理解函数奇偶性的概念,掌握推断一些简单函数的奇偶性的方法;〔2〕能利用函数的奇偶性简化函数图像的绘制过程。
2、能力目标:(1)重视根底知识的教学、根本技能的训练和能力的培养;(2)启发学生能够发觉问题和提出问题,特长独立思考,学会分析问题和制造性地解决问题;(3)通过教师指导总结知识结论,培养学生的抽象概括能力和逻辑思维能力。
3、德育目标:通过自主探究,培养学生的动手实践能力,激发学生学习数学的兴趣,陶冶学生的情操,培养学生坚忍不拔的意志、实事求是的科学学习态度和勇于创新的精神。
教学重点函数奇偶性的概念及函数奇偶性的推断教学难点对函数奇偶性定义的掌握和灵敏运用教学方法1、教法依据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采纳以引导发觉法为主,直观演示法、设疑诱导法、类比法为辅的教学方法。
教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探究问题的积极状态,从而培养思维能力。
2、学法让学生在“观察一归纳一应用〞的学习过程中,自主参与知识的产生、开展、形成的过程,使学生掌握知识。
教学过程教学内容师生活动教学设计意图一、创设情境引入观察下面两张图片:①麦当劳的标志②风车问题1:图像有何共同特点?直观感受生活中的对称美。
通过让学生观察图片导入新课,让学生感受到数学来源于生活,数学与生活是紧密相关的,从而激发学生浓厚的学习兴趣。
新课二、师生互动探究新知问题2:你能回忆几类常见函数及图像吗?请找出哪些关于轴对称,哪些关于原点成中心对称。
O①()f x x=②1()f xx=O③2)(xxf=④axf=)(⑤xxf=)(问题3:如何从数学角度,用数学言语来描述这种对称性呢?1、探究定义请作出2)(xxf=的图像,求)(),(),2(),2(),1(),1(afafffff---。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。
3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。
二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的性质及其应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。
2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。
3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。
六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。
2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。
3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。
七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。
1.4 函数的奇偶性》一等奖创新教学设计
1.4 函数的奇偶性》一等奖创新教学设计2.1.4《函数的奇偶性》教学设计一.教材分析:“函数的奇偶性”是普通高中课程标准试验教科书(必修)数学1的第二章第2.1.4节的内容。
函数的奇偶性是函数的一个重要性质,常伴随着函数的其他性质出现。
函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的轴对称性和点对称性。
利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。
函数的奇偶性也是学生今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等问题、方程问题、作图问题等变得简单明了。
二.学情分析:这节课是函数奇偶性质学习的第一课时,因此通过学生先对实物图的观察、分析、理解来获得函数的奇偶性再结合理论推导来理解函数的奇偶性就显得比较流畅。
这样一方面与学生的认知结构相吻合,另一方面也可以增强学生的阅读理解能力。
另外根据我班学生的情况,本教案在例题的选择及处理方式方面也可作适当调整。
三.教学目标1、知识与技能目标:使学生理解奇函数、偶函数的概念,学会用定义判断函数的奇偶性。
2、过程与方法目标:在奇偶性概念形成过程中,培养学生的观察,归纳能力同时渗透数形结合和特殊到一般的数学思想方法.3、情感、态度、价值观目标:在学生感受数学美的同时激发学习的兴趣,培养学生乐于求索的精神。
四.教学重点、难点教学重点:函数奇偶性概念。
教学难点:对函数奇偶性的概念的理解及判断。
五.教学方法本节课采用观察、探索、启发、讨论、归纳等多种教学手段和方法,采用媒体辅助教学,通过数形结合,增强直观性,通过函数奇偶性的图象对称性演示,使学生享受到数学的美感。
六.教学用具:多媒体。
七.教学过程:(一)导入新课设计:提出问题“我们生活在美的世界中,有过许多对美的感受,请大家观察下列事物给你的感觉体现了什么样的美感呢?”在屏幕上给出一组图片设计理由:联系生活实际,激发学生的学习兴趣,使学生对函数的奇偶性反应在图像上的特点有一个初步的认识。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》一、教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
2. 能够运用函数奇偶性的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 函数奇偶性的定义与判断方法2. 函数奇偶性的性质及应用3. 常见函数的奇偶性分析三、教学重点与难点:1. 函数奇偶性的定义与判断方法2. 函数奇偶性与图像的关系四、教学方法与手段:1. 采用问题驱动法,引导学生主动探索函数奇偶性的性质。
2. 利用多媒体课件,展示函数奇偶性的图像,增强直观感受。
3. 开展小组讨论,促进学生之间的交流与合作。
五、教学过程:1. 导入新课:通过回顾初中阶段学习的函数图像,引导学生发现函数的奇偶性现象。
2. 讲解函数奇偶性的定义与判断方法:讲解函数奇偶性的定义,举例说明判断方法。
3. 探究函数奇偶性的性质:引导学生通过小组讨论,发现函数奇偶性与图像的4. 应用实例:分析生活中遇到的函数奇偶性问题,运用函数奇偶性解决问题。
教案示例:一、教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
2. 能够运用函数奇偶性的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 函数奇偶性的定义与判断方法2. 函数奇偶性的性质及应用3. 常见函数的奇偶性分析三、教学重点与难点:1. 函数奇偶性的定义与判断方法2. 函数奇偶性与图像的关系四、教学方法与手段:1. 采用问题驱动法,引导学生主动探索函数奇偶性的性质。
2. 利用多媒体课件,展示函数奇偶性的图像,增强直观感受。
3. 开展小组讨论,促进学生之间的交流与合作。
五、教学过程:1. 导入新课:通过回顾初中阶段学习的函数图像,引导学生发现函数的奇偶性现象。
2. 讲解函数奇偶性的定义与判断方法:讲解函数奇偶性的定义,举例说明判断3. 探究函数奇偶性的性质:引导学生通过小组讨论,发现函数奇偶性与图像的关系。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。
教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。
教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。
教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。
章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。
教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。
教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。
章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。
教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。
教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。
教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。
章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。
高中数学函数奇偶问题教案
高中数学函数奇偶问题教案
一、教学目标:
1. 理解函数的奇偶性的概念。
2. 掌握判断一个函数是奇函数、偶函数还是既不是奇函数也不是偶函数的方法。
3. 能够应用奇偶函数的性质解决相关问题。
二、教学重点和难点:
1. 奇函数和偶函数的定义及性质。
2. 判断函数奇偶性的方法和技巧。
三、教学内容:
1. 函数的奇偶性概念及定义。
2. 奇函数和偶函数的性质。
3. 判断函数奇偶性的方法和示例。
四、教学步骤:
1. 导入:通过一个实际问题引入函数的奇偶性概念。
2. 讲解:介绍函数的奇偶性定义及相关性质,并通过图像示例说明奇函数和偶函数的特点。
3. 拓展:引导学生讨论如何判断一个函数是奇函数、偶函数还是既不是奇函数也不是偶函数。
4. 练习:让学生通过练习题加深理解,掌握判断函数奇偶性的方法和技巧。
5. 巩固:通过综合应用题让学生进一步理解奇偶性的作用,解决相关问题。
6. 复习:总结本节课的重点内容,巩固学生的学习成果。
五、作业布置:
1. 完成课后练习题,检测掌握程度。
2. 思考:举出两个函数,一个是奇函数,一个是偶函数,并分析其性质及图像特点。
六、教学反思:
本节课主要介绍了函数的奇偶性概念及相关性质,通过图像示例和练习题让学生掌握判断函数奇偶性的方法和技巧。
在教学过程中,可以加入更多实际问题和应用题,让学生更好地理解奇偶函数的作用和应用。
同时,及时总结和反馈学生的学习情况,帮助他们提高学习效果。
人教版高中数学教案函数的奇偶性
人教版高中数学教案——函数的奇偶性教学目标:1. 理解奇函数和偶函数的定义。
2. 掌握判断函数奇偶性的方法。
3. 能够运用奇偶性解决实际问题。
教学重点:1. 奇函数和偶函数的定义。
2. 判断函数奇偶性的方法。
教学难点:1. 理解函数奇偶性的概念。
2. 应用奇偶性解决实际问题。
教学准备:1. 教学PPT。
2. 教学素材。
教学过程:一、导入(5分钟)1. 引入函数的概念。
2. 引导学生思考函数的性质。
二、新课讲解(15分钟)1. 介绍奇函数和偶函数的定义。
2. 通过实例讲解判断函数奇偶性的方法。
3. 总结判断函数奇偶性的步骤。
三、课堂练习(10分钟)1. 让学生独立完成练习题。
2. 讲解练习题,巩固知识点。
四、应用拓展(10分钟)1. 让学生运用奇偶性解决实际问题。
2. 讲解实际问题的解题思路。
五、总结与反思(5分钟)1. 让学生总结本节课所学内容。
2. 反思自己在学习过程中的不足。
教学评价:1. 课后作业批改。
2. 课堂练习的正确率。
3. 学生对实际问题的解决能力。
六、案例分析:具体函数的奇偶性分析1. 选取几个具体函数,如y=x, y=-x, y=x^2, y=-x^2等,分析其奇偶性。
2. 让学生通过观察函数图像,直观理解奇偶性的概念。
3. 引导学生运用奇偶性的定义,验证所选函数的奇偶性。
七、练习与巩固:判断函数的奇偶性1. 给出一些函数表达式,让学生判断其奇偶性。
2. 引导学生运用奇偶性的性质,简化解题过程。
3. 讨论并解答学生可能遇到的问题。
八、奇偶性在实际问题中的应用1. 提供一个实际问题,如物理学中的电流问题,让学生运用奇偶性解决。
2. 引导学生分析问题,运用奇偶性简化问题。
3. 讲解正确解题思路,并给出解答。
九、课堂小结1. 让学生回顾本节课所学的内容,总结奇偶性的概念和判断方法。
2. 强调奇偶性在实际问题中的应用价值。
十、课后作业1. 布置一些有关奇偶性的练习题,让学生巩固所学知识。
高中教案数学函数的奇偶性
高中教案数学函数的奇偶性目标:学生能够理解并区分函数的奇偶性。
教学重点:函数的奇偶性的定义和判断方法。
教学难点:理解函数的奇偶性的性质和应用。
教学准备:教材、课件、黑板、粉笔、练习题。
教学过程:一、概念导入(5分钟)1. 引入函数的奇偶性的概念,让学生回顾奇数和偶数的概念。
2. 引导学生思考函数的奇偶性与奇数偶数的联系。
二、函数的奇偶性的定义(10分钟)1. 定义:函数f(x)在定义域内满足f(-x)=f(x)时,称该函数为偶函数;函数f(x)在定义域内满足f(-x)=-f(x)时,称该函数为奇函数。
2. 举例说明偶函数和奇函数的特点和性质。
三、奇偶性的判断方法(15分钟)1. 判断奇偶性的方法:将变量替换为-x,对比原函数和替换后的函数的关系。
2. 给出几个例题让学生自行判断函数的奇偶性。
3. 大家一起讨论并分享结果。
四、奇偶性的性质和应用(10分钟)1. 偶函数的性质:在y轴上关于原点对称;f(0)为偶函数的性质。
2. 奇函数的性质:在原点上对称;f(0)为奇函数的性质。
3. 分享几个函数的图像,让学生观察并分析其奇偶性的性质。
五、练习与巩固(10分钟)1. 班内同学互相出题,让对方判断函数的奇偶性。
2. 布置练习题,让学生自行完成。
六、作业布置(5分钟)1. 完成课堂练习题。
2. 阅读相关知识点,复习函数的奇偶性的概念。
教学反思:通过本节课的教学,学生对函数的奇偶性有了初步的了解,能够熟练判断函数的奇偶性。
同时,也能够应用奇偶性的概念解决实际问题。
下节课将继续深入探讨函数的性质和应用。
人教课标版高中数学必修一《函数的奇偶性》教案-新版
1.3 第三课时 函数的奇偶性一、教学目标(一)核心素养函数的奇偶性从图形观察开始,发现图象典型特征,猜想出相关结论,通过数据验证,给出证明全过程,最后生成概念.这一过程包含了发现、猜想、证明的数学思维方式,也培育了学生数学抽象、直观想象、逻辑推理、数据分析等数学核心素养.(二)学习目标1.了解奇函数、偶函数的定义2. 运用奇偶性的定义判断一些简单函数的奇偶性3. 结合函数单调性,解决函数的综合问题(三)学习重点1.理解奇函数、偶函数的概念2. 判断函数的奇偶性(四)学习难点函数奇偶性的应用二、教学设计(一)课前设计1.预习任务(1)偶函数:一般地,如果对于函数()f x 的定义域内____一个x ,都有_______,那么函数()f x 就叫做偶函数.(2)奇函数:一般地,如果对于函数()f x 的定义域内____一个x ,都有_______,那么函数()f x 就叫做奇函数.详解:(1)任意,()()f x f x =-;(2)任意,()()f x f x =--2.预习自测(1)作函数,y x y x ==的图象,初步判断函数为奇函数还是偶函数.详解:由图象初步判断y x =为偶函数,y x =为奇函数(二)课堂设计1.知识回顾(1)函数的定义(2)函数的单调性2.问题探究探究一偶函数、奇函数的概念生成=图象,探求对称关系本质●活动①观察函数2y x=,y x师:同学初中数学学习过图形的对称关系,请说出上图的对称关系=函数图象关于y轴对称.生:2y x=,y x=图象的对称关系?师:如何验证2=,y xy x生:可以把图象画在一张白纸上,沿着y轴对折,y轴两边的图象重合.师:作图会有误差的情况出现,有更严谨的验证方法吗?(提示点的坐标)生:可以在图象上取若干个点来验证.师:图象是由点构成的,研究图象对称关系,其实质是研究点的坐标对应关系.因此,我们在图象上取点验证,就涉及到以下几个问题:第一,如何取点?不妨先取部分特殊点(整数点方便计算):我们由函数解析式,取x为整数时,计算相应y的值,对应整数点(,)x y在图象中的位置进行观察.2y x=:(-1,1),(-2,4),(-3,9),(0,0),(1,1),(2,4),(3,9)=:(-1,1),(-2,2),(-3,3),(0,0),(1,1),(2,2),(3,3)如下表:y x可以发现:(,)x y为坐标的整数点位于函数图象上,且这些整数点在图象上的位置是关于y轴对称.第二,如何验证?这些整数点关于y 轴对称,从“形”上观察:对折后“重合”,即点与点对折后合为一个点.因此在坐标系中这些点不是孤立的,是成对出现的,而且它们的相对位置“远近高低”相同一致.“远近”相同,是指点与y 轴的距离,即横坐标的绝对值x 相等.“高低”一致,高度相等,是指点与x 轴的距离,即纵坐标的绝对值y 相等.从“数”上分析:由表中数据,“远近”相同时,相应整数点横坐标是互为相反数;“高低”一致时,相应整数点纵坐标是相等的.第三,严谨性.刚才我们对部分整数点进行了验证,由特殊到一般的思想,我们可以验证:在图象上任取一点(,)A A A x y 时,图象上有一个点(,)B B B x y 与之对应,当AB 两点的坐标满足0A B x x +=且A B y y =时,它们对折之后才能重合.由A 的任意性,确定了相对应点B 的任意性,只有这样我们才能说整个函数图象关于y 轴对称.当AB 两点投影到x 轴时,,A B x x 的取值范围就是函数的定义域,其相互制约关系0A B x x +=,也说明了定义域也有对称关系,即定义域关于原点对称.师:由以上探究发现,函数图象对称关系的本质,是由点的坐标数量关系决定的.若我们在图象上任意取两个点AB ,若它们的坐标满足0A B x x +=且A B y y =(两点任意、横相反、纵相等),就可以说该图象关于y 轴对称,我们称这类函数为偶函数.【设计意图】图象的对称实质的研究,让学生更深层次体会函数图象与数量关系的本质联系,进一步加深了函数对应关系这一核心思想的理解.●活动② 偶函数概念的生成师:按照函数图象对称关系的本质,是由点的坐标数量关系决定的思想,及“两点任意、横相反、纵相等”的原则,能否定义偶函数.生:图象关于y 轴对称的函数为偶函数.师:函数以定义域优先的原则,从数量关系上定义更严谨,参考函数单调性的定义. 生:一般地,函数()y f x =,定义域内任取12,x x ,满足120x x +=且12()()f x f x =时,称()y f x =为偶函数.师:这位同学抓住了“两点任意、横相反、纵相等”的原则,我们在此基础上进行提炼,“任取12,x x 满足120x x +=”可以变形为12x x =-.可把这个关系简化为“x 与x -”,因此我们如下定义偶函数:一般地,函数()y f x =定义域I ,x I ∀∈(x I -∈)都有()()f x f x =-时,那么称()y f x =为偶函数.师:若()y f x =为偶函数,图象满足哪些性质呢?对应到函数的定义域呢? 生:图象关于y 轴对称.函数的定义域关于(0,0)O 对称.师:这样说可以吗?(1)偶函数图象关于y 轴对称.(2)图象关于y 轴对称的函数是偶函数.(3)偶函数的定义域关于(0,0)O 对称.(4)定义域关于(0,0)O 对称的函数是偶函数.生:(1)由定义是正确的;(2)是定义推导的起源是正确的;(3)由图象在x 轴投影的对应关系,或由定义“两点任意、横相反”知,是正确的;(4)函数()f x x =,定义域R 关于原点对称,图象不关于y 轴对称,不正确.【设计意图】图象的对称关系的实质探究,让学生从“形”定性的认识,到 “数”的定量分析;研究图象,就研究其构成元素所有点的坐标关系,由特殊点再到任意点,由函数对应关系的本质,深入到定义域,值域层面研究.整个探究过程由外到内、由形到数、由整体到局部、由特殊到一般的思想,体现了数学概念生成过程趣味横生. ●活动③奇函数的概念生成师:由(4)知,并不是所有的函数都是偶函数,偶函数只是众多函数中较典型的一类.请同学们观察函数y x =,1y x=图象,完成下面两个函数值对应表.师:请观察y x =,1y x =图象,及函数值对应表特征,上图有何对称关系?如何验证?生:y x =,1y x=图象关于原点成中心对称关系,函数图象整体围绕着(0,0)O 旋转0180与原图象重合.师:由上面的推导,函数图象对称关系的本质,是由点的坐标数量关系决定的.同学们能总结关于图象关于原点对称的本质关系吗?生:在图象上任取一点(,)A A A x y 时,图象上有一个点(,)B B B x y 与之对应,当AB 两点的坐标满足0A B x x +=且0A B y y +=时,它们对折之后才能重合.由点A 的任意性,确定了相对应点B 的任意性,只有这样我们才能说整个函数图象关于原点对称.当AB 两点投影到x 轴时,,A B x x 的取值范围就是函数的定义域,其相互制约关系0A B x x +=,也说明了定义域也有对称关系,即定义域关于原点对称,0A B y y +=也说明了值域也有对称关系,即值域关于原点对称.师:我们在图象上任意取两个点AB ,若它们的坐标满足0A B x x +=且0A B y y +=(两点任意、横相反、纵相反),就可以说该图象关于原点对称,我们称这类函数为奇函数.师:由偶函数定义,及“两点任意、横相反、纵相反”的原则,能否定义奇函数.生:一般地,函数()y f x =定义域I ,x I ∀∈(x I -∈)都有()()(()()0)f x f x f x f x -=-+-=时,那么称()y f x =为奇函数.师:若()y f x =为奇函数,图象满足哪些性质呢?对应到函数的定义域呢? 生:图象关于原点对称.函数的定义域关于原点对称.师:这样说可以吗?(1)奇函数图象关于原点对称(2)图象关于原点对称的函数是奇函数(3)奇函数的定义域关于原点对称(4)定义域关于原点对称的函数是奇函数生:(1)由定义是正确的;(2)是定义推导的起源是正确的;(3)由图象在x 轴投影的对应关系,或由定义“两点任意、横相反”知,是正确的;(4)也可能是偶函数,不正确.师:我们对偶函数、奇函数的定义作了介绍,我们称函数的这类性质为奇偶性.奇偶性是一部分函数的性质,因此我们在判断函数是否奇偶性?第一,图象法.可以从图象特征观察:若图像关于y 轴对称,我们称之为偶函数,否则该函数不是偶函数;若图像关于原点对称,我们称之为奇函数,否则该函数不是偶函数;因此,从奇偶性的角度可以将函数分类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数又不是偶函数(简称非奇非偶函数).第二,定义法.也可以从数量特征观察:首先判定函数定义域是否关于原点对称, 若不对称,则该函数为非奇非偶函数;若对称,再判断()f x 与()f x -关系:如果()()f x f x =-,则该函数为偶函数.如果()()0f x f x +-=,则该函数为奇函数.【设计意图】偶函数的概念生成,为奇函数的概念引入奠定了基础,有共同的思维方式,也有不同的内在体现,让学生对函数奇偶性的概念生成过程,及本质内涵有更深的理解.探究二:函数奇偶性的判断.●活动①定义法判断函数奇偶性.例1 判断下列函数的奇偶性,并说明理由.(1)()f x =(2)1()1f x x =- 【知识点】函数奇偶性【数学思想】【解题过程】解:(1)()f x ={}1不关于原点对称. ()f x ∴为非奇非偶函数(2)1()1f x x =-函数的定义域(,1)(1,1)(1,)-∞-⋃-⋃+∞关于原点对称. 11()()11f x f x x x -===--- ()f x ∴为偶函数 【思路点拨】由定义法判断【答案】(1)非奇非偶函数;(2)偶函数同类训练:判断下列函数的奇偶性,并说明理由.(1)1()1f x x =-(2)()f x = 【知识点】函数奇偶性【数学思想】【解题过程】解:(1)1()1f x x =-函数的定义域(,1)(1,)-∞⋃+∞不关于原点对称 ()f x ∴为非奇非偶函数(2)()f x =函数的定义域{1}{1}-⋃关于原点对称()()f x f x -=== ()f x ∴为偶函数【思路点拨】定义法灵活运用【答案】(1)非奇非偶函数;(2)偶函数【设计意图】让学生明确定义法判断函数奇偶性的步骤.●活动②定义法、图象法判断函数奇偶性.例2:判断函数(1),0()(1),0x x x f x x x x -<⎧=⎨+>⎩的奇偶性 【知识点】分段函数奇偶性【数学思想】化归思想、数形结合思想【解题过程】解:(1),0()(1),0x x x f x x x x -<⎧=⎨+>⎩的定义域(,0)(0,)-∞⋃+∞关于原点对称.当0x >时,0x -<()()[1()](1)()(0)f x x x x x f x x ∴=---=-+=->当0x <时,0x ->()()[1()](1)()(0)f x x x x x f x x ∴=-+-=--=-<综上所述,()()f x f x -=-,()f x 奇函数.【思路点拨】定义法、用图象法【答案】奇函数同类训练 判断函数2223,0()23,0x x x f x x x x ⎧-+<=⎨--->⎩的奇偶性 【知识点】函数奇偶性【数学思想】化归思想、数形结合思想【解题过程】解:当0x >时,0x -<22()()2()323()(0)f x x x x x f x x ∴=---+=++=->当0x <时,0x ->22()()2()323()(0)f x x x x x f x x ∴=-----=-+-=-<综上所述,()()f x f x -=-,()f x 奇函数【思路点拨】对于较熟悉的函数,可以作函数图象法判断单调性.【答案】奇函数【设计意图】定义法、图象法灵活运用, 判断函数奇偶性.●活动③利用性质法判断函数奇偶性.例3 判断函数24()f x x x =+奇偶性.【知识点】性质法:对于两个函数在定义域关于原点对称的情形下,函数的奇偶性质,偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)仍为奇(偶)函数;一个奇函数与偶函数的积为奇函数,这样的方法称为性质法.【数学思想】化归思想【解题过程】解:24()f x x x =+函数的定义域R 关于原点对称.记:21()f x x =,函数的定义域R 关于原点对称.211()()()f x x f x -=-=,21()f x x ∴=为偶函数;42()f x x =,函数的定义域R 关于原点对称.422()()()f x x f x -=-=,42()f x x ∴=为偶函数.性质法:24()f x x x =+为偶函数.【思路点拨】函数12()()f x f x 、的定义域必须满足定义域关于原点对称,且12()()f x f x 、定义域的交集为()f x 的定义域也必须关于原点对称,判断各分函数的奇偶性,再判断复合后的奇偶性.【答案】偶函数同类训练 判断35()f x x x x =++奇偶性.【知识点】奇偶性判断【数学思想】化归思想【解题过程】35()f x x x x =++函数的定义域R 关于原点对称35()()()()()f x x x x f x -=-+-+-=- ()f x ∴为奇函数.【思路点拨】可由性质法证明【答案】奇函数【设计意图】在部分题目特别是选择题、填空题判断奇偶性时,性质法方便快捷,但此部分涉及到复合函数定义域的问题,对学生能力要求较高.探究三: 函数综合问题●活动①奇偶函数图象问题例4如图所示为偶函数()f的大小.f与(3)y f x=的局部图象,试比较(1)【知识点】函数奇偶性【数学思想】数形结合思想【解题过程】解:作()x∈--的图象关于y轴对称的图象.=在[3,1]y f x由图象知(3)(1)>f f【思路点拨】利用奇偶性,找出另一区间的图象【答案】(3)(1)>f f同类训练如图所示为奇函数()f的大小.f与(3)y f x=的局部图象,试比较(1)【知识点】函数奇偶性【数学思想】数形结合思想【解题过程】解:法一:由图象知(3)(1)->-,又()f x是奇函数.f f∴<f ff f f f(3)(3),(1)(1)∴-=--=-,(3)(1)法二:因为()y f x =是奇函数,故由对称性可作出[1,3]x ∈时的图象,由图象知(3)(1)f f <.【思路点拨】利用奇偶性,找出另一区间的图象【答案】(3)(1)f f <【设计意图】由于奇函数、偶函数图象的对称性,因而如果知道一个函数是奇函数或偶函数,只要把它的定义域分成关于原点对称的两部分,得出函数在一部分上的性质和图象,就可推出这个函数在另一部分上的性质和图象.●活动②函数奇偶性的应用例5若()f x 是定义在R 上的奇函数,当0x <时,()(2)f x x x =-,求函数()f x 的解析式.【知识点】利用奇偶性求解析式【数学思想】转化与化归思想【解题过程】解:法一:()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,(0)0f =.当0x >时,0x -<,()()(2)f x f x x x ∴=--=+.∴函数()f x 的解析式为(2),0()0,0(2),0x x x f x x x x x +>⎧⎪==⎨⎪-<⎩.法二:()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,(0)0f =.令t x =-,若0x <,则0t >,且x t =-.()(2)(0)f x x x x =-<,()(2)f t t t ∴-=-+,即()(2)f t t t -=-+.()(2)f t t t ∴=+,0x ∴>时,()(2)f x x x =+.∴函数()f x 的解析式为(2),0()0,0(2),0x x x f x x x x x +>⎧⎪==⎨⎪-<⎩.【思路点拨】在未知范围内取值,利用转化到已知范围内的函数解析式求解;也可以用图象对称关系,待定系数法求解析式。
高中数学《函数的奇偶性》教学设计
函数的奇偶性教学设计一、内容和内容解析1.内容函数的奇偶性2. 内容解析函数的奇偶性是函数的主要性质之一,它刻画了函数图象的对称关系.如果一个函数具有奇偶性,那么意味着有对称关系,只要研究函数定义在x>0的部分就足够了,这样可以简化研究函数以及函数性质过程.与函数的单调性是函数的“局部性质”不同,函数的奇偶性是函数的“整体性质”;函数的单调性是针对所有函数来讨论的,而函数的奇偶性是某些函数的特殊性质.在研究函数奇偶性的过程中,与研究函数单调性的方式和方法是类似的. 函数的奇偶性也是把图象的对称性(几何特性)转化为代数关系,并用严格的符号语言表示,沟通了形与数,实现了从定性到定量的转化,这也体现出数学概念逐渐抽象、严格化的过程,进一步让学生体会对于数学一般概念的学习方法.在初中,学生学习了二次函数图象的对称性,主要还是从函数图象的基本特征入手(几何特性),在高中,我们除了从几何特性入手,更重要的是要将这种几何特性,通过引入数学符号,利用数学语言和符号语言,清晰而准确的表达出来.比如,对于偶函数,将图象关于轴对称的几何特征,描述为?x∈D,f(-x)=f(x),用精确的语言表达. 和研究函数单调性一样,这种从形象直观到定性刻画再到抽象的符号语言刻画的研究过程,以及通过引入数学符号、借助代数语言精确定量地刻画变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.在教学的过程中,教师不应仅仅体现函数奇偶性的概念和关系,还要注意这种研究数学的过程、方法和思想.基于以上分析,确定教学重点:函数奇偶性的符号语言刻画.二、目标和目标解析1.目标(1)借助函数图象,会用符号语言表达函数的奇偶性,了解函数奇偶性的概念和几何意义;(2)能判断函数是否具有奇偶性,并会用定义证明函数的奇偶性;(3)能利用函数的奇偶性解决一些简单的问题;(4)进一步在抽象函数奇偶性的过程中感悟数学概念的抽象过程及符号表示的作用.2.目标解析达成上述目标的标志是:(1)能够用“?x∈I”(其中I是函数f(x)的定义域)表达出定义域内的每一个点均满足要求. 能够根据函数的图象的对称性,将图象关系利用严格的数学语言进行表达,从而总结出函数奇偶性的定义.知道函数的奇偶性是反映函数图象的特殊的对称性;(2)能利用定义严格的判断一个函数是否具有奇偶性;(3)能通过函数图象的对称性以及奇偶性的定义,解决一些具体的数学问题;(4)在研究过单调性的基础上,进一步体会经历从图象直观到文字语言描述,再到符号语言刻画的过程,进一步感悟量词的运用,感受数学符号语言的作用.三、教学问题诊断分析学生在初中阶段已经学习了一次函数、正比例函数、反比例函数和二次函数,这些函数的图象都具有对称性.研究奇偶性只研究特殊的对称关系,即关于轴和关于原点的对称关系. 对于具体的函数,学生从图象中直接观察并不困难,困难在于:一是如何将具体函数一般化,得到一般函数的规律;二是如何用符号语言“?x∈I,都有f(-x)=f(x)”以及“?x∈I,都有f(-x)=f(x)”来进行表达.在上一单元函数的单调性中已经进行过,因此这里学生不会过于陌生,但是如何用量词准确的表达这个关系仍然是一个难点.教学中,要借助一定的教学媒体,如用信息技术展示函数图象的对称关系,展示将整体的对称关系用任意点的形式表达,让学生通过数学直观上升到数学抽象,用语言进行描述,进而用符号语言准确的表达.根据以上分析,确定教学难点是:符号语言表达函数奇偶性的定义;对“任意”“都有”等涉及无限取值的语言的理解和使用.四、教学支持条件分析为使学生更好地理解奇偶性的形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象对称的特点,并体会利用点的任意性体现整体函数图象所具有的性质.五、教学过程设计(一)引入引导语:在上一单元中,我们用符号语言精确的描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质,这一单元中,我们也将通过函数的图象对称性的特点,利用严格的数学语言和符号语言表达这一性质.问题1:请看下面的函数图象,从中你发现了函数图象的哪些特征?你觉得它们反映了函数的哪些方面的性质?师生活动:教师利用信息技术展示例子,学生观察后回答问题.学生有可能回答到单调的关系(因为单调性是刚刚学习完的内容),这时,教师可以展示更多的具有关于y轴对称,而单调性不同的函数图象.教师指出:我们这一节是就要研究图象具有一定对称特性的函数的规律.设计意图:通过实例,使学生感受到这样一类关于轴对称的函数的关系,并类比函数单调性研究的思路,来进一步研究函数的奇偶性.(二)奇偶性的符号化定义1. 从具体实例分析问题2:我们来继续研究这两个我们熟悉的函数f(x)=x2和g(x)=2-|x| 从图象上,我们已经看出它们的图象是关于轴对称的.那么,你能用符号化的语言来刻画这个对称关系吗?师生活动:学生自主活动,然后进行交流.设计意图:让学生体会将几何上的直观用严格的数学语言和符号语言表述的过程.学生可能会遇到困难,这个没有关系,让学生带着疑惑继续进行下面的思考和研究,这样他获得的感受会更深.追问1:你能不能仿照用点的坐标之间的关系刻画函数的单调性,通过点与点之间的坐标的联系找到描述整个图象对称的方式?让我们先从一些具体点的关系入手.先填写下表:师生活动:学生不难发现:当的取值互为相反数的时候,其函数值总是相等的.追问2:这个规律是一般的吗?师生活动:学生不难发现是一般的.追问3:这种所有的x都满足的关系,我们可以通过什么方式方便的表达出来?师生活动:引导学生联系全称量词的表述形式.追问4:大家尝试通过量词的表述,把这个函数的对称关系表达出来,同学之间可以互相讨论一下.师生活动:学生在自己思考的前提下进行讨论,让学生表达得到的关系,如果出现问题,及时引导学生修正,表达出:?x∈I,总有f(-x)=f(x).设计意图:这是本节课的重点,进一步让学生体会从具体到抽象的过程.这里还是在一个具体的函数下,将几何上的直观抽象为符号表达,这也是培养数学表达的能力.2. 偶函数的定义问题3:你能将上面由具体函数得到的关系,推广到一般的图象关于轴对称的函数上吗?师生活动:学生不难得到?x,f(-x)=f(x),但是教师要引导学生注意函数的定义域.逐步完善.并总结出偶函数的定义:“一般地,设函数f(x)的定义域为I,如果?x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.”3.偶函数定义的巩固与辨析问题4:你能再举出几个偶函数的例子吗?师生活动:由学生举例,教师利用信息技术(如Geogebra或者几何画板)绘制学生举到的函数的图象,并再一次用定义将图象的对称关系加以描述.设计意图:让学生巩固偶函数的概念,并进一步体会其图象特点.问题5:一个函数是偶函数,那么它的定义域有什么特点吗?师生活动:学生思考后,回答.设计意图:根据定义,让学生体会偶函数的定义域关于原点对称.让学生体会,在定义中“?x∈I,都有-x∈I,且f(-x)=f(x)”就能够体现出定义域关于原点对称.4. 奇函数的定义和巩固辨析(ii)考虑图象上的对称关系如何通过坐标的方式体现出来.(iii)这个规律是一般的吗?(iv)大家尝试通过量词的表述,把这个函数的对称关系表达出来;(v)类比偶函数的定义,给出奇函数的定义;(vi)大家再尝试的写出一些奇函数(可以利用信息技术,画出自己写出的函数的图象),同学之间进行交流;(vii)如果一个函数是奇函数,那么它的定义域有什么特点?师生活动:学生自主活动,然后进行交流,汇报.设计意图:在已经研究了偶函数的基础上,让学生仿照偶函数的研究,自主的研究奇函数的概念和性质. 让学生在学到知识的基础上,进一步的体会研究函数性质的一般方法.(三)函数奇偶性的应用例6 判断下列函数的奇偶性:师生活动:先让学生独立思考,讨论研究思路,然后给出严格的表述(让学生板书),教师再引导学生进行对给出的表述进行点评.这里,如果技术条件允许,可以让学生利用信息技术进行探究,但是在探究的基础上要引导学生给出严格的符号化的推导.设计意图:目的是让学生体会如何判断函数的奇偶性. 学生可以通过函数的图象进行判读,但是要严格的说明其奇偶性,还是需要利用定义进行证明.思考:(四)课堂小结问题7:回答下列问题:(1)偶函数是如何定义的?它的图象有什么特点,请举几个偶函数的例子.(2)奇函数是如何定义的?它的图象有什么特点,请举几个奇函数的例子.(3)结合本节课的学习过程,你对研究函数时,从图象特征到数学表达的感受谈谈体会.师生活动:学生独立思考的基础上回答,教师根据实际的情况进行归纳整理.设计意图:(1)和(2)主要是让学生掌握奇偶性的概念、基本性质、图象特征,(3)主要是让学生进一步总结和体会通过图象直观及文字语言刻画得到函数性质,再用符号语言进行表述,进行严谨是数学表达的过程.作业:P87, 习题3.2,第5题;综合运用,第11题.。
高中数学必修一教案-函数的奇偶性
§1.3.2函数的奇偶性一.教学目标1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.情态与价值:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.二.教学重点和难点:教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式三.学法与教学用具学法:学生通过自己动手计算,独立地去经历发现,猜想与证明的全过程,从而建立奇偶函数的概念.教学用具:三角板 投影仪四.教学思路(一)创设情景,揭示课题“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性.2()f x x = ()||1f x x =- 21()x x x=y yx 0 x 通过讨论归纳:函数()f x x =是定义域为全体实数的抛物线;函数()||1f x x =-是定义域为全体实数的折线;函数()f x 是定义域为非零实数的两支曲线,各函数之间的共性为图象关于y 轴对称.观察一对关于轴对称的点的坐标有什么关系?归纳:若点(,())x f x 在函数图象上,则相应的点(,())x f x -也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)研探新知函数的奇偶性定义:1.偶函数一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.(学生活动)依照偶函数的定义给出奇函数的定义.2.奇函数一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称).3.具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.(三)质疑答辩,排难解惑,发展思维.例1.判断下列函数是否是偶函数.(1)2()[1,2]f x xx =∈- (2)32()1x x f x x -=- 解:函数2(),[1,2]f x x x =∈-不是偶函数,因为它的定义域关于原点不对称. 函数32()1x x f x x -=-也不是偶函数,因为它的定义域为}{|1x x R x ∈≠且,并不关于原点对称. 例2.判断下列函数的奇偶性(1)4()f x x = (2)5()f x x = (3)1()f x x x =+(4)21()f x x= 解:(略)小结:利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定()()f x f x -与的关系;③作出相应结论:若()()()()0,()f x f x f x f x f x -=--=或则是偶函数;若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数.例3.判断下列函数的奇偶性:①()(4)(4)f x lg x g x =++- ②2211(0)2()11(0)2x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩ 分析:先验证函数定义域的对称性,再考察()()()f x f x f x --是否等于或. 解:(1){()f x x x 的定义域是|4+>0且4x ->}0={|4x -<x <}4,它具有对称性.因为()(4)(4)()f x lg x lg x f x -=-++=,所以()f x 是偶函数,不是奇函数.(2)当x >0时,-x <0,于是 2211()()1(1)()22g x x x g x -=---=-+=- 当x <0时,-x >0,于是222111()()11(1)()222g x x x x g x -=-+=+=---=- 综上可知,在R -∪R +上,()g x 是奇函数.例4.利用函数的奇偶性补全函数的图象.教材P 35思考题:规律:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.例5.已知()f x 是奇函数,在(0,+∞)上是增函数.证明:()f x 在(-∞,0)上也是增函数.证明:(略)小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.(四)巩固深化,反馈矫正.(1)课本P 36 练习1.2 P 39 B 组题的1.2.3(2)判断下列函数的奇偶性,并说明理由.①()0,[6,2][2,6];f x x =∈--②()|2||2|f x x x =-++③()|2||2|f x x x =--+ ④2()(1)f x lg x x =++(五)归纳小结,整体认识.本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.(六)设置问题,留下悬念.1.书面作业:课本P 44习题A 组1.3.9.10题2.设()f x R x 在上是奇函数,当>0时,()(1)f x x x =-试问:当x <0时,()f x 的表达式是什么?解:当x <0时,-x >0,所以()(1)f x x x -=-+,又因为()f x 是奇函数,所以()()[(1)](1)f x f x x x x x =--=--+=+.A 组一、选择题:1.已知函数2|2|4)(2-+-=x x x f ,则它是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数2.已知函数32)1()(2++-=mx x m x f 为偶函数,则f (x )在区间(-5,-2)上是( )A .增函数B .减函数C .部分为增函数,部分为减函数D .无法确定增减性3.函数)1(2-=x x y 的大致图象是( )4.如果奇函数()f x 在区间[]3,7上是增函数且最小值是5,那么()f x 在区间[]7,3--上A 、是增函数且最小值是—5B 、是增函数且最大值是—5C 、是减函数且最小值是—5D 、是减函数且最大值是—55.已知||1)(2x x x f +=在[—3,—2]上是减函数,下面结论正确的是( ) A .f (x )是偶函数,在[2,3]上单调递减B .f (x )是奇函数,在[2,3]上单调递减C .f (x )是偶函数,在[2,3]上单调递增D .f (x )是奇函数,在[2,3]上单调递增6.()f x 为奇函数,在()0,+∞上()()1f x x x =-,则它在(),0-∞上表达式 ( )A 、()()1f x x x =-B 、()()1f x x x =-+C 、()()1f x x x =+D 、()()1f x x x =--二、填空题:7.函数cx bx x x f ++=23)(是奇函数,函数5)2()(2+-+=x c x x g 是偶函数,则b=______,c=_______。
函数的奇偶性 精品教案
课题:1.3.2函数的奇偶性一、教材内容分析“奇偶性”是人教A版必修1第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节,本节的主要内容是研究函数的又一条重要性质---函数的奇偶性。
教材从学生熟悉的特殊函数入手,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又是为后续研究指数函数、对数函数、幂函数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
学习函数的奇偶性,能使学生再次体会到数形结合的思想,培养了学生观察、分析、归纳的能力;初步学会用数学的眼光看待事物,感受数学的对称美。
二、学生学情分析学生是刚从初中进入高中的高一学生,虽然学生在初中已经学习了轴对称图形和中心对称图形,但由于这节课主要是将学生的直观认识提高为抽象理解,抽象的过程往往是高一学生感觉比较困难的地方。
我校是一所县城普通高中,学生基础非常薄弱,要让学生通过感官认识上升为概念的概括,这是一件很困难的问题,因此在教学设计上针对学生的特点,注意从特殊、直观方面出发,多角度引发学生的思考和探究。
三、教学目标知识目标:了解奇函数与偶函数的概念,会用函数的奇偶性定义来判断函数奇偶性。
能力目标:引导学生探究函数奇偶性的形式化定义的过程,培养学生抽象的概括能力和严谨的逻辑思维能力。
情感目标:通过自主探索,体会数形结合的思想,感受生活中的数学美。
教学重点形成函数奇偶性的形式化定义。
教学难点:利用函数的奇偶性定义判断函数的奇偶性。
四、教学策略设计在内容处理上,本节课充分利用画函数图像的过程(列表、描点、连线),让学生通过观察图像特征,结合函数值对应表,具体可分为三个步骤:第一,学生动手列表、画图;第二,观察描绘函数的图像特征;第三,结合函数值对应表,利用函数解析式来描述这种变化特征。
教学中重视从学生熟悉的函数入手,从特殊到一般性质的概括过程。
由于函数图像是发现函数性质的直观载体,因此本节课充分借助信息技术创设教学情境,以利于学生通过观察函数图像特征,探究出其定义。
人教版高中数学必修1《函数的奇偶性》教案
§1.3.2函数的奇偶性(1)教学目标:知识目标——理解函数的奇偶性并能熟练应用数形结合的数学思想解决、推导问题;能应用奇偶性的知识解决简单的函数问题。
能力目标——通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想;培养学生从特殊到一般的概括归纳问题的能力。
情感目标—— 通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性;养成积极主动,勇于探索,不断创新的学习习惯和品质。
教学分析:教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性的步骤; 教学难点:对函数奇偶性概念的理解与认识 教学方法:诱思引探鼓励法 教学工具:多媒体课件 教学过程一、 创设情景,激发兴趣(多媒体投放图片) 二、 实例引入,初步感知请比较下列两组函数图象,从对称的角度,你发现了什么 ?2()f x x = ||)(x x f =y 轴对称师:再观察表1和表2,你看出了什么? 表1x -3 -2 -1 0 1 2 3 f(x)=|x|321 0123表2生:当自变量x 取一对相反数时,相应的两个函数值相等。
三、实验体验,加以体会 【探究】图象关于轴对称的函数满足:对定义域内的任意一个,都有。
反之也成立吗?(超级链接几何画板演示)师:从以上的讨论,你能够得到什么?(师生讨论,共同完善,形成概念,老师板书偶函数定义)一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数;师:仿此请观察下面两组图象,你能给出关于原点对称的函数图象与式子之间的关系,进而给出奇函数的定义吗?一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数。
问题1:具有奇偶性函数的图象的对称如何?师:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称。
问题2:函数的奇偶性是怎样的一个性质?与单调性有何区别?师:函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》第一章:引言1.1 课程目标:理解函数奇偶性的概念。
学会判断函数的奇偶性。
1.2 教学内容:引入函数的概念。
介绍奇函数和偶函数的定义。
举例说明奇函数和偶函数的性质。
1.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解奇偶性的概念。
进行小组讨论,让学生互相交流思路。
1.4 教学活动:引入函数的概念,引导学生回顾已学的函数知识。
讲解奇函数和偶函数的定义,举例说明其性质。
布置练习题,让学生巩固奇偶性的判断方法。
第二章:奇函数的性质2.1 课程目标:理解奇函数的性质。
学会运用奇函数的性质解决问题。
2.2 教学内容:回顾奇函数的定义。
介绍奇函数的性质,如奇函数的图像关于原点对称等。
举例说明奇函数性质的应用。
2.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解奇函数的性质。
进行小组讨论,让学生互相交流思路。
2.4 教学活动:回顾奇函数的定义,引导学生复习相关知识。
讲解奇函数的性质,举例说明其应用。
布置练习题,让学生巩固奇函数性质的理解。
第三章:偶函数的性质3.1 课程目标:理解偶函数的性质。
学会运用偶函数的性质解决问题。
3.2 教学内容:回顾偶函数的定义。
介绍偶函数的性质,如偶函数的图像关于y轴对称等。
举例说明偶函数性质的应用。
3.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解偶函数的性质。
进行小组讨论,让学生互相交流思路。
3.4 教学活动:回顾偶函数的定义,引导学生复习相关知识。
讲解偶函数的性质,举例说明其应用。
布置练习题,让学生巩固偶函数性质的理解。
第四章:奇偶性的判断4.1 课程目标:学会判断函数的奇偶性。
理解奇偶性在实际问题中的应用。
4.2 教学内容:介绍判断函数奇偶性的方法。
举例说明如何判断函数的奇偶性。
探讨奇偶性在实际问题中的应用。
4.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解判断函数奇偶性的方法。
进行小组讨论,让学生互相交流思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1教案14
课题:函数的奇偶性
课 型:新授课
教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。
教学重点:熟练判别函数的奇偶性。
教学难点:理解奇偶性。
教学过程:
一、复习准备:
1.提问:什么叫增函数、减函数?
2.指出f(x )=2x 2-1的单调区间及单调性。
→变题:|2x 2-1|的单调区间
3.对于f(x )=x 、f(x )=x 2、f(x )=x 3、f(x )=x 4,分别比较f(x )与f(-x )。
二、讲授新课:
1.教学奇函数、偶函数的概念:
①给出两组图象:()f x x =、1()f x x
=
、3()f x x =;2()f x x =、()||f x x =. 发现各组图象的共同特征 → 探究函数解析式在函数值方面的特征
② 定义偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even fun c tion ).
③ 探究:仿照偶函数的定义给出奇函数(o dd fun c tion )的定义.
(如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。
④ 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性)
⑤ 练习:已知f(x )是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。
(假如f(x )是奇函数呢?)
1. 教学奇偶性判别:
例1.判断下列函数是否是偶函数. (1)2()[1,2]f x x x =∈- (2)32
()1
x x f x x -=-
例2.判断下列函数的奇偶性
(1)4()f x x = (2)5()f x x = (3)1()f x x x =+ (4)21()f x x
=. (5) 2211(0)2()11(0)2
x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩ (6)1122-+-=x x y
例3.已知函数)(x f 对任意R xy ∈,,总有)()()(y f x f y x f +=+,且当0>x 时,0)(<x f ,3
2)1(-=f 。
(1)求证:)(x f 在R 上是减函数,且是奇函数;
(2)求)(x f 在[]3,3-上的最大值和最小值。
(3)解关于x 的不等式3
2)1()23()12(-+>--+x f x f x f 。
4、教学奇偶性与单调性综合的问题:
①出示例:已知f(x )是奇函数,且在(0,+∞)上是减函数,问f(x )的(-∞,0)上的单调性。
②找一例子说明判别结果(特例法) → 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。
(小结:设→转化→单调应用→奇偶应用→结论)
③变题:已知f(x )是偶函数,且在[a ,b ]上是减函数,试判断f(x )在[-b ,-a ]上的单调性,并给出证明。
三、巩固练习:
1、判别下列函数的奇偶性:
f(x )=|x +1|+|x -1| 、f(x )=23
x 、f(x )=x +x 1、 f(x )=21x
x +、f(x )=x 2,x ∈[-2,3] 2.设f(x )=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。
3.已知f(x )是奇函数,g(x )是偶函数,且f(x )-g(x )=
11+x ,求f(x )、g(x )。
4.已知函数f(x ),对任意实数x 、y ,都有f(x +y )=f(x )+f(y ),试判别f(x )的奇偶性。
(特值代入)
5.已知f(x )是奇函数,且在[3,7]是增函数且最大值为4,那么f(x )在[-7,-3]上是( )函数,且最 值是 。
四、小结
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
五、作业P39页A 组6、B 组3
后记:
补充材料
【例1】判别下列函数的奇偶性:
(1)31()f x x x =-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有
3311()()()()f x x x f x x x
-=--=--=--, 所以为奇函数. (2)原函数定义域为R ,对于定义域的每一个x ,都有
()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数. (3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数.
【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1
f x
g x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数,
∴ ()()f x f x -=-,()()g x g x -=.
则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩
. 两式相减,解得2()1x f x x =-;两式相加,解得21()1
g x x =-. 【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.
解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2). ∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.
作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一
致,
∴ 0x <时,22()2(1)224f x x x x =-++=--.
点评:此题中的函数实质就是224||y x x =-+. 注意两
抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.
【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-, 所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.
【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.
解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减. 又 ∵ ()f x 是奇函数,
∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.
又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.
∵ 22(33)(32)f a a f a a +-<-,
∴ 223332a a a a +->-,解得1a >.
点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函
数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.
函数的奇偶性练习
※基础达标
1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).
A .奇函数
B . 偶函数
C . 非奇非偶函数
D . 既奇又偶函数
2.(08年全国卷Ⅱ.理3文4)函数1()f x x x
=-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称
3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ).
A . (1)x x -+
B . (1)x x +
C . (1)x x -
D . (1)x x --
4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).
A .奇函数
B .既不是奇函数也不是偶函数
C .偶函数
D .既是奇函数也是偶函数
5.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ).
A . 增函数且最小值是-1
B . 增函数且最大值是-1
C . 减函数且最大值是-1
D . 减函数且最小值是-1
6.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .
7.已知()f x 是定义在R 上的奇函数,在(0,)+∞是增函数,且(1)0f =,则(1)0f x +<的解集为 .
※能力提高
8.已知函数211()()12
f x x x =+-. (1)求函数()f x 的定义域; (2)判断函数()f x 的奇偶性并证明你的结论.
9.若对于一切实数,x y ,都有()()()f x y f x f y +=+:
(1)求(0)f ,并证明()f x 为奇函数; (2)若(1)3f =,求(3)f -.
※探究创新
10.已知2
2()()1x f x x R x =∈+,讨论函数()f x 的性质,并作出图象.。