轴类零件加工工艺设计

合集下载

轴类零件的加工工艺毕业设计

轴类零件的加工工艺毕业设计

轴类零件的加工工艺毕业设计
随着现代化技术的不断进步,自动化加工已经成为了现代喷气机、汽车、船舶和各种机械设备的关键部分。

其中,轴类零件是机械装备
中必不可少的零件之一,它们扮演着承载力和传递动力的重要角色。

轴类零件的加工工艺包括材料的选取、机器加工工序(如车削、
铣削、磨削等)、热处理和表面处理等几个方面。

首先是材料的选取。

轴类零件要求硬度高、韧性好、耐磨性强、
密度均匀以及尺寸精准。

为了达到这些要求,常用的材料主要有高速钢、合金钢、碳钢等。

其次是机器加工工序。

轴类零件的加工工序一般包括车削、铣削、钻孔、切削和磨削等多个工序。

其中,车削是最常见的一种加工方法。

它可以使轴类零件的直径和长度精确到0.01毫米,同时能够加工出各
种曲面和螺纹。

其次是热处理。

对于硬度要求高的轴类零件来说,热处理是必不
可少的一种工艺。

常用的热处理工艺主要有淬硬和回火两种。

淬硬可
以提高材料的硬度和强度,但会降低材料的韧性;回火可以使材料兼
顾强度和韧性,同时提高其耐磨性。

最后是表面处理。

轴类零件的表面处理可以保护其表面不受侵蚀、提高其抗疲劳性能、提高其耐磨性等。

常用的表面处理方法有电镀、
喷涂、热喷涂等。

总之,轴类零件的加工工艺是一个复杂的系统工程,在实际的生产中需要不断地追求提高效率和质量。

为了在加工轴类零件过程中避免出现一些问题,我们必须在加工前充分了解材料的特性、选择合适的机床设备以及合理控制加工参数等。

轴类零件机械加工工艺规程及其设计

轴类零件机械加工工艺规程及其设计

轴类零件机械加工工艺规程及其设计轴类零件是机械制造中广泛应用的零部件之一,其机械加工工艺规程的设计对于产品的质量和生产效率具有重要的意义。

本文将从轴类零件的加工工艺特点、机械加工工艺规程的设计方法、常见加工工艺及其应用、及加工工艺中的注意事项等方面对轴类零件机械加工工艺规程及其设计进行详细介绍。

一、轴类零件的加工工艺特点轴类零件在机械加工中属于细长杆状物的一类,其加工过程中需要考虑材料的变形、热影响、残余应力等问题,同时也需要考虑其使用过程中所承受的载荷作用,因此对于轴类零件的制造要求十分严格。

其加工工艺特点主要包括以下几点:1.加工工艺要求高精度:轴类零件的尺寸精度要求高,常见的加工公差在0.01mm以下,加工过程中需要采用高精度的机床和刀具、合理的加工参数,严格控制加工误差。

2.加工难度大:由于轴类零件的材料变形大、容易产生撞刀和毛刺,因此在加工过程中需要采用特殊的切削方法和切削工艺,如采用高速切削、切削流线型、刀具较小的切槽等。

3.轴向精度要求高:轴类零件是与轴心对称的,在加工过程中需要控制好轴向误差,以保证其在使用时能够平稳转动。

二、机械加工工艺规程的设计方法机械加工工艺规程的设计是制定出一套完整的工艺措施,通过对产品加工过程中各种工艺因素的控制,实现产品尺寸、结构、性能等方面的要求。

机械加工工艺规程的设计方法主要包括以下几点:1.确定加工工艺目标:在制定工艺规程前,需要明确产品的要求,包括加工精度、表面光洁度、机械性能等方面。

2.制定加工工艺流程:制定加工工艺流程是整个工艺规程中最为关键的一步,需要根据产品的结构和要求,确定各个加工步骤的顺序和方法。

3.确定加工参数:加工参数是指加工过程中需要调整的各种参数,包括切削速度、切削深度、切削力等,这些参数的调整需要根据实际情况进行。

4.选择合适的加工设备和刀具:不同的加工设备和刀具适用于不同的加工需求,因此在制定工艺规程时需要根据产品要求选择合适的加工设备和刀具。

轴类零件加工工艺设计

轴类零件加工工艺设计

轴类零件加工工艺设计一、引言轴类零件是机械设备中常见的一种零部件,广泛应用于各种机械设备中,具有重要的功能和作用。

在机械制造过程中,轴类零件的加工工艺设计是确保产品质量和性能的重要环节。

本文将对轴类零件加工工艺设计进行深入研究和探讨。

二、轴类零件的特点1.复杂形状:轴类零件通常具有复杂的外形和内部结构,需要通过精密加工才能满足设计要求。

2.高精度要求:由于轴类零件在机械设备中承受着重要载荷和转动运动,因此对其精度要求较高。

3.材料选择广泛:根据不同应用场景和性能要求,轴类零件可以选择不同材料进行制造。

三、轴类零件加工过程1.材料准备:根据产品设计要求选择合适的材料,并进行切割、锻造等预处理。

2.车削加工:通过车床等设备进行外圆车削、内圆车削等操作,以使得轴类零件的外形和尺寸达到要求。

3.磨削加工:通过磨床等设备进行精密磨削,提高轴类零件的精度和表面质量。

4.焊接加工:对于需要组装的轴类零件,可以通过焊接等方式进行连接和固定。

5.表面处理:对于需要提高轴类零件表面硬度、耐磨性等性能的情况,可以进行渗碳、氮化等处理。

6.质量检验:通过各种检测手段对加工后的轴类零件进行质量检验,确保其达到设计要求。

四、加工工艺设计要点1.合理选择机床设备:根据产品形状、尺寸和数量等因素选择合适的机床设备,确保能够满足产品加工要求。

2.确定切削参数:根据材料性质和加工要求确定切削速度、进给速度等参数,以保证切削效果和加工效率。

3.精确测量与控制:在整个加工过程中,需要使用精密测量仪器对各个环节进行实时监控与调整,以确保产品尺寸精度达到设计要求。

4.合理安排工序:根据轴类零件的复杂性和加工要求,合理安排各个工序的顺序和加工方法,以提高加工效率和质量。

5.合理选择刀具:根据轴类零件的材料和形状特点,选择合适的刀具进行加工,以提高切削效率和刀具寿命。

6.注重环保与安全:在轴类零件加工过程中,要注重环境保护和操作安全,采取相应的措施减少废料产生和操作风险。

轴类零件加工工艺设计毕业论文

轴类零件加工工艺设计毕业论文

哈尔滨职业技术学院毕业论文题目:轴类零件加工工艺设计院部:机械工程系专业:机械制造及自动化指导教师:张玉兰班级:09机制一班姓名:韩彦龙毕业论文指导教师评语:指导教师(签字):年月日毕业答辩委员会评定意见:评定成绩:答辩委员会主任(签字):年月日一、论文题目:轴类零件加工工艺二、论文要求:1.目的2.进度安排3.具体要求指导教师(签字):年月日摘要随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为效率、质量是先进制造技术的主体。

高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。

而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。

并在加工过程掌握控制精度的方法,才能加工出合格的产品。

本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。

通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。

关键词工艺分析加工方案进给路线控制尺寸目录第1章前言 0第2章工艺方案分析 (1)2.1 零件图 (1)2.2 零件图分析 (1)2.3 确定加工方法 (1)2.4 确定加工方案 (1)第3章工件的装夹 (3)3.1 定位基准的选择 (3)3.2 定位基准选择的原则 (3)3.3 确定零件的定位基准 (3)3.4 装夹方式的选择 (3)3.5 数控车床常用的装夹方式 (3)3.6 确定合理的装夹方式 (3)第4章刀具及切削用量 (4)4.1 选择数控刀具的原则 (4)4.2 选择数控车削用刀具 (4)4.3 设置刀点和换刀点 (5)4.4 确定切削用量 (5)第5章典型轴类零件的加工 (6)5.1 轴类零件加工工艺分析 (6)5.2 典型轴类零件加工工艺 (8)5.3 加工坐标系设置 (9)5.4 手工编程 (11)第6章结束语 (14)第7章致谢词 (15)参考文献 (16)第1章前言在机械加工工艺教学中,机械制造专业学生及数控技术专业学生都要学习数控车床操作技术。

轴类零件加工及工艺设计!

轴类零件加工及工艺设计!

轴类零件加工及工艺设计轴类零件加工工艺一、轴类零件的功用、结构特点及技术要求轴类零件是机器中经常遇到的典型零件之一。

它主要用来支承传动零部件,传递扭矩和承受载荷。

轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。

根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。

轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。

轴用轴承支承,与轴承配合的轴段称为轴颈。

轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项:(一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。

装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。

(二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。

对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。

(三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定的。

通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。

普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。

(四)表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。

二、轴类零件的毛坯和材料(一)轴类零件的毛坯轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。

对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。

根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。

数控机床轴类零件加工工艺分析的毕业设计

数控机床轴类零件加工工艺分析的毕业设计

数控机床轴类零件加工工艺分析的毕业设计一、引言数控机床轴类零件是制造业中常见的零部件之一,其制作过程对零件的质量和性能有着至关重要的影响。

本毕业设计旨在通过对数控机床轴类零件加工工艺的分析与研究,提出一种适用于轴类零件加工的工艺方案,以提高加工效率和零件质量。

二、加工工艺分析1.材料选择:轴类零件通常采用钢材料,如45钢、40Cr钢等。

材料的选择应根据零件的使用要求、受力情况和表面要求等进行确定。

2.工艺路线:对于轴类零件的加工,一般可采用车削、切割、铣削等工艺。

具体的工艺路线应根据零件的形状特点、工艺要求和机床的能力等确定。

3.外形加工:轴类零件的外形加工一般采用车削工艺。

先进行粗加工,然后进行精加工。

车削时要注意刀具的选择、进给速度和切削深度的控制,以确保零件的精度和表面质量。

4.内孔加工:对于具有内孔的轴类零件,在加工过程中可以采用钻削、铰削、镗削等工艺。

在内孔加工时,要注意刀具的选择和冷却液的使用,以防止刀具磨损和加工过程中的热变形。

5.表面处理:轴类零件的表面处理包括磨削、抛光、镀铬等工艺。

这些工艺可以提高零件的表面质量和耐磨性,同时还可以实现美观的外观效果。

三、工艺方案设计与分析1.工艺路线设计:根据轴类零件的形状特点和工艺要求,设计合理的工艺路线,确定每道工序的加工方法和顺序。

在设计工艺路线时,要考虑到加工效率、加工精度和零件变形等因素。

2.工艺参数确定:根据材料的性质和加工要求,确定合适的切削参数,如切削速度、进给速度和切削深度等。

在确定工艺参数时,要充分考虑刀具的耐用性和加工质量的要求。

3.设备选择:根据工艺路线和工艺参数的要求,选择合适的数控机床设备。

设备的选择应考虑到加工范围、加工精度和生产效率等因素。

4.工艺试验分析:在进行实际加工前,进行工艺试验,验证设计的工艺方案的可行性和有效性。

根据试验结果,对工艺进行优化和调整,以提高加工效率和零件质量。

四、结论通过对数控机床轴类零件加工工艺的分析与研究,我们可以得出以下结论:1.合理的工艺路线设计和工艺参数确定对于零件的加工质量和生产效率具有重要影响;2.合适的设备选择能够提高零件的加工精度和生产效率;3.工艺方案设计和工艺试验分析是确保零件加工质量和提高生产效率的重要环节。

轴类零件加工工艺方案设计说明书

轴类零件加工工艺方案设计说明书
主要表面(外圆)
本单元 小结
零件工艺性分析方法
采集分析信息的关键:
应用分析方法分析特定零件
与实际加工联系 对应的技术准备
轴类零件制造工艺特点
毛坯
棒料
锻件
加工方法
车(粗、半精)
磨 (精车)
安装
一端夹持
对顶
一夹一顶
工序尺寸
多为第一类,轴向尺寸、键槽为第二类
教学 单元
零件工艺设计原则
零件毛坯选择
添加标题
2
主题
添加标题
3
加工前应做的技术准备
添加标题
4
教学目标
添加标题
5
熟练进行零件工艺性分析
添加标题
6
二、轴类零件图纸的工艺性分析
支承传动件 传递运动、扭矩
添加标题
1
轴类零件在机器中的作用:
添加标题
2
结构特点:
添加标题
3
回转体、由各种回转面 组成
添加标题
4
主要技术要求:
添加标题
5
轴的直径精度,圆度、圆柱度、同轴度、垂直度等
工艺设计前的决策内容
本单元 小结
上教学 单元回顾
毛坯确定
1、
工艺设计步骤与方法
2、
工序尺寸计算方法
3、
工艺文件种类选择与填写
4、
2、复杂轴的工艺设计
1、简单轴的工艺设计
本教学 单元主题
接工艺过程卡
1、结构特点:回转面
轴类零件 加工小结
1、加工特点:以车为主,磨做精加工
1、毛坯选择:棒料
工艺计算
2、
工艺分析
2、
202X

典型轴类零件加工工艺与编程

典型轴类零件加工工艺与编程

典型轴类零件加工工艺与编程一、引言轴类零件是机械加工中非常常见的零件类型,其具有复杂的外形和高精度的加工要求。

为了满足零件加工的需求,制定适当的加工工艺和编程方案是非常关键的。

本文将介绍典型轴类零件的加工工艺和编程方法,帮助读者更好地理解和应用于实际的加工过程中。

二、典型轴类零件加工工艺2.1 零件材料选择在选择轴类零件的加工工艺之前,首先要考虑的是零件的材料选择。

常见的轴类零件材料包括铝合金、不锈钢和钢等。

根据零件的具体应用和要求,选择适当的材料能够提高加工效率和产品品质。

2.2 加工工艺流程典型轴类零件的加工工艺流程一般包括以下几个步骤:1.零件装夹:根据零件的形状和要求,选择合适的夹具进行装夹,确保零件的稳定和准确性。

2.设计刀具:根据零件的形状和要求,选择适当的刀具进行加工。

常见的刀具有立铣刀、刨刀和车刀等。

3.粗加工:使用合适的刀具进行粗加工,根据零件的形状和要求,进行适当的切削操作,以去除多余的材料。

4.精加工:在粗加工的基础上,使用更小的切削量进行精细加工,以达到所需的精度和表面质量。

5.修整工序:根据零件的要求,使用刮刀或砂纸等工具进行修整操作,以改善零件的表面质量。

6.检测与测量:对加工完成的零件进行检测和测量,确保零件的尺寸和形状符合要求。

7.表面处理:根据需要,对零件进行表面处理,如喷漆、阳极氧化或镀铬等。

2.3 加工工艺参数在进行轴类零件加工时,需要确定适当的加工工艺参数,以保证加工质量和效率。

常见的加工工艺参数包括:•进给速度:切削刀具在加工过程中每单位时间内移动的距离,通常以毫米/分钟(mm/min)表示。

•切削速度:切削刀具相对于工件表面移动的速度,通常以米/分钟(m/min)表示。

•切削深度:每次切削过程中刀具与工件之间的距离,通常以毫米(mm)表示。

•刀具压力:刀具与工件之间的压力,通常以牛顿(N)表示。

•加工冷却液:加工中使用的冷却液,可降低加工温度,减少刀具磨损和工件变形。

轴类零件的工艺设计

轴类零件的工艺设计

轴类零件的工艺设计轴类零件的工艺设计是指根据零件的形状、尺寸、材料和工艺要求,通过选择合适的加工工艺和制定相应的加工工艺流程,实现对轴类零件的加工加工的目标。

轴类零件在机械装置和设备中起到连接和传动的作用,其工艺设计的重点是确保零件的外形尺寸和内部结构的准确性、表面质量和力学性能的满足。

下面从零件的材料选择、工艺选择和加工工艺流程的制定三个方面,详细介绍轴类零件的工艺设计。

首先是轴类零件的材料选择。

根据零件在装置中所处的工作环境、工作条件和工作要求,选择合适的材料是工艺设计的重要一步。

常见的轴类零件材料包括碳素钢、合金钢、不锈钢、铸铁等。

对于要求强度和刚度较高的工作环境,可以选择高强度的合金钢材料;对于要求抗腐蚀和耐磨性较高的工作环境,可以选择不锈钢材料;对于要求磨削加工和表面质量较高的工作环境,可以选择具有良好铸造性能的铸铁材料。

材料的选择要根据实际情况进行综合考虑,以在保证零件功能的前提下,实现加工的方便和经济。

其次是轴类零件的工艺选择。

工艺选择主要包括加工方法的选择和工艺路线的制定。

加工方法的选择是根据零件的形状、尺寸和加工要求来确定的。

常见的加工方法有车削、铣削、磨削、钻削、切削等。

对于外圆形轴类零件,可以采用车削加工;对于内圆形轴类零件,可以采用钻削、铣削等加工方法;对于特殊形状的轴类零件,可以采用磨削等非传统加工方法。

工艺路线的制定需要综合考虑材料的特性、零件的形状和尺寸以及加工设备的性能和可用性等因素。

通常情况下,先进行粗加工,再进行精加工,最后进行表面处理。

制定合理的工艺路线可以提高加工效率和加工质量,降低生产成本。

最后是轴类零件的加工工艺流程的制定。

加工工艺流程的制定是工艺设计的具体要求。

加工工艺流程应包括加工工序、加工顺序、工序之间的协调和衔接等内容。

在制定加工工艺流程时,要充分考虑零件的精度要求、加工工艺的先进性和设备的可靠性等因素。

具体来说,加工工艺流程应包括以下几个方面的内容:首先是将零件的原始材料切割成适当的尺寸和形状;然后进行粗加工,通过车削、铣削等方法将零件的外形和尺寸加工到允许偏差范围内;接下来进行精加工,通过磨削、钻削等方法将零件的外形和尺寸加工到设计要求;最后进行表面处理,包括抛光、镀铬等,以提高零件的表面质量和耐腐蚀性。

轴类零件加工工艺分析与设计

轴类零件加工工艺分析与设计

(四) 形位公差的选用
(1) 一般形状公差应比位置公差小: 同一要素上给定的形状公差值应小于位置公差值。 如同一平面上,平面度公差值应小于该平面对基准的 平行度公差值。
(2) 表面粗糙度与形状公差的大概的比例关系: 通常,表面粗糙度的Ra值可取为形状公差值的 (20%~25%)。
1.2 轴类零件的技术要求
定位位置公差—同轴度
要求被测实际要素与基准要素同轴。
同轴度公差带
4. 圆 跳 动
圆跳动是指零件上被测回转 表面相对于以基准轴线为轴线的 理论回转面的偏离度。
5. 对称度

对称度常用在具有对称结构的 沟或槽处,例如轴系传动中的轴径 与轴上零件的配合。例如当齿轮、 蜗轮、皮带轮安装在轴上时,需要 靠键实现连接和传递扭矩。此时轴 上的键槽和轮毂孔内的键槽必须对 中心线对称,否则很难装配。
对于性质很软、塑性很高的低碳钢,加工时不易断屑、容易硬化。 往往采用正火的办法,提高其强度和硬度、降低韧性,从而改善其切削加 工性。 对于硬度很高的高碳工具钢,加工时刀具极易磨损。可以采用球化退火的 办法,降低其硬度,从而改善其切削加工性。 2.改变加工条件 合理选择刀具材料、刀具几何参数、切削用量也是改善材料切削加 工性的有效措施。


(1)加工精度
1)尺寸精度 轴类零件的尺寸精度主要指轴的直径尺 寸精度和轴长尺寸精 度。 按使用要求,主要轴颈直径尺寸精度通常为IT6-IT9 级,精密的轴颈也可达IT5级。

2)几何精度 轴类零件一般是用两个轴颈支撑在轴承上, 这两个轴颈称为支撑轴颈,也是轴的装配基 准。 对于一般精度的轴颈,几何形状误差应限制 在直径公差范围内,要求高时,应在零件图 样上另行规定其允许的公差值。

轴零件的机械加工工艺规程及夹具设计

轴零件的机械加工工艺规程及夹具设计

轴零件的机械加工工艺规程及夹具设计一、轴零件的机械加工工艺规程1.材料准备:轴零件的材料通常选择优质的钢材或铸铁材料,需要根据轴零件的使用要求和工艺特点来选择合适的材料。

2.工艺路线确定:根据轴零件的形状、结构和加工要求,确定合适的工艺路线,包括车削、铣削、钻孔等加工工序的顺序和方法。

3.加工设备选择:根据轴零件的尺寸、形状和工艺要求,选择合适的加工设备,包括车床、铣床、钻床等。

4.工艺参数确定:根据轴零件的材料和加工要求,确定合适的切削速度、进给量和切削深度等工艺参数。

5.工艺操作规范:对于每个加工工序,制定相应的工艺操作规范,包括操作顺序、刀具安装、夹具装夹和加工顺序等。

6.质量检验要求:确定轴零件的质量检验要求和方法,包括尺寸偏差、表面粗糙度、硬度等指标的检验。

7.工艺文件编制:将以上所有内容整理成工艺文件,包括工艺路线图、刀具配套表、工艺操作规程和质量检验记录表等。

二、夹具设计夹具是机械加工中用来固定工件、定位和保持工件位置的装置。

在轴零件的机械加工中,夹具设计是非常重要的一环。

夹具的设计应满足以下几个要求:1.夹紧可靠:夹具的设计应保证对轴零件进行可靠的夹紧,以防止在加工过程中因工件松动而引起的加工误差。

2.定位准确:夹具的设计应能够确保轴零件在加工过程中的准确定位,以保证加工精度。

3.易于安装和调整:夹具应设计成易于安装和调整的形式,以方便操作人员进行装夹和调整。

4.加工装卸方便:夹具的设计应便于轴零件的装卸,以提高生产效率。

5.避免干涉:夹具的设计应避免与加工刀具和加工设备的干涉,以保证加工进程的顺利进行。

在夹具设计过程中,需要根据轴零件的形状、尺寸和加工要求,选择合适的夹具类型,包括平面夹具、分度夹具、对心夹具等,并进行夹具的结构设计和强度计算。

总结起来,轴零件的机械加工工艺规程及夹具设计是确保轴零件加工质量和工艺正确性的重要环节,对于提高加工效率和保证加工精度具有重要意义。

轴类零件加工工艺分析设计

轴类零件加工工艺分析设计

轴类零件加工工艺分析设计
轴类零件加工工艺分析设计是指对轴类零件进行加工过程的分析和设计。

轴类零件是一种常见的机械零件,广泛应用于各个领域,如机械制造、汽车、航空航天等行业。

轴类零件的加工工艺设计直接关系到产品的质量和加工效率。

轴类零件加工工艺设计的主要内容包括以下几个方面:
1. 零件结构分析:首先需要对轴类零件的结构进行分析,包括外形、尺寸、材料等方面的特点。

通过对零件的结构进行分析,可以确定合理的加工方法和工艺参数。

2. 加工工艺选择:根据轴类零件的结构和要求,选择适合的加工工艺。

常用的加工工艺包括车削、铣削、刨削、磨削等。

在选择加工工艺时需要考虑到经济性、加工精度和工艺可行性等因素。

3. 工艺路线设计:确定轴类零件的加工工艺路线,包括各个工序的加工方法、工艺参数和刀具选择等。

在设计工艺路线时需要考虑加工顺序、切削路径和刀具寿命等因素。

4. 加工工艺参数设计:确定每个工序的加工工艺参数,包括切削速度、进给量、切削深度等。

合理的工艺参数设计能够保证零件的加工质量和提高生产效率。

5. 刀具选择和刀具路径设计:选择合适的切削刀具,并设计刀具的路径。

刀具选择和刀具路径设计直接影响到加工质量和工
艺效率。

通过对轴类零件加工工艺的分析和设计,可以提高产品的加工质量和生产效率,降低生产成本,满足客户的要求。

轴类零件加工工艺毕业设计

轴类零件加工工艺毕业设计

轴类零件加工工艺毕业设计轴类零件加工工艺毕业设计在机械制造领域中,轴类零件是一种常见且重要的零件类型。

轴类零件的加工工艺对于产品的质量和性能有着直接的影响。

因此,对轴类零件的加工工艺进行深入研究和设计是非常有必要的。

本文将从加工工艺的选定、工艺流程的设计以及加工设备的选择等方面,探讨轴类零件加工工艺的毕业设计。

一、加工工艺选定轴类零件的加工工艺选定是毕业设计的核心部分。

在进行加工工艺选定时,需要考虑到零件的材料、形状、尺寸以及产品要求等因素。

首先,对于不同材料的轴类零件,其加工工艺会有所不同。

例如,对于钢材轴类零件,常见的加工工艺包括车削、铣削、钻削等;而对于铝合金轴类零件,则可以采用铣削、钻削、镗削等加工工艺。

其次,零件的形状和尺寸也会对加工工艺的选定产生影响。

对于较为复杂的形状和大尺寸的轴类零件,可能需要采用多道工序进行加工。

最后,根据产品要求,还需要考虑到表面光洁度、精度要求等因素,选择适合的加工工艺。

二、工艺流程设计在确定加工工艺选定后,需要进行工艺流程的设计。

工艺流程设计是将加工工艺按照一定的顺序组合起来,形成一条完整的加工流程。

在进行工艺流程设计时,需要考虑到加工工艺之间的先后关系、工艺之间的依赖关系以及工艺之间的协调性。

例如,对于一个轴类零件的加工工艺流程,可能包括车削、铣削、钻削等多个工艺。

在进行工艺流程设计时,需要确保各个工艺之间的顺序正确,避免出现工艺之间的冲突和矛盾。

此外,还需要考虑到工艺之间的依赖关系,确保前一道工艺的加工结果能够满足后一道工艺的要求。

最后,还需要考虑到工艺之间的协调性,确保整个加工流程的高效和稳定。

三、加工设备选择加工设备的选择是轴类零件加工工艺设计的重要环节。

在进行加工设备选择时,需要根据零件的形状、尺寸以及加工工艺的要求来确定合适的设备。

例如,对于较为复杂的形状和大尺寸的轴类零件,可能需要选择五轴联动加工中心或者数控车床等高精度加工设备。

而对于形状简单且尺寸较小的轴类零件,则可以选择普通车床或者铣床等设备。

毕业设计---轴类零件加工工艺设计

毕业设计---轴类零件加工工艺设计

毕业设计---轴类零件加工工艺设计导言随着制造业对高质量、高精度和高效率的要求越来越高,加工工艺成为制造业中不可或缺的环节。

轴类零件是机械制造中常见的一种零件,其加工工艺设计是影响零件质量和生产效率的重要因素。

本文将围绕轴类零件的加工工艺设计展开论述。

一、轴类零件的定义轴类零件指由旋转运动的轴承受机械力并把力传递到其他部件的零件。

它是机械设备中重要的零件之一,广泛应用于各种机械设备中,包括汽车、工业机械、农业机械等领域。

二、轴类零件的加工过程轴类零件一般经过以下加工过程:1.材料准备:根据轴类零件的不同需求,选用不同的材料。

常用的材料有碳钢、合金钢、不锈钢、铜、铝等。

2.锻造或铸造:将选好的材料加热至适当温度,然后通过锻造或铸造的方式将材料制成原始形状。

3.粗加工:使用车床或铣床等工具对轴类零件进行粗加工,形成大致的形状和尺寸。

4.精加工:使用磨床或刀具等工具对轴类零件进行精加工,达到高精度的尺寸和表面光洁度。

5.热处理:根据轴类零件的要求,进行热处理,提高其强度、硬度和耐磨性。

6.表面处理:使用电镀、喷涂等方式对轴类零件进行表面处理,提高其耐腐蚀性和美观度。

三、轴类零件加工工艺设计轴类零件的加工工艺设计是提高零件精度和生产效率的关键,下面将介绍几个常见的加工工艺设计方法。

1.粗加工的切削方式选择轴类零件的切削方式对于粗加工的质量影响较大。

在选择切削方式时,需根据轴类零件的材料、形状、尺寸等因素综合考虑。

常用的切削方式包括顺削、反削、倒切、半倒切等。

顺削适用于中低硬度的材料;反削适用于具有棱角明显的零件;倒切适用于加工直径较大的轴类零件;半倒切适用于某些形状复杂的轴类零件。

综合考虑后,应选择尽可能少的切削次数,降低成本,提高效率。

2.精加工的刀具选择精加工是轴类零件加工过程中最重要的环节之一。

在精加工时,我们需要选择一种合适的刀具,以确保零件的精度和表面光洁度。

一般来说,刀具的选择要根据工件材料、形状、尺寸等因素来确定。

轴类零件加工工艺设计的设计要求

轴类零件加工工艺设计的设计要求

轴类零件加工工艺设计的设计要求
轴类零件加工工艺设计的设计要求
1、用途:轴类零件是机械设备的重要部件,在机械设备中常用的轴类零件有:轴承支座、中心轴、滚轮轴、齿轮轴等,它们的主要作用是在机械设备中转移动力,轴类零件的加工工艺设计是机械设备制造的关键内容。

2、设计要求:
(1)材料要求:轴类零件加工的材料要求要视具体的应用而定,一般使用碳钢、合金钢和不锈钢等材料。

(2)尺寸要求:轴类零件加工的尺寸要求要视具体的应用而定,一般要求轴类零件的直径、总长度以及节距等参数精度要求较高,尽可能满足设计要求。

(3)特殊要求:轴类零件加工除上述要求外,还要根据具体的应用而定,一般要求特殊的表面处理,满足特殊的应用要求,如:轴类零件在细粉体的流动下要求有防滑处理;轴类零件在一定温度下要求有耐高温处理等。

3、加工要求:
(1)工艺方法:轴类零件加工的工艺方法一般选择铣削、车削或其他特殊的工艺方法,一般要求节点表面精度要求高,以保证零件上装配的元件的安装和固定。

(2)工艺参数:轴类零件加工的工艺参数要求根据工艺设计来确定,一般要求设计时充分考虑到轴类零件的加工特性,实现机械加
工的质量和稳定性,并保证零件加工的精度。

(3)机床选择:轴类零件加工需要使用合适的机床,一般要考虑加工精度、多功能性、结构简单性等因素,以便满足零件的加工要求。

轴类零件加工工艺设计

轴类零件加工工艺设计

轴类零件加工工艺设计轴类零件是机械制造行业中常见的零件类型之一,广泛应用于液压机械、风机、飞机、汽车、重型设备等领域。

轴类零件通常具有高强度、低摩擦、高转速、高精度等特点,因此加工工艺设计对于保证产品质量、提高生产效率具有重要意义。

一、工艺路线设计轴类零件的加工路线设计是加工工艺设计的第一步。

一般的加工路线包括:原材料选择、加工方法选择、制造精度要求、热处理要求、表面处理要求、质量检验要求等。

在考虑这些因素的基础上设计出最优的加工路线,能够提高产品加工效率和质量稳定性。

同时,加工路线的合理设计也可以节省成本,提高企业的经济效益。

二、切削加工工艺设计切削加工是轴类零件加工中常用的方法之一,常见的加工方式包括铣削、车削、镗削、齿轮加工等。

在加工轴类零件时,需要考虑到零件材料的切削性能、切削工艺参数的选择、切削刀具的选择、切削冷却液的选择等。

在切削加工工艺设计中,应该尽可能减小切削阻力、减小加工表面粗糙度、提高加工精度和表面质量。

三、热处理工艺设计轴类零件通常具有高强度、高精度等特点,因此热处理工艺设计也是加工工艺设计的关键环节之一。

常见的热处理方法包括淬火、回火、正火、调质等。

在设计热处理工艺时,需要考虑零件的材料、零件的用途、零件的精度等因素。

正确的热处理工艺设计能够保证轴类零件的高强度和精度稳定性。

四、表面处理工艺设计表面处理工艺设计是为了提高轴类零件表面的质量稳定性,一般包括磨削、腐蚀、电镀、喷涂、喷砂等。

在表面处理工艺设计中,需要考虑到零件材料、表面处理后的表面粗糙度、表面处理后的尺寸变化、表面层的耐腐蚀性等因素。

正确的表面处理工艺能够为轴类零件提供更好的耐腐蚀和耐磨性。

五、质量检验工艺设计由于轴类零件常常用于高精度和高转速的场合,因此对质量的要求非常高。

对于轴类零件加工环节的质量检验需要做到全过程的,包括材料的质量控制、加工中的尺寸控制、工艺检验及表面质量检验等。

质量检验工艺设计需要制定有效的检验程序,做到从加工开始就保证零件的质量的可追溯性。

数控轴类零件加工工艺设计毕业论文

数控轴类零件加工工艺设计毕业论文

数控轴类零件加工工艺设计毕业论文一、引言数控加工技术的快速发展使得数控机床在零件加工领域得到广泛应用。

数控机床的出现,不仅提高了加工效率和精度,还极大地拓宽了零件加工的范围。

其中,数控轴类零件加工工艺设计是数控加工技术的重要组成部分,具有重要的理论和实践意义。

二、数控轴类零件加工工艺设计的基本原理1.分析零件的加工要求:包括形状、尺寸、精度要求等。

根据零件的特点确定加工方法和加工工序。

2.选择机床和刀具:根据零件的特点选择合适的数控机床和刀具。

考虑零件的材料、切削力等因素,选择刀具的材料、结构和刀具槽型。

3.确定切削参数:根据零件的加工要求和机床的性能特点,确定合适的切削速度、送进速度和退刀量。

同时还要考虑刀具的刚性和切削液的使用。

4.编写数控程序:根据零件的几何特征和加工工艺要求,编写数控程序。

程序设计要考虑刀具路径、插补方式和切削参数等因素。

5.制定工艺路线:根据加工工艺要求和数控程序,制定合理的加工工艺路线。

包括加工顺序、夹持方式、工装设计等。

三、数控轴类零件加工工艺设计的关键技术1.精确的数控加工参数的确定:数控加工参数的合理选择对于保证零件的加工质量至关重要。

需要综合考虑切削速度、进给速度、刀具和工件材料等因素,通过试切试验、仿真分析等方式来确定最佳加工参数。

2.精确的数控程序编写:数控程序编写要准确描述刀具路径和加工顺序,确保零件加工的精度和表面质量。

对于复杂零件,需要灵活运用数学建模和CAD/CAM技术,提高编写效率和程序的可读性。

3.合理的加工工艺路线制定:加工工艺路线的制定要考虑机床的性能特点、加工效率和成本等因素。

通过工艺路线优化和模拟仿真,可以提高加工效率和降低加工成本。

四、数控轴类零件加工工艺设计实例分析以轴承座加工为例,介绍数控轴类零件加工工艺设计的具体步骤和关键技术。

1.分析零件的加工要求:轴承座是一种重要的轴类零件,其加工要求主要包括外形尺寸和精度要求。

根据加工要求,确定先进行铣削再进行车削的加工工序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力轴零件加工工艺设计说明书课程:机械制造技术班级:机设zzz指导老师:zzzzz第2组:学号15-27,13人,组长zzz副组长-zzzz2008年11月13日目录设计任务书序言1 计算生产纲领,确定生产类型2 审查零件图样的工艺性3 选择毛坯4 工艺过程设计4.1 定位基准的选择4.2 零件表面加工方法的选择4.3 制订工艺路线5 确定机械加工余量及毛坯尺寸,设计毛坯图5.1 确定机械加工余量5.2 确定毛坯尺寸5.3 设计毛坯图5.3.1 确定毛皮尺寸公差5.3.2 确定圆角半径5.3.3 确定拔模角5.3.4 确定分模位置5.3.5 确定毛坯的热处理方式6 工序设计6.1 选择加工设备与工艺装备6.1.1 选择机床6.1.2 选择夹具6.1.3 选择刀具6.1.4 选择量具6.1.4.1 选择各外圆加工面的量具6.1.4.2 选择加工孔用量具6.1.4.3 选择加工轴向尺寸所用量具6.1.4.4 选择加工槽所用量具6.1.4.5 选择滚齿工序所用的量具6.2 确定工序尺寸6.2.1 确定圆柱面的工序尺寸6.2.2 确定轴向工序尺寸6.2.2.1 确定各加工表面的工序加工余量及L6 6.2.2.2 确定工序尺寸L13、L23、L56.2.2.3 确定工序尺寸L12、L11及L216.2.2.4 确定工序尺寸L36.2.2.4 确定工序尺寸L4 6.2.3 确定铣槽的工序尺寸 7 确定切削用量及基本时间(机动时间)7.1 工序030切削用量及基本时间的确定 7.1.1 切削用量7.1.1.1 确定粗车外圆mm 054.05.118-φ的切削用量7.1.1.2 确定粗车外圆mm 5.91φ、端面及台阶面的切削用量7.1.1.3 确定粗镗孔mm 019.0065+φ的切削用量 7.1.2 基本时间7.1.2.1确定粗车外圆mm 5.91φ的基本时间 7.1.2.2 确定粗车外圆mm 054.05.118-φ的基本时间 7.1.2.3 确定粗车端面的基本时间7.1.2.4 确定粗车台阶面的基本时间7.1.2.5 确定粗镗mm 019.0065+φ孔的基本时间 7.1.2.6 确定工序的基本时间 7.2 工序040切削用量及基本时间的确定7.3 工序050切削用量及基本时间的确定 7.3.1 切削用量7.3.1.1 确定半精车外圆mm 022.0117-φ的切削用量7.3.1.2 确定半精车外圆mm 90φ、端面、台阶面的切削用量7.3.1.3 确定半精车镗孔mm 074.0067+φ的切削用量 7.3.2 基本时间7.3.2.1 确定半精车外圆mm 117φ的基本时间 7.3.2.2 确定半精车外圆mm 90φ的基本时间 7.3.2.3 确定半精车端面的基本时间 7.3.2.4 确定半精车台阶面的基本时间 7.3.2.5 确定半精镗mm 67φ孔的基本时间 7.4 工序060切削用量及基本时间的确定 7.4.1 切削用量7.4.1.1 确定精镗mm 68φ孔的切削用量7.4.1.2 确定镗沟槽的切削用量7.4.2 基本时间7.5 工序070切削用量及基本时间的确定7.5.1 切削用量7.5.2 基本时间7.6 工序080切削用量及基本时间的确定7.6.1 切削用量7.6.1.1 确定每齿进给量fz7.6.1.2 选择铣刀磨钝标准及耐用度7.6.1.3 确定却小速度v和工作台每分钟进给量fMz 7.6.1.4 校验机床功率7.6.2 基本时间7.7 工序080切削用量及基本时间的确定(二)7.7.1 切削用量7.7.1.1 确定每齿进给量fz7.7.1.2 选择铣刀磨钝标准及耐用度7.7.1.3 确定却小速度v和工作台每分钟进给量fMz 7.7.2 基本时间7.8 工序090切削用量及基本时间的确定7.8.1 切削用量7.8.1.1 确定进给量f7.8.1.2 选择钻头磨钝标准及耐用度7.8.1.3 确定切削速度v7.8.2 基本时间的确定8、分析讨论9、参考文献附件1 计算生产纲领,确定生产类型图7.1—1所示为某产品上的一个齿轮零件。

该产品年产量为2000台,其设备品率为10%,机械加工废品率为l%,现制订该齿轮零件的机械加工工艺规程。

N=Qn(1十α%十β%)=2000×1(1+10%+1%)件/年=2220件/年齿轮零件的年产量为2220件,现已知该产品属于轻型机械,根据表1.1—2生产类型与生产纲领的关系,可确定其生产类型为中批生产。

2 审查零件图样的工艺性齿轮零件图样的视图正确、完整,尺寸、公差及技术要求齐全。

但基准孔φ68K7mm 要求Ra0.8μm有些偏高。

一般8级精度的齿轮,其基准孔要求尺。

1.6μm即可。

本零件各表面的加工并不困难。

关于4个φ5mm的小孔,其位置是在外圆柱面上6mm ×1.5mm的沟槽内,孔中心线距沟槽一侧面的距离为3mm。

由于加工时,不能选用沟槽的侧面为定位基准,故要较精确地保证上述要求则比较困难。

分析该小孔是做油孔之用,位置精度不需要太高的要求,只要钻到沟槽之内,即能使油路通畅,因此4个φ5mm孔的加工亦不成问题。

3 选择毛坯齿轮是最常用的传动件,要求具有一定的强度。

该零件的材料为45钢,轮廓尺寸不大,形状亦不复杂,又属成批生产,故毛坯可采用模锻成型。

零件形状并不复杂,因此毛坯形状可以与零件的形状尽量接近。

即外形做成台阶形,内部孔锻出。

毛坯尺寸通过确定加工余量后决定。

4 工艺过程设计4.1 定位基准的选择本零件是带孔的盘状齿轮,孔是其设计基准(亦是装配基准和测量基准),为避免由于基准不重合而产生的误差,应选孔为定位基准,即遵循“基准重合”的原则。

具体而言,即选 68K7孔及一端面作为精基准。

图7.1-1 零件图由于本齿轮全部表面都需加工,而孔作为精基准应先进行加工,因此应选外圆及一端面为粗基准。

外圆φ117mm外为分模面,表面不平整有飞边等缺陷。

定位不可靠,故不能选为粗基准。

4.2 零件表面加工方法的选择本零件的加工面有外圆、内孔、端面、齿面,槽及小孔等,材料为45钢。

参考本手册有关资料,其加工方法选择如下:(1)φ90μm外圆面:为未注公差尺寸,根据GBl800—79规定其公差等级按ITl4,3.2μm,需进行粗车及半精车(表1.4—6)。

表面粗糙度为Ra(2)齿圈外圆面:公差等级为ITll,表面粗糙度为Ra3.2μm,需粗车、半精车(表1.4—6)。

(3)φ106.5-0.40mm外圆面:公差等级为ITl2,表面粗糙度R6.3μm,粗车即可a(表1.4—6)。

、0.8μm,毛坯孔已锻出,为 (4)φ68K7mm内孔:公差等级为IT7,表面粗糙度为Ra未淬火钢,根据表1.4—7,加工方法可采取粗.镗、半精镗之后用精镗、拉孔或磨孔等都能满足加工要求。

由于拉孔适用于大批大量生产,磨孔适用于单件小批生产,故本零件宜采用粗镗、半精镗、精镗。

(5)φ94mm内孔:为未注公差尺寸,公差等级按ITl4,表面粗糙度为R6.3μm,a毛坯孑L已锻出,只需粗镗即可(表1.4—7)。

(6)端面:本零件的端面为回转体端面,尺寸精度都要求不高,表面粗糙度为Ra3.2μm及Ra6.3μm两种要求。

要求Ra3.2μm的端面经粗车和半精车,要求Ra6.3μm 的端面,经粗车即可(表1.4—8)。

1.6μm,采用 (7)齿面:齿轮模数为2.25,齿数为50,精度8FL,表面粗糙度为RaA级单头滚刀滚齿即能达要求(表1.4—16、表1.4一17)。

(8)槽:槽宽和槽深的公差等级分别为ITl3和ITl4,表面粗糙度分别为Ra3.2μm 和Ra6.3μm,需采用三面刃铣刀,粗铣、半精铣(参考表1.4—8)。

(9)声5ram小孔:采用复合钻头一次钻出即成。

4.3 制订工艺路线齿轮的加工工艺路线一般是先进行齿坯的加工,再进行齿面加工。

齿坯加工包括各圆柱表面及端面的加工。

按照先加工基准面及先粗后精的原则,齿坯加工可按下述工艺路线进行:工序010:备料,模锻成型毛坯,材料为45钢,含碳量为0.42%~0.50%。

工序020:正火热处理,将工件加热到830-850摄氏度,保温50分钟后,在空气中冷却。

碳钢正火后的硬度为156~228(HB)。

工序030:以φ106.5mm处外圆及端面定位,粗车另一端面,粗车外圆φ90mm及台阶面,粗车外圆乒117mm,粗镗孔声68mm。

工序040:以粗车后的φ90mm外圆及端面定位,粗车另一端面,粗车外圆φ106.5-0.40m m及台阶面,车6mm×1.5mm沟槽,粗镗φ94mm孔,倒角。

工序050:以粗车后的φ106.5—8.4mm外圆及端面定位,半精车另一端面,半精车外圆声90mm及台阶面,半精车外圆φ117mm,半精镗φ68mm孔,倒角。

加工齿面是以孔φ68K7mm为定位基准,为了更好地保证它们之间的位置精度,齿面加工之前,先精镗孔。

工序060:以φ90mm外圆及端面定位,精镗φ68K7孔,镗孔内的沟槽,倒角。

工序070:以φ68K7孔及端面定位,滚齿。

4个槽与4个小孔的加工安排在最后,考虑定位方便,应先铣槽后钻孔。

工序080:以φ68K7孔及端面定位,粗铣4个槽。

以φ68K7孔、端面及粗铣后的一个槽定位,半精铣4个槽。

工序190:以φ68K7孔、端面及一个槽定位,钻4个小孔。

工序100:钳工去毛刺。

工序110:齿面淬火工序120:终检。

5 确定机械加工余量及毛坯尺寸,设计毛坯图5.1 确定机械加工余量钢质模锻件的机械加工余量按JB3835—85确定。

确定时,根据估算的锻件质量、加工精度及锻件形状复杂系数,由表2.2—25可查得除孔以外各内外表面的加工余量。

孔的加工余量由表2.2—24查得。

表中余量值为单面余量。

(1)锻件质量 根据零件成品重量1.36kg 估算为2.2kg 。

(2)加工精度 零件除孔以外的各表面为一般加工精度F1。

(3)锻件形状复杂系数S外廓包容体锻件m m s =假设锻件的最大直径为mm 121φ,长68mm6.138kg 6138g g 85.78.621.122==⨯⨯=)(外廓包容体πmkg 2.2=锻件m 358.0138.62.2==S 按表2.2—10,可定形状复杂系数为S2,属一般级别。

(4)机械加工余量 根据锻件重量、F l 、S2查表2.2—25。

由于表中形状复杂系数只列有Sl 和S3,则S 2参考S1定,S4参考S 3定。

由此查得直径方向为1.7~2.2mm ,水平方向亦为1.7~2.2mm 。

即锻件各外径的单面余量为1.7~2.2mm ,各轴向尺寸的单面余量亦为1.7~2.2mm 。

锻件中心两孔的单面余量按表2.2—24查得为2.5mm 。

相关文档
最新文档