第七章 抽样与抽样分布

合集下载

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

(抽样检验)第七章整群抽样

(抽样检验)第七章整群抽样

第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。

确切地说,这种抽样组织形式应称为单级整群抽样。

如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。

本章只讨论单级整群抽样。

设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。

当诸Mi都相等时,称为等群;否则,称为不等群。

采用整群抽样的两个理由:- 抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;- 从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。

整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。

如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。

或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。

群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。

二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。

同分层抽样一样,整群抽样的前提是先要对总体进行分群。

关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。

分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。

这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。

而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。

因此,群间差异的大小直接影响到抽样误差的大小,而群内差异的大小则不影响抽样误差。

《统计学原理》课件第七章抽样调查

《统计学原理》课件第七章抽样调查
4 -6
第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序

究 原
总体分布 样本分布 抽样分布

一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析

第7章抽样

第7章抽样
29
随机抽样技术的优缺点
(1) 优点 ①随机抽样是从总体中按照随机原则抽取一部分单位进行的 调查。 ②随机抽样技术能够计算调查结果的可靠程度。 (2) 不足 ① 对所有调查样本都给予平等看待,难以体现重点。 ② 抽样范围比较广,所需时间长,参加调查的人员和费用多。 ③ 需要具有一定专业技术的专业人员进行抽样和资料分析。 一般调查人员难以胜任。 ④抽样框难以构建。 ⑤比其他概率抽样精确度低,标准差较大。 30
24
1.简单随机抽样 • 又称纯随机抽样,即对总体单位不进行任何分组 排列,仅按随机原则直接从总体中抽取样本,以 使总体中的每一个单位均有同等的被抽取的机会。
• 这是最基本,最简单的的机率抽样方法。它易于 理解,样本结果可以推断总体,大多数统计推论 方法都假定数据是由简单随机抽样法法获得的。
25
1.简单随机抽样 • 每个单位被选取的机会是相同的。就好像把各个 单位的名字写在大小相同的纸上,放到一个箱子 中,由我们抽取,每个个案都有被抽到的可能, 而且机会相同。如平日常见的摸彩或摇奖,在数 学上则会利用随机数表来抽取样本。
第七章
抽样
1
本章的学习目标 一、抽样的概念
二、抽样的基本过程
三、概率抽样
四、非概率抽样
五、样本量的确定
六、 PPS抽样简介
七、 KISH表的运用
2
一、抽样的概念
3
(一)什么是抽样?
• 抽样就在我们的日常生活中。抽血化验,尝试水 温,窥一斑而知全豹。
• 抽样,就是从研究总体中抽取一部分的过程。 • 抽样调查,就是从研究总体中抽取一部分代表加 以调查研究,然后用所得结果推论和说明总体的 特性。这也称为推论统计。
2.等距抽样
• 又称系统抽样或机械抽样。 • 具体做法: • 1)将总体的所有单位按一定顺序排列起来; • 2)计算抽样间隔R=N/n;

经济统计学第7章抽样调查

经济统计学第7章抽样调查
CHAPTER ONE
参数的假设检验是根据样本,对总体参数某种假设的正确性作出判断。 可以分别提出两种假设: 前一种不能轻易拒绝的假设为原假 设,后一种为备选假设。假设检验就是根据样本,检验 是否成立, 不成立就接受备选假设 。
一、基本思想: 小概率原则:认为在一次实验中 小概率事件几乎是不可能发生的,小概率事件的概率为显著性水平 。
一个总体的检验
Z 检验 (单尾和双尾)
t 检验 (单尾和双尾)
Z 检验 (单尾和双尾)
2检验 (单尾和双尾)
均值
一个总体
比例
方差
总体方差已知时的均值检验 (双尾 Z 检验)
均值的双尾 Z 检验 (2 已知)
假定条件 总体服从正态分布 若不服从正态分布, 可用正态分布来近似(n30) 原假设为:H0: =0;备择假设为:H1: 0
单侧检验 (原假设与备择假设的确定) 例如,某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上
除非样本能提供证据表明使用寿命在1000小时以下,否则就应认为厂商的声称是正确的 建立的原假设与备择假设应为
H0: 1000 H1: < 1000
第二节
一个正态总体参数的假设检验
-10
100
20
25
-5
25
30
30
0
0
离差
40
35
5
25
50
40
10
100
10
25
-5
25
20
30
0
0
30
35
5
25
40
40
10
100
50
45
15

(标准抽样检验)第七章整群抽样

(标准抽样检验)第七章整群抽样

(标准抽样检验)第七章整群抽样第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。

确切地说,这种抽样组织形式应称为单级整群抽样。

如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。

本章只讨论单级整群抽样。

设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。

当诸Mi都相等时,称为等群;否则,称为不等群。

采用整群抽样的两个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。

整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。

如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。

或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。

群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。

二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。

同分层抽样一样,整群抽样的前提是先要对总体进行分群。

关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。

分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。

这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。

而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。

(抽样检验)第七章第一次课抽样原理与方法

(抽样检验)第七章第一次课抽样原理与方法

(抽样检验)第七章第⼀次课抽样原理与⽅法第⼀节抽样⽅案的制定在科学研究中,除了进⾏控制试验外,有时也要进⾏调查研究。

调查研究是对已有的事实通过各种⽅式进⾏了解,然后⽤统计的⽅法对所得数据进⾏分析,从⽽找出其中的规律性。

例如,了解畜禽品种及⽔产资源状况;探索和分析对某种疾病有效的防治规律、措施以及新的检验⼿段和⽅法等。

由于现场调查⽴⾜于⽣产实际,所以它是研究和解决实际问题的⼀种重要研究⽅法。

同时,控制试验的研究课题,往往是在调查研究的基础上确定的;试验研究的成果,⼜必须在其推⼴应⽤后经调查得以验证。

为了使调查研究⼯作有⽬的、有计划、有步骤地顺利开展,必须事先拟定⼀个详细的调查计划。

调查计划应包括以下⼏个内容:(⼀) 调查研究的⽬的任何⼀项调查研究都要有明确的⽬的,即通过调查了解什么问题,解决什么问题。

例如,家畜健康状况的调查的⽬的是评定家畜健康⽔平;畜禽品种资源调查的⽬的是了解畜禽品种的数量、分布与品种特征特性等情况。

同时,调查研究的⽬的还应该突出重点,⼀次调查应针对主要问题收集必要的数据,深⼊分析,为主要问题的解决提出相应的措施和办法。

(⼆) 调查的对象与范围根据调查的⽬的,确定调查的对象、地区和范围,划清调查总体的同质范围、时间范围和地区范围。

例如,四川省家禽品种资源调查,调查地区为四川省,调查总体和对象为全省各市、县的家禽,调查时间从2000年1⽉到2000年12⽉。

(三) 调查的项⽬调查项⽬的确定要紧紧围绕调查⽬的。

调查项⽬确定的正确与否直接关系到调查的质量。

因此,项⽬应尽量齐全,重要的项⽬不能漏掉;项⽬内容要具体、明确,不能模棱两可。

应按不同的指标顺序以表格形式列⽰出来,以达到顺利完成搜集资料的⽬的。

例如,家禽品种资源调查项⽬有:种类(鸡、鸭、鹅等)、品种(柴鸡、来航、⽩洛克等),数量、体重、产蛋性能等项⽬。

调查项⽬有⼀般项⽬和重点项⽬之分。

⼀般项⽬主要是指调查对象的⼀般情况,⽤于区分和查找,如畜主姓名、住址及编号等。

第7章 抽样调查及答案

第7章  抽样调查及答案

第七章 抽样调查一、本章重点1.抽样调查也叫做抽样推断或参数估计,必须坚持随机抽样的原则。

它是一种非全面调查,其意义在于对总体的推断上,存在可控制性误差。

是一种灵活快捷的调查方式。

2.抽样调查有全及总体与样本总体之区分。

样本容量小于30时一般称为小样本。

对于抽样调查来讲全及总体的指标叫做母体参数,是唯一确定的未知的量,样本指标是根据样本总体各单位标志值计算的综合性指标,是样本的一个函数,是一个随机变量,抽样调查就是要用样本指标去估计相应的总体指标。

样本可能数目与样本容量有关也与抽样的方法有关。

抽样方法可以分为考虑顺序的抽样与不考虑顺序的抽样;重复抽样与不重复抽样。

3.大数定律、正态分布理论、中心极限定理是抽样调查的数理基础。

正态分布的密度函数有两个重要的参数(σ;x )。

它有对称性、非负性等特点。

中心极限定理证明了所有样本指标的平均数等于总体指标如X x E =)(。

推出了样本分布的标准差为:1--=N n N n x σμ。

4.抽样推断在逻辑上使用的是归纳推理的方法、在方法上使用的是概率估计的方法、存在着一定误差。

无偏性、一致性和有效性是抽样估计的优良标准。

抽样调查既有登记性误差,也有代表性误差,抽样误差是一个随机变量,而抽样的平均误差是一个确定的值。

抽样误差受总体标志值的差异程度、样本容量、抽样方法、抽样组织形式的影响。

在重复抽样下抽样的平均误差与总体标志值的差异程度成正比,与样本容量的平方根成反比即n x σμ=,不重复抽样的抽样平均误差仅与重复抽样的平均误差相差一个修正因子即N nn x -=1σμ。

在通常情况下总体的方差是未知的,一般要用样本的方差来代替。

把抽样调查中允许的误差范围称作抽样的极限误差x ∆或p ∆。

μt =∆,用抽样的平均误差来度量抽样的极限误差。

把抽样估计的把握程度称为抽样估计的置信度。

抽样的极限误差越大,抽样估计的置信度也越大。

抽样估计又可区分为点估计和区间估计。

统计学课件_复习1: 区间估计与统计指数

统计学课件_复习1: 区间估计与统计指数

s2 1 n n N
4.52 1 100 0.4269件
100 1000
②计算抽样极限误差
由(1) 0.9545,查正态概率表得 Z 2
x
Z
x
2 0.4269
0.8538(件)
2
第七章 抽样调查
③确定置信区间
估计区间上限: X U 35 0.8538 35.85 (件) 估计区间下限: X L 35 0.8538 34.15 (件)
第七章 抽样调查
例:某企业生产A产品的工人有1000人, 某日采用不重复抽样从中随机抽取100人调查 他们的当日产量,样本人均产量为35件,产量 的样本标准差为4.5件。请以95.45%的置信度 估计该日人均产量的置信区间。(z=2)
解:①计算抽样平均误差
x
2 N n
n N 1
所以,可以95.45%的置信度断言,该日人均 产量在34.15~35.85件之间。
(二) 小样本时总体均值的区间估计

总体标准差

已知吗?
用样本标准
差 s 代替
使用
x z
2
n
当n很大时(≥30), 二者近似相等
使用
x t
2
s n
第九章 统计指数
股票价格指数: 反映股市上多种股票价格综合变动趋势的动态相对数。
9
合计 — —



销售额(元)
Q0P0 Q1P1 Q1P0
8000 14000 16000
20
25
Q0P0 Q1P1
2400 2500
Q1P0
2000
4
5
4000 6000 4800

第7章抽样与抽样分布

第7章抽样与抽样分布

· · ·
· · ·
统计学
STATISTICS
3· 等距抽样(机械抽样或系统抽样)
将总体单位按某一标志排序,然后按相等间隔 抽取样本单位构成样本的抽样形式 随机起点 · · · · · · (总体单位按某一标志排序) 按无关标志排队,其抽样效果相当于简单随机抽样; 半距起点 对称起点
按有关标志排队,其抽样效果相当于类型抽样。
明确 总体及 抽样单位
统计学
STATISTICS
明确 调查目 的
确定或构 建抽样框
提出指标 精度要求
选择抽样 组织形式
2019/1/31
确定 样本容量
制定 具体办法 步骤
23
统计学
STATISTICS
2.抽样方案设计的基本原则
(1)保证实现抽样随机性的原则 (2)保证实现最大的抽样效果原则
3.抽样方案设计中的重要问题
不重复抽样
每次从总体中抽选一个单位后就不 再将其放回参加下一次的抽选。又 称不放回抽样. 总体单位数减少n,同一单位只可 7 能被抽中一次。
2019/1/31
可能的样本数目考虑各单Biblioteka 的中选顺序 AB≠BA统计学
STATISTICS
考虑顺序的重复抽样 不考虑顺序的重复抽样 考虑顺序的不重复抽样
N
n
Nn N 2
15
(二)随机抽样的组织方式 STATISTICS
1· 简单随机抽样(纯随机抽样)
根据随机原则直接从总体中抽取单位构成样 本的一种抽样方式。
•每个容量为n的样本都有同等机会(概率)被抽中 •简单、直观,是最简单、最基本、最符合随机原 则,但同时也是抽样误差最大的抽样组织形式 •仅适用于规模不大、分布比较均匀的总体 •一般有抽签、抓阄、随机数码表、抽样函数等

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。

而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。

本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。

一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。

抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。

抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。

二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。

简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。

2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。

系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。

3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。

整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。

4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。

分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。

三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。

即样本统计量是对总体参数的无偏估计。

无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。

2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。

即样本统计量在大样本情况下能够接近总体参数,具有一致性。

统计学之抽样与抽样分布

统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值

抽样和抽样分布培训课件(PPT 49张)

抽样和抽样分布培训课件(PPT 49张)

0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988

吉珠统计学期末考试重点第7章 抽样及抽样分布

吉珠统计学期末考试重点第7章  抽样及抽样分布

x
时, f (x) 的曲线以 x 轴为渐近线。
第七章 抽样调查
4. 标准正态分布
标准正态分布的概率密度函数为:
1 ( z) e , <z< 2
若随机变量 Z 服从标准正态分布, 则记为 Z~ (0, 1)
z2 2
1. 任何一个一般的正态分布,可通过下面的 线性变换转化为标准正态分布
总体均值的区间估计
(一) 大样本时总体均值的区间估计
第七章 抽样调查
例:某企业生产A产品的工人有1000人, 某日采用不重复抽样从中随机抽取100人调查 他们的当日产量,样本人均产量为35件,产量 的样本标准差为4.5件。请以95.45%的臵信度
估计该日人均产量的臵信区间。
解:①计算抽样平均误差
x 0
x a
第七章 抽样调查
标准差 决定密度函数曲线 f (x) 的陡缓程度.
0.5
1
2
第七章 抽样调查
3. 正态分布密度函数的特点
(1) 对称性。 (2) 非负性。
(3) f (x) 在 X x 时达到极大值 f(x ) 1 2
(4) f (x) 的曲线在 X x 处有拐点。 (5 )当
Z X

x2 2
~ N (0,1)
2. 标准正态分布的概率密度函数
1 ( x) e 2 , x
3. 标准正态分布的分布函数 t2 x x 1 -2 ( x) (t )dt e dt 2
第七章 抽样调查
标准正态分布, 具有如下性质或结论:
③计算抽样极限误差
由 1 ) 0.95 ,查t分布表得, (
t n 1 t 2.5% (9)=2.2622
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章抽样与抽样分布
一、思考题
1.什么是随机抽样与非随机抽样?二者有何根本区别。

2.什么是重复抽样?什么是不重复抽样?
3.什么是样本可能数目?它主要与哪些因素有关?
4.随机抽样有哪几种不同的组织形式?并简述它们各自的特点。

5.什么是抽样方案的设计?抽样方案的设计应遵循的基本原则是什么?
6.举例说明什么是总体分布、样本分布和抽样分布。

二、练习题
(一)填空题
1.抽样分布是指 __的概率分布。

2.抽样分布的理论基础 __ 和。

3.中心极限定理告诉我们不管总体服从什么分布,只要样本容量足够多,其 __ 的分布总是近似服从正态分布。

4.科学地设计抽样方案必须遵循两个基本原则:即保证实现 __ ;保证实现 __。

5.正态曲线下的总面积等于。

(二)判断题
σ,这两
1.正态分布总体有两个参数,一个是均值(期望值)μ,一个是方差2
个参数确定以后,一个正态分布也就确定了。

( )
2.一般而言,类型抽样的误差比简单随机抽样的误差小。

( )
3.重复抽样的抽样误差一定大于不重复抽样的抽样误差。

( )
4.随机抽样与非随机抽样的根本区别在于是否遵循随机原则。

( )
5.大数定律从理论上揭示了样本与总体之间的内在联系,即随着样本容量n 的增大,样本均值(或样本比例)有接近于总体均值(或总体比例)的趋势。

( )
6.中心极限定理是阐述大量随机变量之和的极限分布是正态分布的一系列定理的总称。

( )
7.总体分布是指总体X的概率分布。

( )
8.样本均值的抽样分布与总体是否正态分布无关。

( )
(三)单项选择题
1.从纯理论出发,在直观上最符合随机原则的抽样方式是( )。

A.简单随机抽样
B.类型抽样
C.等距抽样
D.整群抽样
2.整群抽样的随机原则落实在( )。

A.各总体单位被抽中的机会均等
B.各群被抽中的机会均等
C.各群、各总体单位被中的机会均等 C.各群被抽中的机会不等
3.标准正态分布的特征是( )。

A.不对称
B.有的对称,有的不对称
C.关于0=x 对称
D. 关于μ=x 对称
4.t 分布的特征是( )。

A.不对称
B.有的对称,有的不对称
C.关于0=x 对称
D. 关于μ=x 对称
5.n 足够大时,n x σμ
-服从( )。

A.正态分布
B.标准正态分布
C.t 分布
D.2χ分布
6.n 足够大时,n s x μ
-服从( )。

A.正态分布
B.标准正态分布
C.t 分布
D.2χ分布
7.n 足够大时,n p )1(πππ
--服从( )。

A.正态分布
B.标准正态分布
C.t 分布
D.2χ分布
8.n 足够大时,n p p p )1(--π
服从( )。

A.正态分布
B.标准正态分布
C.t 分布
D.2χ分布
(四)多项选择题
1.重复抽样的特点是( )
A.各次抽选相互影响
B.各次抽选互不影响
C.每次抽选时,总体单位数始终不变
D.每次抽选时,总体单位数逐渐减少
E.各单位被抽中的机会在各次抽选中相等
2.随机抽样的组织形式主要有()
A.纯随机抽样
B.判断抽样
C.机械抽样
D.分层抽样
E.整群抽样
3. 正态分布的特征是( )。

σ决定 B. 正态曲线下的总面积小于1
A. 正态分布曲线由均值μ和方差2
C. 随机变量在某一点的概率为)
f D. 正态曲线关于μ
(x
x对称
=
E. x轴为正态曲线)
f的渐近线
(x
4.样本均值服从正态分布的前提是()
A. 正态总体,方差已知,大样本
B.正态总体,方差未知,大样本
C. 非正态总体,方差已知,大样本
D.非正态总体,方差未知,小样本
E. 正态总体,方差已知,小样本
(五)计算题
1.某班学生有60人,某次的英语考试成绩服从正态分布,全班平均成绩为
78分,标准差为6分。

现从该班学生中按不重复抽样抽出一个由16个学生组成
的简单随机样本,求该样本的平均成绩介于85分~95分之间的概率。

2.某电视机厂生产的电视机的一级品率为80%,现从中抽取49台组成简单
随机样本,问这49台的一级品率介于90~95%之间的概率约为多少?。

相关文档
最新文档