实验四 大数定律与中心极限定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向左边,令
,则
是相互独立的,且:
P{i 1} p, P{i 1} 1 p, E(i ) 2 p 1, D(i ) 4 p(1 p), i 1,2,...n
那么小珠最后的位置:
X a 1 2 ...n
高尔顿钉板试验
由中心极限定理可知, X 服从正态分布,且: E(X ) a (2 p 1)n, D(X ) 4np(1 p)
2. 2 设计性实验
实验三 高尔顿钉板试验
【实验目的】 1.加强对正态分布的理解 2.了解独立同分布的中心极限定理 3.掌握 Matlab 软件在计算机模拟中的应用 【实验要求】 1. 了解建立 Matlab M 文件的方法,理解循环语句 for—end 和假 设语句 if—end 2.了解简单的 Matlab 程序设计,掌握用 Matlab 处理实际问题的能 力
高尔顿钉板试验
图 2.21 中每一个黑点表示钉在板 上的一颗钉子,每排钉子等距排列,下 一排的每个钉子恰在上一排两相邻钉 子之间。假设有 排钉子,从入口处放 入小圆珠,由于钉板斜放,珠子在下落 过程中碰到钉子后以 0.5 的概率滚向左 边,也以 0.5 的概率滚向右边。如果 较 大,可以看到许多珠子从 A 处滚到钉板 底端的格子中,堆成的曲线近似于正态 分布曲线。
2000
1500
图 2.22 a=10,p=0.5 时
高尔顿试验结果的直方图
1000
500
0
1
3
5
7
9 11 13 15 17 19
从结果可以看到,当 a=10,p=0.5 时,圆珠堆积成的正态曲
线以 x=10 为对称轴。
高尔顿钉板试验
增大 p 的值,则正态曲线的对称轴向右移动, 如图 2.23。 3000
算术平均值,即若干个数X1、
X2……Xn之和除以n,是最常用的一种 统计方法,人们经常使用并深信不疑。 但其理论根据何在,并不易讲清楚,这 是大数定律要回答的问题,在某种程度 上可以说,大数定律是整个概率论最基 本的规律之一,也是数理统计学的理论 基石。
n
大数定律从理论上回答了通过试验
来确定概率的方法:做n次独立的重复试
Matlab软件
【实验内容】 X1, X 2, , X n,
1.设随机变量
n相互 独立且服
从 时参,Yn数随 1n机为in1 X变3i2 的量泊松分布。依验概证率当收敛到12。
2.已知每毫升正常成年男子的血液中, 白细胞数的平均值是7300个,均方差是 700,利用切比雪夫不等式估计成年男子 每毫升血液中,白细胞数在5200~9400 之间的概率。
图 2.21 高尔顿钉板试验图
高尔顿钉板试验
(1) 分析并解释这种现象; (2) 如果圆珠下落到第二排后向左和向右滚落的概
率改变,则结果会如何改变? (3) 用 Matlab 模拟这个试验,并验证理论结果。
高尔顿钉板试验
以圆珠落下的水平线建立数轴,并假设圆珠下落位置 A 的横坐标为 a。 如果定义:当第 次碰到钉子后滚向右边,则 ;当第 次碰到钉子后滚
由于圆珠落地坐标服从正态分布,故圆珠堆积成正态曲 线的形状。如果 p 的值发生改变,则曲线的形状和位置都将 会发生改变。由中心极限定理可知,独立同分布的若干随机 变量的和近似服从正态分布,故正态分布在实际问题处理中 占有很重要的地位。
高尔顿钉板试验
【实验过程】
在 Matlab 的 Medit 窗口建立文件 goldon.m:
验,以 表示n 次试验中事p 件nAn 发生的次 数,那么我们可以以很大的概率确


在客观实际中有许多随机变量,他 们是由大量相互独立的随机因素的综合 影响所形成的,其中每一个别因素在总 的影响中所起的作用都很微小。如测量 误差就可以看成是由很多微小的因素影 响的结果叠加而成的。
这些因素相互独立地对测量结果发 生影响,每个因素都只发生很微小的作 用,把它们的影响叠加起来就造成了误 差,类似这样的情况可以举出很多,而 在某种具体条件下,这种随机变量往往 近似的服从正态分布。
第4章 大数定理和中心极限定理
从17世纪概率论产生开始,随着18、 19世纪科学的发展,人们注意到在某些 生物、物理和社会现象与赌博游戏之间 有某种相似性,从而由赌博起源的概率 论被应用到这些领域中,这同时也大大 推动了概率论本身的发展。
使概率论成为数学的一个分支的奠 基人是瑞士数学家j.伯努利,他建立了 概率论中第一个极限定理,即伯努利大 数定律,阐明了事件的频率稳定于它的 概率。随后棣莫弗和拉普拉斯又导出了 第二个基本极限定理(中心极限定理) 的原始形式。
拉普拉斯在系统总结前人工作的基 础上写出了《分析的概率理论》,明确 给出了概率的古典定义,并在概率论中 引入了更有力的分析工具,将概率论推 向一个新的发展阶段。
19世纪末,俄国数学家切比雪夫、 马尔可夫、李亚普诺夫等人用分析方法 建立了大数定律及中心极限定理的一般 形式,科学地解释了为什么实际中遇到 的许多随机变量近似服从正态分布。
2500
2000
1500
1000
500
0
2
源自文库
4
6
8
10
12
14
16
18
20
图 2.23 a=10,p=0.7 时高尔顿试验结果的直方图
高尔顿钉板试验
(1) 分析并解释这种现象; (2) 如果圆珠下落到第二排后向左和向右滚落的概
率改变,则结果会如何改变? (3) 用 Matlab 模拟这个试验,并验证理论结果。
【实验过程】
m=10;
if y==0
n=10000;
x=x-1;
p=0.5;
else
z=unidrnd(5,1,100);
x=x+1;
for j=1:n
end
x=10;
end
for i=1:m
z(j)=x;
y=binornd(1,p); end
hist(z)
高尔顿钉板试验
然后运行上述文件,运行结果如下:
2500
这种现象就是中心极限定理的客观 背景。中心极限定理是概率论中论证随 机变量和的极限分布为正态分布的定理 的总称,也是大样本统计推断的理论基 础。
4.1 验证性实验
实验一 大数定律 【实验目的】 1.加深对大数定理的认识,对其背景和 应用有直观的理解 2.了解MATLAB软件在模拟仿真中的应 用
【实验要求】 大数定理的理论知识,
相关文档
最新文档