双曲线的渐近线和共轭双曲线

合集下载

双曲线的简单几何性质总结归纳人教

双曲线的简单几何性质总结归纳人教

一.基本概念1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(为常数))这两个定点叫双曲线的焦点.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征:⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+⑷焦点到准线的距离:2211221221 a a F K F K c F K F K c c c==-==+或 ⑸两准线间的距离: 2122a K K c=⑹21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来,12212cot2PF F F PF S b ∆∠= ⑺离心率:121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞)⑻焦点到渐近线的距离:虚半轴长⑼通径的长是a b 22,焦准距2b c ,焦参数2b a(通径长的一半)其中222b a c +=a PF PF 221=-3 双曲线标准方程的两种形式:①22a x -22b y =1,c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22bx =1,c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22a x -22by =1(a >0,b >0)⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x 渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x a b y ±=0=±bya x 双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e 两渐近线互相垂直,分别为y=,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx ⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x )0(≠λ⑻与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x ⑼双曲线上过焦点的弦,当弦的两端点在双曲线的同一支上时,过焦点且垂直于实轴的弦最短,当弦的两端点在双曲线的两支上时,以实轴长最短。

双曲线的简单几何性质(经典)

双曲线的简单几何性质(经典)

双曲线的简单几何性质【知识点1】双曲线22a x -22b y =1的简单几何性质(1)范围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且(4)=1中的1(5)(6)e =2(7)注意:且λ(2)与椭圆2a +2b =1(a >b >0)共焦点的曲线系方程可表示为λ-2a -λ-2b =1(λ<a 2,其中b 2-λ>0时为椭圆,b 2<λ<a 2时为双曲线)(3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.1、写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程2、已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率3、求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程4、已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。

5、求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.【知识点2】弦长与中点弦问题(1).直线和圆锥曲线相交时的一般弦长问题:一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB ,A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的(2)设A(x 1;对于y 2【变1变4】7、过双曲线2212y x -=的右焦点F 作直线l 交双曲线于A,B 两点,若|AB|=4,这样的直线有几条?【题型2】双曲线离心率的求法一、根据离心率的范围,估算e :即利用圆锥的离心率的范围来解题,有时可用椭圆的离心率e ∈()01,,双曲线的离心率e >1,抛物线的离心率e =1来解决。

高中数学双曲线知识点与性质大全

高中数学双曲线知识点与性质大全

双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。

双曲线知识点总结

双曲线知识点总结

双曲线知识点指导教师:郑军一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。

2024年高考数学---双曲线及其性质

2024年高考数学---双曲线及其性质

1)与双曲线 x2 - y2 =1(a>0,b>0)渐近线相同的双曲线方程可设为 x2 - y2 =λ
a2 b2
a2 b2
(λ≠0);
2)过两个已知点的双曲线方程可设为mx2+ny2=1(mn<0)或mx2-ny2=1(mn>0).
例1 (2022辽宁鞍山一中月考,13)与椭圆 x2 + y2 =1有公共焦点,且离心率
基础篇
考点一 双曲线的定义及标准方程
1.定义
把平面内与两个定点F1,F2的距离之差的绝对值等于常数2a(0<2a<|F1F2|) 的点的轨迹叫做双曲线.
2.标准方程
焦点在x轴上: x2 - y2 =1(a>0,b>0);
a2 b2
焦点在y轴上: y2 - x2 =1(a>0,b>0).
a2 b2
3.焦点三角形问题
考点三 直线与双曲线的位置关系
直线与双曲线的位置关系主要是指公共点问题,相交弦问题及其他
综合问题,常用下面的方法解题:
联立双曲线C的方程 x2 - y2 =1(a>0,b>0)与直线l的方程y=kx+m(m≠0),消去
a2 b2
y,整理得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.
c2 a2
=
a2 b2 a2
=
1
b2 a2
求解.
2.列出含有a,b,c的齐次方程(或不等式),借助b2=c2-a2消去b,然后转化为关
于e的方程(或不等式)求解.
3.构造焦点三角形,利用定义转化为焦点三角形三边的关系,如图,e= c =
a
2c = | F1F2 |

高中双曲线知识点总结

高中双曲线知识点总结

三一文库()/总结〔高中双曲线知识点总结〕进入高三总复习的第一阶段,同学们应从基础知识抓起,扎扎实实,一步一个脚印地过数学知识点关。

复习时,将双曲线方程知识点总结熟练掌握运用,小编相信您一定可以提高数学成绩!▲双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)▲长加短减原则:构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计第1页共3页算,而双曲线不带符号)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确23。

双曲线知识点总结例题

双曲线知识点总结例题

(二)双曲线知识点及巩固复习1. 双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F i,F2为两定点,P为一动点,⑴若||PF i|-|PF2||=2a①0<2a<|F 1F2I则动点P的轨迹是 _______________________________②2a=|F 1F2I则动点P的轨迹是________________________________③2a=0则动点P的轨迹是_________________________________⑵若|P F i|-|PF2|=2a① ______________________________________________________ 0<2a<|F i F2|则动点P的轨迹是_______________________________________________② ____________________________________________________ 2a=|F 1F2I则动点P的轨迹是_________________________________________________③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程 ________________________x,y的范围 __________________________________顶点__________ 焦点________________ 对称轴_______________ 对称中心实半轴的长 ____________ 虚半轴的长__________________ 焦距 _______________ 离心率e= _____ 范围_____________ e越大双曲线的开口越____ e越小双曲线渐近线焦半径公式|PF i|= |PF2|= ________________ (F l,F2分别为双曲线的左右两焦点,P为椭圆上的(1)焦点在y轴上的双曲线标准方程 ________________________x,y的范围 __________________________________顶点 __________ 焦点________________ 对称轴_______________ 对称中心_____ 实半轴的长 ____________ 虚半轴的长_________________ 焦距 _______________ 离心率e= _____ 范围_____________ e越大双曲线的开口越____ e越小双曲线的开口越 ________准线 _________________ 渐近线______________________ 焦半径公式|PF i|= [PF2|= _______________________ (F i,F2分别为双曲线的下上两焦点,P为椭圆上的一点)1. 等轴双曲线:®特点①实轴与虚轴长相等②渐近线互相垂直'丄;③离心率为 _____2. 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2,c为半焦距)(2)共渐近线的双曲线的方程为例题在运用双曲线的定义时,应特别注意定义中的条件差的绝对值”,弄清是指整条双曲线,还是双曲线的哪一支考点1、双曲线定义例1、已知动圆M与圆C1 : (x + 4)2 + y2= 2外切,内切,求动圆圆心M的轨迹方程与圆C2: (x - 4)2 + y2 = 2= l(m> 0)与双曲线a白F2, P是两条曲线的一个交点,则|PF i| |PF2|的值是A.m-aS °)有相同的焦点F i,)J±=l例3】已知双曲线与点M (5 , 3)F为右焦点,若双曲线上有一点最小,则P点的坐标为考点2、求双曲线的方程求双曲线标准方程的方法1.定义法,根据题目的条件,若满足定义,求出相应a、b、c即可求得方程.2 •待定系数法(2)待定系数法求双曲线方程的常用方法一x2 y2 x2 y2①与双曲线a2 —b2 = 1有共同渐近线的双曲线方程可表示为a2 —b2 = t(t工0);②若双曲线的渐近线方程是y=±a x,则双曲线的方程可表示为a2—y2=t(t却);一x2 y2 x2 y2③与双曲线a2 —b2 = 1共焦点的方程可表示为a2- k—b2 + k = 1(—b2V k V a2);一x2 y2④过两个已知点的双曲线的标准方程可表示为m + n = 1(mn V0);一x2 y2 x2 y2⑤与椭圆a2 + b2 = 1(a > b > 0)有共同焦点的双曲线方程可表示为a2 -入+ b2 -U1(b2v 入V a2).例4、求下列条件下的双曲线的标准方程.x2 y2(1)与双曲线9 —16 = 1有共同的渐近线,且过点(一3,2);(2)与双曲线16 — 4 = 1有公共焦点,且过点(3, 2).1•在双曲线的标准方程中,若x2的系数是正的,那么焦点在x轴上;如果y2的系数是正的,那么焦点在y轴上,且对于双曲线,a不一定大于b.2. 若不能确定双曲线的焦点在哪条坐标轴上,可设双曲线方程为:mx2 + ny2 = 1(mn v 0),以避免分类讨论.考点3、双曲线的几何性质双曲线的几何性质与代数中的方程、平面几何的知识联系密切,解题时要深刻理解确定双曲线的形状、大小的几个主要特征量,如a、b、c、e的几何意义及它们的相互关系,充分利用双曲线的渐近线方程,简化解题过程x2例5、(12分)双曲线C: a2 —y2b2 = 1(a >0,b >0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,AP PQ使T f=0,求此双曲线离心率的取值范围.x2例6、活学活用】3.(2012北京期末检测)若双曲线a2的两个焦点分别为F i 、F 2, P 为双曲线上一点,且|PF i |二3|PF 2|,则该双曲线的 离心率e 的取值范围是 _________的右焦点,斜率k =2.若'与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是评注】解题中发现△ PF 1F 2是直角三角形,是事前 不曾想到的吧?可是,这一美妙的结果不是每个考生都能 临场发现的.将最美的结果隐藏在解题过程之中以鉴别考生的思维=1(a >0, b > 0)例7】直线!过双曲线口' 沪 B.1<e < 门C.1< e < 乓^-―=1p 卩例8】设尸为双曲线上的一点,是该双曲线的两个焦点,若I 叭I I 布」° ,则“陋的面积为(C.】2人D. 24能力,这正是命题人的高明之处. 渐近线一一双曲线与直线相约天涯对于二次曲线,渐近线为双曲线所独有.双曲线的许多特性围绕着渐近线而展开 .双曲线的左、右两支都无限接近其渐近线而又不能与其相交 ,这一特有的几何性质不仅很好地界定了双曲线的范围 由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中设而不求一一与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求 请看下例:设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤 ,只要有可能,可以用虚设代替而不必真地去求它.但是,设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:例9】过点(1,3)且渐近线为 的双曲线方程是以简洁地设待求双曲线为,而无须考虑其实、虚轴的位置.共轭双曲线一一虚、实易位的孪生弟兄—2 --j —1将双曲线 ' 的实、虚轴互易,所得双曲线方程为 .这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同一样;它们的许多奇妙性质在解题中都有广泛的应用;它们又有共同的渐近线而为渐近线所界定的范围不例10】两共轭双曲线的离心率分别为证明:例11】双曲线的一弦中点为 (2,1),则此弦所在的直线方程为评注】在双曲线 即为其渐近线.根据这一点,可-1例12】在双曲线- 上,是否存在被点M (1,1 )平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.如果不问情由地利用设而不求”的手段,会有如下解法练习1. (2011安徽高考)双曲线2X2—y2= 8的实轴长是()A. 2B. 2C. 4D. 4x2 y2 o o2. (2011山东高考)已知双曲线a2 —b2 = 1(a> 0, b > 0)的两条渐近线均和圆C: x2+ y2—6X+ 5 = 0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()x2 y2 x2 y2 x2 y2 x2 y2A. 5 —4 = 1B.4 —5 = 1C.3 —6 = 1D. 6 —3 = 1x23. (2012嘉兴测试)如图,P是双曲线4 —y2= 1右支(在第一象限内)上的任意一点,A,A2分别是左、右顶点,O是坐标原点,直线PA1,PO,PA>的斜率分别为k1, k2,k3,则斜率之积k j k2k3的取值范围是()1 1 1A. (0,1)B. (0,8)C. (0,4)D. (0,2)4. (金榜预测)在平面直角坐标系xOy中,已知△ ABC的顶点A(—5,0)和C(5,0),顶点Bx2 y2 sin B在双曲线16 —9 = 1上,则|sin A —sin C|为()3 2 5 4A.2B.3C.4D.5x2 y25. P为双曲线9 —16 = 1的右支上一点,M、N分别是圆(X+ 5)2+ y2= 4和(X—5)2+ y2=1上的点,则|PM|—|PN|的最大值为()A. 6B. 7C. 8D. 96 . (2012南宁模拟)已知点F i, F2分别是双曲线的两个焦点,P为该曲线上一点,若厶PF1F2为等腰直角三角形,则该双曲线的离心率为()A. + 1B.+ 1C. 2D. 2x2 y27.方程2 —m + |m| —3 = 1表示双曲线.那么m的取值范围是& (2012大连测试)在双曲线4x2—y2= 1的两条渐近线上分别取点A和B,使得|OA| OB|= 15,其中0为双曲线的中心,则AB中点的轨迹方程是______________x2 y2 b2 + 19.双曲线a2 —b2 = 1(a> 0 , b >0)的离心率是2,贝U 3a的最小值是_____________10(2012肇庆模拟)已知中心在原点的双曲线C的一个焦点是F1(—3,0), 一条渐近线的方程是x—2y= 0.(1)求双曲线C的方程;⑵若以k(k丸)为斜率的直线I与双曲线C相交于两个不同的点M , N ,且线段MN的一81垂直平分线与两坐标轴围成的三角形的面积为2,求k的取值范围.11.(文用)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).⑴求双曲线C的方程;(2)若直线:y= kx+ m(k丸,m丸)与双曲线C交于不同的两点M、N ,且线段MN的垂直平分线过点A(0,- 1),求实数m的取值范围.12已知中心在原点,顶点A i、A2在x轴上,离心率e=' 的双曲线过点P(6 , 6) (1)求双曲线方程.(2)动直线丨经过△ A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线I,使G平分线段MN ,证明你的结论■13 .已知双曲线,问过点A (1 , 1)能否作直线*,使'与双曲线交于P、Q两点,并且A为线段PQ的中点?若存在,求出直线I的方程,若不存在,说明理由di14已知点N (1,2),过点N的直线交双曲线工于A、B两点,求直线AB的方程;(2)若过N的直线丨交双曲线于C、D两点,且⑵ D四点是否共圆?为什么?(二)双曲线知识点及巩固复习1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,⑴若||PR|-|PF2||=2a①______________________________________________________ 0<2a<|F1F2I则动点P的轨迹是___________________________________________② 2a=|F 则动点P 的轨迹是 ___________________________________ ③ 2a=0则动点P 的轨迹是 _________________________________ ⑵若 |P F i |-|PF 2|=2a①0<2a<|F 1F 2I 则动点P 的轨迹是 _________________________________ ②2a=|F 1F 2I 则动点P 的轨迹是 ________________________________ ③ 2a=0则动点P 的轨迹是3. 双曲线的性质(1)焦点在x 轴上的双曲线 标准方程 ________________________x,y 的范围 ___________________________________顶点 ___________ 焦点 _______________ 对称轴 ________________ 对称中心 实半轴的长虚半轴的长焦距离心率e= _____ 范围 ____________ e 越大双曲线的开口越 ____ e 越小双曲线[PF 2F ___________________________ (F i ,F 2分别为双曲线的左右两焦点,P 为椭圆上的2.双曲线的标准方程焦半径公式|PF i |=渐近线(2)焦点在y轴上的双曲线标准方程________________________x,y的范围___________________________________顶点___________ 焦点 ________________ 对称轴 _______________ 对称中心_____ 实半轴的长_____________ 虚半轴的长 ________________ 焦距________________ 离心率e= _____ 范围 ____________ e越大双曲线的开口越____ e越小双曲线的开口越_________准线__________________ 渐近线 ______________________ 焦半径公式|PF i|= [PF2|= _______________________ (F i, F2分别为双曲线的下上两焦点,P为椭圆上的一点)3. 等轴双曲线:° V-WF特点①实轴与虚轴长相等②渐近线互相垂直F一'*③离心率为 _____4. 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线的共轭双曲线是6.双曲线系(3)共焦点的双曲线的方程为(0<k<c 2,c为半焦距)y3(4) 共渐近线的双曲线的方程为考点1。

双曲线的渐近线和共轭双曲线课件

双曲线的渐近线和共轭双曲线课件
和特性。
渐近线的存在使得双曲线在某些 方向上看起来更接近于直线。
渐近线的求法
确定双曲线的焦点位置
确定渐近线的方程
首先需要确定双曲线的焦点位置,这 可以通过给定的双曲线方程或已知条 件来确定。
利用已知的渐近线斜率和焦点位置, 可以确定渐近线的方程。
计算渐近线的斜率
根据双曲线的焦点位置和原点之间的 连线斜率,可以计算出渐近线的斜率 。
方程。
根据给定双曲线的焦距,求出 与给定双曲线共轭的双曲线方
程。
03
双曲线与渐近线、共轭双曲线的 联系
双曲线与渐近线的关系
渐近线是双曲线的一种特殊直线,它 与双曲线的形状和位置密切相关。
渐近线的斜率与双曲线的实轴和虚轴 的斜率相等。
当双曲线上的点逐渐接近渐近线时, 该点与渐近线的距离会无限接近于零 。
双曲线与共轭双曲线的关系源自共轭双曲线是与原双曲线具有相 同渐近线但不同顶点和焦点的双
曲线。
共轭双曲线的性质与原双曲线相 似,但在几何形状上可能有所不
同。
共轭双曲线的实轴和虚轴的长度 相等,且与原双曲线的实轴和虚
轴成直角。
双曲线、渐近线、共轭双曲线在实际问题中的应用
在物理学中,双曲线、渐近线和共轭双曲线可以用于描述波动、光学和力学等现象 。
双曲线的渐近线和共轭双曲 线课件
• 双曲线的渐近线 • 共轭双曲线 • 双曲线与渐近线、共轭双曲线的联
系 • 双曲线的几何意义 • 习题与解答
01
双曲线的渐近线
渐近线的定义
渐近线是双曲线上的一个重要概 念,它描述了双曲线在无穷远处
趋于直线的趋势。
渐近线是双曲线与直线之间的“ 桥梁”,它反映了双曲线的形状
渐近线的性质

双曲线的渐近线和共轭双曲线

双曲线的渐近线和共轭双曲线

叫做双曲线的渐近线。
B2
A1 O ab A2
x
B1
x
双曲线渐近线的斜率的绝对值越 大,双曲线的开口越开阔。
B1
A1 O ab A2
B2
y
对于双曲线y2 a2
bx22
1,直线yax b
叫做双曲线的渐近线。
解释说明:
(1)渐近线是双曲线特有的几何性质,它决定着双曲线
开口的开阔程度。
(2)两条渐近线的交点是双曲线的中心。
(3)以四条直线x=±a和y=±b(或x=±b和y=±a)围成 的矩形的对角线所在直线就是渐近线。
(4)两条渐近线相交所成的角叫夹角(含双曲线的部
分):2种求解方式。
y
几何意义
c2b2a2
B2
A1
c bA2
0a
x
B1
问题1:根据方程画出下列双曲线的图形
1xy12x2y213x2y21
94
y
o
x
2、等轴双曲线
3、共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚
轴的双曲线叫原双曲线的共轭双曲线, 则
(1)双曲线
x2 a2
y2 b2
1
的共轭双曲线方程
y2 x2 b2 a2 1
即把双曲线方程中的常数项1改为-1就得到了它的共轭双曲线方程。
(2)双曲线和它的共轭双曲线有共同的渐近线; (3)双曲线和它的共
轭双曲线的四个焦点共圆.
a
ab
x x2a2
O
X
x x2 a2
MQ是点M到直线yb的距离,且MQMN。当x逐渐增大时, a
MN逐渐减小,x无限增大, MN接近于0, MQ也接近于0,但不等于0

共轭双曲线

共轭双曲线
共扼双曲线
以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线.
共轭双曲线有共同的渐近线;
共轭双曲线的四个焦点共圆.
例过双曲线的一个顶点的切线交共轭双曲线于两点,求证:过交点所作共轭双曲线的两切线必通过原双曲线的另一顶点.
方程: 与 互为共轭双曲线
双曲线与椭圆有哪些不同?
等轴双曲线是一个方程所对应的几何图形。有两支曲线:而互为共轭双曲线则是两个方程所对应的几何图形,每个方程各对应两支曲线。等轴双曲线也有它的共轭双曲线。
(1)定义不同,பைடு நூலகம்形不同。
(2)有两类特殊的双曲线,它们有一些特殊的性质。
一类是等轴双曲线。其主要性质有:a=b,离心率 ,两条渐近线互相垂直,等轴双曲线上任意一点 到中心的距离是它到两个焦点的距离的比例中项。
另一类是共轭双曲线,其主要性质有:它们有共同的渐近线,它们的四个焦点共圆,它们的离心率的倒数的平方和等于1。

双曲线知识点与性质大全

双曲线知识点与性质大全

双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中c e a=. 5、通径过双曲线()22221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值;(2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.l。

共轭双曲线

共轭双曲线


a b
2 2
1与
y 2 x2 1 b2 a 2
互为共轭双曲线
双曲线与椭圆有哪些不同? (1)定义不同,图形不同。 (2)有两类特殊的双曲线,它们有一些特殊的性质。 一类是等轴双曲线。其主要性质有:a=b,离心率 e
2,
两条渐近线互相垂直,等轴双曲线上任意一点 到中心的距 离是它到两个焦点的距离的比例中项。 另一类是共轭双曲线,其主要性质有:它们有共同的渐近 线,它们的四个焦点共圆,它们的离心率的倒数的平方和等 于 1。 等轴双曲线是一个方程所对应的几何图形。有两支曲线: 而互为共轭双曲线则是两个方程所对应的几何图形,每个方 程各对应两支曲线。等轴双曲线也有它的共轭双曲线。
共轭双曲线以已知双曲线的虚轴为实轴实轴为虚轴的双曲线叫做原双曲线的共轭双曲线也可以看做把原方程中的正负号交换了位置后得到的新方程通常称它们互为共轭双曲线
共扼双曲线 以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双 曲线的共轭双曲线,通常称它们互为共轭双曲线. 共轭双曲线有共同的渐近线; 共轭双曲线的四个焦点共圆. 例 过双曲线的一个顶点的切线交共轭双曲线于两点,求 证:过交点所作共轭双曲线的两切线必通过原双曲线的另一 顶点. 方程: x 2 y2

双曲线的全部知识和性质.doc

双曲线的全部知识和性质.doc

双曲线的全部知识和性质.双曲线和方程[知识分类]1.双曲线的定义(1)在平面上,点到两个固定点的距离之差的绝对值等于固定长度的点的轨迹称为双曲线,其中两个固定点称为双曲线的焦点,固定长度称为双曲线的实轴长,线段的长度称为双曲线的焦距。

这个定义是双曲线的第一个定义。

[笔记]在这种情况下,点的轨迹是两条光线。

(2)在平面上,点到固定点的距离和点到固定线的距离为固定值的点的轨迹称为双曲线,其中固定点称为双曲线的焦点,固定线称为双曲线的准线,固定值称为双曲线的偏心率。

这个定义是双曲线的第二个定义。

2.双曲线的简单性质标准方程顶点坐标焦点坐标左焦点,右焦点上焦点,下焦点虚轴和虚轴实轴长度,虚轴长度实轴长度,虚轴长度有界性,关于轴对称对称,关于轴对称对称,也关于原点对称。

双曲线的渐近线是,也就是,或。

[笔记](1)与双曲线具有相同渐近线的双曲方程可以设置为:(2)具有渐近线的双曲方程可以设置为:(3)共轭双曲线:已知双曲线的虚轴为实轴,实轴为虚轴的双曲线称为原双曲线的共轭双曲线。

共轭双曲线有相同的渐近线。

④等边双曲线: 实轴等于虚轴的双曲线叫做等边双曲线。

4.从焦点半径的双曲线上的任何一点到双曲线焦点的距离称为焦点半径。

如果双曲线上的任何一点是双曲线的左右焦点,那么,在哪里。

5.通过双曲线焦点的路径是一条垂直于虚轴的直线,在两点处与双曲线相交,该线段称为双曲线路径。

6.焦点三角形是双曲线上的任何一点,它是双曲线的左右焦点,称为双曲线的焦点三角形。

如果是这样,焦三角的面积为:7.从双曲线焦点到渐近线的距离是(假想的半轴长度)。

8、双曲线焦三角内弹道是9.直线和双曲线之间的位置关系直线,双曲线:,并相交;与…相切。

与…分离。

10.与渐近线平行(不重合)的直线与双曲线只有一个交点。

[笔记]在平面的某一点,直线和双曲线之间只有一个交点。

这种直线可以是4、3、2或0.11.焦点三角形角平分线的性质点是双曲线上的移动点,是双曲线的焦点,是角平分线上的点,那么,移动点的点的轨迹是. 12.双曲线上任意两点的坐标性质是双曲线上的任意两点,如果。

高中高三数学双曲线方程知识点

高中高三数学双曲线方程知识点

高中高三数学双曲线方程知识点广大高中生要想顺利通过高考,接受更好的教育,就要做好考试前的复习准备。

小编带来高三数学双曲线方程知识点,希望大家认真阅读。

1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)长加短减原则:构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证: =.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.以上就是高三数学双曲线方程知识点的全部内容。

双曲线知识点总结1

双曲线知识点总结1

1 双曲线知识点归纳总结1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹叫双曲线(定义表达式描述为:21212F F a PF PF <=-(a 为正常数))。

这两个定点叫双曲线的焦点。

要注意两点:(1)距离之差的绝对值。

(2)2a <|F 1F 2|。

当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在。

2、第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。

这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。

3、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c ) 焦点在x 轴上:12222=-b y a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0) 注意;如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。

a 不一定大于b 。

4、点与双曲线点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b ⇔->; 点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<; 点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔ 5. 双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a b y ±=. (2)若渐近线方程为x a b y ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x . ⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-b y a x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦距与实轴长的比 e=c/a e>1
过焦点垂直于实轴的弦 2b2/a
标准方程
椭圆
x2/a2+y2/b2=1(a>b>0)
双曲线
x2/a2-y2/b2=1(a>0、b>0)
几何 图形
范围 对称性 顶点
a,b,c的含义
离心率e定义 通径、通径长
y B2
A1
A2
F1 0 F2
x
B1
|x |≤a 、|y |≤ b
a
a
MN Y y b (x x2 a2 )
Y
a
b (x x2 a2 )(x x2 a2 )
a

ab
x x2 a2
O
x x2 a2
N (x,Y) Q
M (x,y)
X
MQ 是点M到直线y b 的距离,且 MQ MN 。当x逐渐增大时, a
推广到一般:双曲线A2x2-B2y2=1的渐近线方程为: Ax±By=0
结论2:如果已知双曲线的渐近线方程为:Ax±By=0,
去求双曲线方程,我们可以采用待定系数法设出双曲线 方程为:A 2x 2-B 2y 2=λ(λ≠0) 其中λ为待定的系数,再 根据题目中的一个条件,求出λ,方程得到求解。若λ>0, 则双曲线焦点在x轴上,若 λ<0,则双曲线焦点在y轴上。
近线方程为 y 4 x ,求此双曲线的离心率。
3
例3、求与双曲线 x2 y2 1 有共同渐近线且一个
9 16
焦点为(0,10)的双曲线的标准方程。
例4、求中心在原点,实轴在x轴上,实轴长为2 3, 且两条渐近线相交所成的角(含双曲线部分) 为600的双曲线方程。
3、共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚
标准方程
X 2/a 2-y 2/b 2=1(a>0,b>0)
y2/a2-x2/b2=1(a>0、b>0)
几何 图形
范围 对称性 顶点 a、b、c的含 义
离心率e
通径、通径长
X=-ay
B2
A
F1 1
0
B1
X=a
A2 F2
x
x ≥ a 或 x ≤ -a
y
F1
A2
B1 o A1 B2 x
F2
y ≥ a 或 y ≤ -a
a,b,c的关系
离心率 渐近线
ab 2 c 2
e 2
y x
y
y x
o
x
问题2:求下列双曲线的渐近线:
1 4x2 y2 42 y2 x2 1
9 16
解:1 x2 y2 1 y 2 x y 2x
14
1
2 y 3 x
4
结论1:把双曲线方程中的常数项1改为0,就得到了 它的渐近线方程。
轴的双曲线叫原双曲线的共轭双曲线, 则
(1)双曲线
x2 y2 a2 b2 1
的共轭双曲线方程
y2 x2 b2 a2 1
即把双曲线方程中的常数项1改为-1就得到了它的共轭双曲线方程。
(2)双曲线和它的共轭双曲线有共同的渐近线; (3)双曲线和它的共
轭双曲线的四个焦点共圆.
y x
方程
实轴、虚轴
离心率
渐近线 焦点
焦点在x轴上
焦点在y轴上
x2
y2
a2 b2 1
x2 a2
y2 b2
1
实轴长=2a、虚轴长=2b 实轴长=2b、虚轴长= 2a
(4)两条渐近线相交所成的角叫夹角(含双曲线的部
分):2种求解方式。
y
几何意义
B2
c2 b2 a2
A1
c bA2
0a
x
B1
问题1:根据方程画出下列双曲线的图形
1 x y 12 x2 y2 13 x2 y2 1
94
y
o
x
2、等轴双曲线
方程
x2 y2 ( 0)
结论3:双曲线
x2 m2

y2 n2
1

x2 m2

y2 n2
0

共同的渐近线。
****求双曲线的渐近线方程的方法:定义法和方程法。
求下列双曲线的方程:
例2、已知中心在原点,焦点在坐标轴的双曲线的渐近
线方程为 y 4 x
3
标准方程。
,且实轴长为6,求此双曲线的
变式:已知中心在原点,焦点在坐标轴的双曲线的渐
1 x y 12 x2 y2 13 x2 y2 1
94
y
y
O
xபைடு நூலகம்
O
x
22567.rar
下面我们证明双曲线上的点在沿曲线向远处运动时, 双曲线与直线逐渐靠拢。
方案1:考查点到直线的距离 MQ
方案2:考查同横坐标的两点间的距离 MN
(由双曲线的对称性知,我们只需 证明第一象限的部分即可)
中心对称,轴对称
A1(-a,0 ) , A2(a,0) B1(0-b ) , B2(0,b)
a2=b2+c2
0<e<1 2b2/a
y
X=-a
X=a
B2
A
F1 1
0
A2 F2
B1 x
x ≥a 或 x ≤ -a
中心对称,轴对称
A1(-a,0 ) 、 A2(a,0)
c2=a2+b2
e>1 2b2/a
问题1:根据方程画出下列双曲线的图形
中心对称,轴对称
中心对称,轴对称
A1(-a,0 ) , A2(a,0)
A1(0,-a ) , A2(0,a)
a (实半轴长) c(半焦距) a(实半轴长) c(半焦距长)
b (虚半轴长) a2=c2-b2
b(虚半轴长) a2=c2-b2
焦距与实轴长的比 e=c/a e>1
过焦点垂直于实轴的弦 2b2/a
x
y
B2
A1 O ab A2
x
B1
B1
A1 O ab A2
B2
y
对于双曲线 y2 x2 1,直线y a x
a2 b2
b
叫做双曲线的渐近线。
解释说明: (1)渐近线是双曲线特有的几何性质,它决定着双曲线
开口的开阔程度。
(2)两条渐近线的交点是双曲线的中心。
(3)以四条直线x=±a和y=±b(或x=±b和y=±a)围成 的矩形的对角线所在直线就是渐近线。
MN 逐渐减小,x无限增大,MN 接近于0,MQ 也接近于0,但不等于0
同理,由双曲线的对称性知:双曲线与直线y=

b a
x无限接近,但永远
也不能相交。
1、双曲线渐近线:
对于双曲线 x2 a2

y2 b2
1,直线y

b a
x
叫做双曲线的渐近线。
双曲线渐近线的斜率的绝对值越 大,双曲线的开口越开阔。
设M (x, y)是它上面的点,
y
N QM
B2
则y b x2 a2 (x a) a
N (x,Y )是直线y b x a
上与有相同横坐标的点,
则Y b x a
A1 O
b a
A2
x
B1
x2 y2 a2 b2 1(a 0,b 0)
y b x2 a2 b x Y
相关文档
最新文档