光感式传感器原理及其应用
光敏传感器的原理及应用
光敏传感器的原理及应用概述光敏传感器是一种能够感知、测量光线强度的设备,通过光敏元件将光信号转化为电信号,从而实现对光的检测和测量。
本文将介绍光敏传感器的原理、分类以及其在不同领域的应用。
光敏传感器的原理光敏传感器的原理是基于光敏效应,即某些材料在受到光照射时会产生电信号。
以下是常见的光敏传感器原理:1.光电效应:基于光子将电子从固体材料中解离出来的现象。
光电效应包括外光电效应和内光电效应两种形式,分别应用于光电导、光电二极管等光敏传感器中。
2.光致电导效应:当光照射到某些半导体材料中时,会产生电导率变化。
此原理常应用于光致电导传感器中。
3.光敏材料的电阻变化:某些光敏材料在受到光照射时,其电阻值会发生变化。
基于该原理的光敏传感器常被用于光敏电阻或光敏电阻器件。
4.光伏效应:某些半导体材料在光照射下会产生电压或电流变化。
光伏效应广泛应用于太阳能电池等光伏元件。
光敏传感器的分类根据不同的原理和应用,光敏传感器可以分为以下几类:1.光敏电阻(Photoresistor):光照射导致电阻值变化,常用于光控开关、光敏灯等设备。
2.光敏二极管(Photodiode):光照射产生电流,用于光通信、遥控等应用。
3.光敏三极管(Phototransistor):光照射产生电流放大效应,常用于光电传感器、光电开关等设备。
4.光敏电容(Photo Capacitor):光照射改变电容值,常用于光敏触摸屏、光敏开关等。
5.光敏电阻器(Photoconductive Cell):光照射降低电阻值,常用于曝光控制、自动调光等应用。
6.光敏四极管(Photo Quad):光照射引发正向信号,常用于光电传感器、图像捕捉等。
光敏传感器的应用领域光敏传感器广泛应用于以下领域:自动化控制•工业自动化:用于光电开关、光电传感器等设备,实现对物体的检测、计数、位置判断等。
•家居自动化:用于照明控制、智能窗帘、安防系统等,实现对环境的感知和控制。
光感传感器的原理及应用
光感传感器的原理及应用光感传感器是一种能够感知光线的光敏元件,它能够将光线转化为电信号,从而实现对光照强度的检测和测量。
光感传感器的原理是利用光敏元件(如光电二极管、光敏电阻、光电晶体管等)对光线的敏感性,当光线照射到光敏元件上时,光子的能量会激发光敏元件内部的电子运动,从而产生电荷。
通过测量光敏元件产生的电荷量,就可以推测出光线的强度和亮度。
光感传感器的应用非常广泛,它被广泛应用于各种光控系统和自动化设备中。
以下是一些光感传感器的应用场景:1. 光照度控制:光感传感器能够感知光线的强度,可以应用于照明系统中,通过自动调节灯光的亮度和开关来实现室内照明的节能控制,提高照明效果。
2. 光感应开关:光感传感器可以用于光控开关和触发器件,例如根据光线的强度来控制窗帘的开合、自动控制庭院的水泵和喷灌装置。
3. 智能手机和相机:手机和相机中的环境光传感器通过检测周围的光线情况,来自动调节屏幕亮度和相机的曝光参数,从而提高用户体验。
4. 温度控制系统:一些温室和植物大棚中,光感传感器可以监测光照的强度,通过与温度传感器结合,实现自动调控温室内部的温度和湿度,为植物的生长提供良好的环境。
5. 反光检测:在一些光学检测系统中,利用光感传感器对反射光线的强度进行检测,来实现对物体表面光洁度和质量的检测。
6. 安防监控:光感传感器可以应用于安防监控系统中,通过感知周围的光线情况,实现对安防设备的自动开关和警报功能,提高安全性和便利性。
基于光感传感器的原理和应用,目前市场上有多种类型的光感传感器可供选择,包括光电二极管、光敏电阻、光敏晶体管、光电二极管等。
不同类型的光感传感器在感知光线的灵敏度、响应速度和稳定性等方面有所差异,使用者可以根据具体的应用场景来选择合适的光感传感器。
总的来说,光感传感器作为一种能够感知光线并转化为电信号的传感器,具有很大的应用潜力。
随着科技的不断进步,光感传感器的灵敏度和精度将进一步提高,其在自动化、智能控制和环境监测等领域的应用将会更加广泛。
光纤传感器的应用与原理
光纤传感器的应用与原理概述光纤传感器是一种利用光纤作为传感元件的传感器,广泛应用于各个领域,如工业自动化、医疗诊断、环境监测等。
本文将介绍光纤传感器的应用领域和工作原理,并对常见的几种光纤传感器进行详细解析。
应用领域光纤传感器在许多领域中都有着重要的应用。
以下是光纤传感器常见的应用领域:1.工业自动化:光纤传感器可以用于检测物体的位置、形状、尺寸等信息,广泛应用于自动化生产线中的物体检测和质量控制。
2.医疗诊断:光纤传感器可以用于生物体内的监测和诊断,如血液浓度、体温、心率等生理参数的测量。
3.环境监测:光纤传感器可以用于监测环境中的温度、湿度、压力等参数,对环境污染和自然灾害的预警起到重要作用。
4.结构监测:光纤传感器可以用于监测建筑物、桥梁、飞机等结构的变形和破损,提高结构的安全性和可靠性。
工作原理光纤传感器的工作原理基于光信号的传输和变化。
以下是光纤传感器的几种常见工作原理及其原理解析:1.弯曲传感器:光纤传感器通过光纤的弯曲程度来测量物体的弯曲角度。
当光纤被弯曲时,光信号会在光纤中发生反射,通过测量反射光的强度变化,可以确定物体的弯曲程度。
2.压力传感器:光纤传感器利用内部的光纤材料的压阻效应来测量物体的压力。
当物体施加压力时,光纤内部的光线受到压阻效应的影响,从而改变光的传输特性。
3.温度传感器:光纤传感器利用光纤材料的热导性来测量物体的温度。
当物体受热时,光纤内部的温度会发生变化,从而改变光的传输特性。
4.气体传感器:光纤传感器利用特殊的光纤材料与目标气体之间的相互作用来测量气体的浓度和组成。
当目标气体与光纤材料发生化学反应或物理吸附时,光的传输特性会发生变化。
常见光纤传感器以下是几种常见的光纤传感器及其应用场景:1.FBG(Fiber Bragg Grating)光纤传感器:基于光纤中的光栅效应,可以用来测量温度、应变、压力等参数。
在结构监测和环境监测中有广泛应用。
2.光纤陀螺仪:利用光纤的光学路径差来测量旋转角度,广泛应用于航空航天和导航领域。
光感式传感器原理及其应用
光感式传感器原理及其应用(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除机电工程系传感器与检测技术学习报告专业班级:生产过程自动化14-2 姓名:张鹏宇学号: 19项目名称:光感式传感器的应用与发展指导教师:刘辉评定成绩:2015年12月15日摘要:光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测光量变化或直接引起光量变化的非电量,也可用于检测能转换成光量变化的其他非电量。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电式传感器具有响应快、精度高、能实现非接触测量等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制领域应用非常广泛。
关键词:光电式传感器;检测光量变化;电信号;检测与控制。
1 前言传感器是将感受的物理量、化学量等信息,按一定规律转换成便于测量和传输的信号的装置。
电信号易于传输和处理,所以大多数的传感器是将物理量等信息转换成电信号输出的。
例如传声器就是一种传感器,它感受声音的强弱,并转换成相应的电信号。
又如电感式位移传感器能感受位移量的变化,并把它转换成相应的电信号。
光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。
因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。
2 光电式传感器工作原理光电效应光电效应是光照射到某些物质上,使该物质的导电特性发生变化的一种物理现象,可分为外光电效应、内光电效应和光生伏特效应(光生伏特效应包含于内光电效应,在此为特意列出)三类。
外光电效应是指在光线作用下,物体内的电子逸出物体表面向外发射的现象。
光子是以量子化“粒子”的形式对可见光波段内电磁波的描述。
光子具有能量hν,h为普朗克常数,ν为光频。
光子通量则相应于光强。
外光电效应由爱因斯坦光电效应方程描述:EK=hν -W当光子能量等于或大于逸出功时才能产生外光电效应。
光电子传感器的原理与应用
光电子传感器的原理与应用光电子传感器是一种能够将光学信号转换为电学信号的传感器,其原理基于光的吸收、发射、传输和反射等特性。
在现代科技发展的过程中,光电子传感器已经成为了不可或缺的技术手段,被广泛应用于制造业、医疗、通讯、环保等领域。
本文将介绍光电子传感器的原理和常见应用。
一、光电子传感器的原理1. 光的吸收与发射在光学传感领域中,光的吸收和发射是最基本的现象。
当光束通过一个物体时,光可以被物体吸收或反射。
当吸收的能量达到一定的阈值时,会产生电信号。
此时,光电子传感器就可以将光学信号转换为电学信号。
2. 光的传输在光电子传感器中,光的传输被视为一个非常重要的因素。
传输通常涉及到许多光学组件,例如透镜、光纤、滤波器、反射镜等。
在这些光学零件的帮助下,光线可以被传输到任何需要测量的地方。
3. 光的反射在光学传感领域中,反射是另一个非常有用的现象。
反射是指光经过折射后回到原来的路径上。
这个现象可以被用于探测外层物体的反射率以及距离。
二、光电子传感器的应用1. 制造业光电子传感器广泛应用于制造业中,被用于轮廓扫描、质量检测、定位、检测、测量等方面。
由于它们可以提供高精度的测量数据,因此在现代工业领域中得到了广泛应用。
2. 医学领域光电子传感器可以被用于医学领域,用于监测生命体征、病理学研究、流量测量等。
例如,在病人的脉搏和呼吸检测领域中,光电子传感器的高精度和灵敏度可以确保检测结果的准确性。
3. 通讯领域在通信领域中,光电子传感器可以被用于光纤通信中的信号传输、光学开关、光纤加速器、雷达等领域。
光电子传感器的应用可以显著地提高通信效率和数据传输速度。
4. 环保领域光电子传感器可以被用于环保领域,用于监测饮用水、大气、土壤等方面。
例如,在饮水领域中,光电子传感器可以被用于检测水质、砂、颗粒等杂质。
三、总结光电子传感器的原理和应用已经慢慢地渗透到我们日常生活的各个领域中。
无论是在医药、制造、通讯、环保那,光电子传感器的应用已经成为了我们生活中必不可少的部分。
光传感器的原理及在汽车中的应用
光传感器的原理及在汽车中的应用光传感器(Photo Sensor)是一种能够感知光线的设备,通过将光转化为电信号来实现光的检测和测量。
光传感器的原理基于光电效应,即在特定材料中,当光束照射到其表面时,能够激发出光电流或光电压的产生。
根据不同的工作原理和应用场景,光传感器可以分为光电二极管、光敏电阻、光电三极管、光电二极管阵列、光电管等多种类型。
在汽车中,光传感器的应用范围广泛,主要包括以下几个方面:1.汽车照明系统:光传感器可被用于控制汽车照明系统的自动开关和亮度调节。
光传感器感知周围环境的光照强度,根据光照条件自动调整车灯的亮度,以提供更加安全和舒适的驾驶体验。
2.雨刷系统:光传感器可以检测到雨滴或湿度的存在,从而触发雨刷系统的启动。
当光传感器感知到前挡风玻璃上有水滴或湿度时,会自动启动雨刷以提供良好的视野。
3.环境监测系统:光传感器可用于监测车内和车外的光照强度,并将信号传送给车辆控制系统。
这可以帮助汽车控制系统实时调整车内温度和灯光亮度,以提供舒适的驾驶环境。
4.防撞预警系统:光传感器可以用于监测车辆周围的距离和障碍物位置。
通过将光传感器安装在车身的不同位置,可以实现对车辆前、后、左、右方向的环境感知,为驾驶员提供准确的预警信息,以避免碰撞事故的发生。
5.自动驾驶系统:光传感器在自动驾驶系统中起到至关重要的作用。
例如,激光雷达(LIDAR)是一种基于光传感器的高精度测距设备,可以获取高分辨率的地图数据,为智能汽车提供精确的位置和环境信息。
总的来说,光传感器在汽车中的应用有助于提高驾驶安全性、降低碰撞风险、提升驾驶舒适度和实现自动驾驶等功能。
随着智能汽车的发展,光传感器的应用将越来越广泛,并且在未来的汽车技术中将发挥越来越重要的作用。
光感式传感器原理及其应用完整版
光感式传感器原理及其应用HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】机电工程系传感器与检测技术学习报告专业班级:生产过程自动化14-2 姓名:张鹏宇学号:项目名称:光感式传感器的应用与发展指导教师:刘辉评定成绩:2015年12月15日摘要:光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测光量变化或直接引起光量变化的非电量,也可用于检测能转换成光量变化的其他非电量。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电式传感器具有响应快、精度高、能实现非接触测量等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制领域应用非常广泛。
关键词:光电式传感器;检测光量变化;电信号;检测与控制。
1 前言传感器是将感受的物理量、化学量等信息,按一定规律转换成便于测量和传输的信号的装置。
电信号易于传输和处理,所以大多数的传感器是将物理量等信息转换成电信号输出的。
例如传声器就是一种传感器,它感受声音的强弱,并转换成相应的电信号。
又如电感式位移传感器能感受位移量的变化,并把它转换成相应的电信号。
光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。
因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。
2 光电式传感器工作原理光电效应光电效应是光照射到某些物质上,使该物质的导电特性发生变化的一种物理现象,可分为外光电效应、内光电效应和光生伏特效应(光生伏特效应包含于内光电效应,在此为特意列出)三类。
外光电效应是指在光线作用下,物体内的电子逸出物体表面向外发射的现象。
光子是以量子化“粒子”的形式对可见光波段内电磁波的描述。
光子具有能量hν,h 为普朗克常数,ν为光频。
光子通量则相应于光强。
外光电效应由爱因斯坦光电效应方程描述:EK=hν -W当光子能量等于或大于逸出功时才能产生外光电效应。
光传感器原理与作用
光传感器原理与作用
光传感器原理与作用
光传感器是一种常见的传感器,它可以将光信号转化为电信号。
下面
我们来了解一下光传感器的原理和作用。
一、光传感器的原理
光传感器是利用光致电效应或光电效应来实现光信号转化为电信号的。
光致电效应是指在某些半导体材料中,当它们受到光照射时会引起外
电场的变化,从而产生电压;而光电效应则是指当光子碰撞到金属表
面时,电子从金属表面反弹出来,形成电流。
二、光传感器的作用
1. 光传感器在工业生产中的应用
在工业生产中,光传感器可以用来检测产品的物体位置、形状、颜色等。
比如,在流水线上生产产品时,可以通过光传感器来检测产品的
颜色是否符合要求,是否有缺陷等。
2. 光传感器在安防领域的应用
光传感器还可以用于安防领域,比如监控摄像头的运动状态。
通过光
传感器可以检测摄像头是否被移动或者受到干扰,从而及时采取相应
的措施防止出现纠纷或不必要的损失。
3. 光传感器在医疗器械中的应用
光传感器也被广泛应用于医疗器械中,比如血糖仪、心电图仪等设备。
这是因为光传感器可以测量血液中的血糖、血氧等指标,也可以检测
心电图等体征,从而提高医疗设备的准确性和效率。
总之,光传感器在现今社会的各个领域都被广泛应用,既能提高生产
效率,也能带来更高的安全性,因此光传感器将在未来的发展中扮演
更重要的角色。
光传感器的工作原理与应用
光传感器的工作原理与应用光传感器作为一种重要的光电探测器件,广泛应用于各个领域。
它利用光的物理性质与电信号的转换,实现对光信号的检测和测量。
本文将从光传感器的工作原理、结构特点以及应用领域三个方面来探讨光传感器的潜力和前景。
一、光传感器的工作原理光传感器的工作原理基于光电效应,即光能被转化为电能。
当光入射到光传感器表面时,光子与材料中的电子相互作用,使得电子获得能量并被激发。
这些被激发的电子从价带跃迁到导带,产生电流。
光强越强,光子入射的数量越多,导致电流越大。
根据这一原理,光传感器能够将光信号转化为电信号,实现对光信号的检测和测量。
不同类型的光传感器根据其内部结构和材料特性的差异,工作原理也有所不同。
常见的光传感器包括光电二极管(LED)、光敏电阻、光敏电容等。
其中,光电二极管是最为常见和广泛应用的一种。
它采用半导体材料,利用光电效应产生的电子-空穴对来传导电流。
光通过PN结时,通过能带的电荷转移,产生光电效应,使得PN结失去屏蔽,电子-空穴对相互融合,形成电流。
二、光传感器的结构特点光传感器的结构特点主要取决于其类型和应用场合。
以光电二极管为例,它通常由PN结、金属引线、玻璃窗口等部分组成。
PN结是光电二极管的关键部分,其结构一般为P型半导体和N型半导体直接相连形成的。
PN结两端引出金属引线,用来连接电路,从而读取光电二极管的电流信号。
而玻璃窗口则起到保护PN结的作用,同时也能让光线透过,使光能够正常入射到光电二极管内。
光传感器通常具有小体积、快速响应、高灵敏度等特点。
由于其体积小巧,使得它可以被广泛应用于各种小型电子设备中,例如手机、摄像头、智能家居等。
而快速响应和高灵敏度意味着光传感器能够对光信号做出迅速而准确的响应,适用于高速、高精度的光学测量和控制系统。
三、光传感器的应用领域光传感器具有广泛的应用领域,从工业控制到科学研究,从医疗设备到智能穿戴,无处不在。
以下将介绍一些常见的应用领域。
光感应传感器的原理和应用
光感应传感器的原理和应用1. 介绍光感应传感器是一种能够感知光照强度并将其转化为电信号的器件。
它通过感光元件接收光信号,并经过转换电路将光信号转化为电信号输出。
光感应传感器广泛应用于自动控制系统、光敏设备和照明领域等。
2. 原理2.1 光感应元件光感应传感器的核心部件是光感应元件。
常见的光感应元件包括光敏二极管(Photodiode)、光敏三极管(Phototransistor)和光敏电阻(Photoresistor)等。
这些元件在光线照射下会产生电荷,其产生的电流或电阻与光线强度成正比。
2.2 转换电路光感应元件产生的电信号需要经过转换电路进行放大和处理。
转换电路通常包括运放、滤波电路和辅助电路等。
运放负责放大光感应元件输出的微弱电信号,滤波电路用于去除噪声信号,辅助电路用于调节灵敏度和输出的电平。
2.3 输出信号光感应传感器的输出信号形式多样,常见的有模拟信号和数字信号两种。
模拟信号根据光线强度的变化而连续变化,可以提供更精确的光照强度信息。
数字信号则将光照强度划分为几个离散的状态,更适合于数字系统的处理和判断。
3. 应用3.1 自动控制系统光感应传感器常用于自动控制系统中,用于检测光线强度并控制设备的开启或关闭。
例如,在智能家居系统中,可以利用光感应传感器检测光线强度,自动控制窗帘、照明设备和空调等的开关。
3.2 光敏设备光感应传感器也广泛应用于光敏设备中,如光电传感器、光电开关和光电编码器等。
在工业自动化领域,光电传感器可检测物体的位置、形状和颜色等信息,实现自动化生产线的控制和监测。
3.3 照明领域在照明领域,光感应传感器可用于智能照明系统中。
系统可以根据光感应传感器感测到的光线强度,自动调节照明设备的亮度和色温,以达到节能和舒适的效果。
3.4 电子设备光感应传感器也常用于电子设备中,如自动调节屏幕亮度的手机、自动感应周围光线亮暗调节键盘背光等。
这些应用使得电子设备更便于使用,并节省电能。
光纤传感器的原理和应用
光纤传感器的原理和应用光纤传感器是一种利用光纤作为传感器的基础元件,通过光的波导和传输特性来感知和测量环境参数的器件。
它具有高灵敏度、宽测量范围、抗干扰能力强等特点,在工业、医疗、环境监测等领域有广泛的应用。
本文将详细介绍光纤传感器的工作原理以及其在不同应用领域中的具体应用。
一、光纤传感器的工作原理光纤传感器的工作原理基于光的传输和波导特性。
它利用光纤的高折射率和内部的光波导效应,将入射的光信号沿着光纤进行传输,并通过测量光信号的改变来获得环境参数的相关信息。
1. 光纤传感器的结构光纤传感器由光纤、光源、检测器和信号处理器组成。
光源产生光信号,通过光纤传输到检测器上,检测器接收到光信号并转换为电信号,再经过信号处理器进行放大、滤波和数字化处理。
2. 光纤的传输特性光纤传感器利用光纤的传输特性进行环境参数测量。
一般来说,光纤的折射率会随着环境参数的变化而改变,例如温度、压力、应变等。
通过测量光信号在光纤中的传播时间、相位差、幅度变化等参数,可以确定环境参数的数值。
3. 光纤传感器的工作原理光纤传感器根据不同的测量原理可以分为多种类型,例如光纤布拉格光栅传感器、光纤衍射光栅传感器、光纤受限传感器等。
这些传感器利用光纤的特殊结构和波导特性,通过测量光信号的衰减、干涉、散射等变化来获得环境参数的相关信息。
二、光纤传感器的应用光纤传感器具有高灵敏度、快速响应、抗干扰能力强等优势,在多个领域中得到了广泛的应用。
1. 工业应用光纤传感器在工业领域中被广泛应用于压力、温度、湿度等参数的测量。
例如,光纤布拉格光栅传感器可以用于监测桥梁、管道等结构的应变变化,以及测量机械设备中的应力分布情况。
光纤传感器还可以用于燃气、液体等介质的检测和监测。
2. 医疗应用光纤传感器在医疗领域中的应用较多,例如用于血氧饱和度监测、生物体内脉搏测量、呼吸检测等。
由于光纤传感器具有非接触式测量的特点,可以大大提高患者的舒适度和安全性。
3. 环境监测光纤传感器在环境监测中起到重要的作用。
光感传感器的工作原理及应用
光感传感器的工作原理及应用1. 工作原理光感传感器是一种能够感知周围光线强度的电子器件。
它利用光电效应或光敏材料的光电导特性,将光信号转化为电信号进行检测和测量。
光感传感器的工作原理如下:•光电效应原理:光电效应是指当光线照射到金属或半导体材料表面时,材料中的光子会激发材料中的电子,使其脱离原子,形成自由电子。
这些自由电子的运动产生电流,通过测量电流的大小可以确定光线的强度。
•光敏材料原理:光敏材料是一种通过光照射而改变电阻、电容、电流或电压的材料。
光感传感器利用光敏材料的光敏特性来感知周围光线的强度。
当光线照射到光敏材料上时,光相应的激发了材料中的电荷,导致电阻、电容等特性发生变化,通过测量这些变化可以确定光线的强度。
2. 应用领域光感传感器在日常生活和工业领域中有着广泛的应用。
以下是光感传感器的几个常见应用领域:•自动照明系统:光感传感器可以用于自动照明系统中,通过感知周围环境的光线强度来自动调节室内或室外的照明亮度。
在白天光线充足时可以降低照明亮度,节约能源;在天黑时可以增加照明亮度,提供足够的照明效果。
•智能家居系统:光感传感器可以用于智能家居系统中,通过感知室内光线强度来控制窗帘的开关,实现自动调节室内光线亮度。
当光线强度过弱时,窗帘自动打开,增加室内光线;当光线强度过强时,窗帘自动关闭,降低室内光线强度。
•光线测量和监控:光感传感器可以用于光线测量和监控领域,通过感知光线强度来进行光线的测量和分析。
例如,光感传感器可以用于太阳能电池板系统中,实时监测太阳光的强度和变化趋势,进行系统的优化和调节。
•自动车灯系统:光感传感器可以用于汽车行业中的自动车灯系统,通过感知周围环境的光线强度来自动控制车灯的开关。
在夜间或阴天光线不足时,自动打开车灯以增加安全性;在白天光线充足时,自动关闭车灯以节约能源。
•机器人导航:光感传感器可以用于机器人导航中,通过感知环境中的光线强度和方向来判断机器人的位置和朝向。
光传感器的原理
光传感器的原理光传感器是一种能够感知和测量光线强度的装置,常见于各类电子设备中,如相机、手机、汽车等。
它通过使用特定的材料和电子元件,将光信号转化为电信号,并从中提取相关的信息。
本文将介绍光传感器的原理及其应用。
一、光传感器的工作原理光传感器的工作原理基于光电效应,即光线与特定材料相互作用时所产生的电荷效应。
常用的光电效应有光致电离效应和光电导效应。
光致电离效应是指光线照射到特定材料上时,材料中的电子被激发并跃迁到导带,形成电流。
这种效应常用于光电二极管和光电倍增管等器件中。
当光线照射到光电二极管上时,光子能量被转化为电子能量,从而产生电流信号。
而相比之下,光电倍增管则可以放大电流,以便更加精确地测量光的强度。
光电导效应是指光线照射到半导体材料上时,材料中带正电荷的空穴和带负电荷的电子被激发并流动,形成电流。
该效应被广泛应用于光敏电阻和光敏三极管等器件中。
光敏电阻的电阻值随光线强度的改变而变化,从而反映光线的变化。
光敏三极管则可以放大电流,从而实现更加精确的测量。
二、光传感器的应用1. 相机和摄像机:光传感器是相机和摄像机中最重要的元件之一。
它们可以将光线转化为电信号,并借助其他电路和处理器将其转化为图像或视频信号。
光传感器的分辨率和灵敏度直接影响着图像和视频的质量。
2. 手机和平板电脑:随着移动通信技术的快速发展,光传感器被广泛应用于手机和平板电脑中。
通过使用光传感器,这些设备能够自动调整屏幕亮度,以适应不同环境下的光照强度。
此外,光传感器还能用于估计周围环境的亮度,以便手机和平板电脑能够自动调整相机的曝光和闪光灯的亮度。
3. 汽车:光传感器在汽车行业也扮演着重要的角色。
它们常常用于汽车的自动灯光控制系统中,通过感知环境的亮度和光线情况,自动控制车灯的开关和亮度。
此外,光传感器还可以用于车内的光线感应系统和自动雨刷系统等。
4. 工业自动化:在工业自动化领域,光传感器也发挥着重要的作用。
通过使用不同类型和工作原理的光传感器,工业设备可以感知到光线的存在、强度和位置等信息,进而实现自动检测、测量和控制。
传感器原理与应用—光电式
传感器原理与应用—光电式光电式传感器是一种将光电效应应用于测量或检测中的传感器。
光电效应是指光的能量转化为电的能力,可以利用光电效应测量光的强度、颜色、距离等参数。
光电式传感器的应用广泛,包括工业自动化、机器人、光学测量等领域。
光电式传感器的工作原理主要分为光电二极管式和光电三极管式两种。
光电二极管式传感器是利用光电二极管在光照下产生电流的特性来进行测量的。
当光电二极管暴露在光线下时,光子会激发半导体材料中的电子,并使电子从价带跃迁到导带,形成电流。
根据光的强度和频率,可以测量出不同的光照强度。
光电三极管式传感器是在光电二极管的基础上发展而来的。
光电三极管结构中,除了光电二极管的结构,还添加了一个发射极。
当光照射到光电三极管的发射极时,会产生电流,这个电流的大小和光照强度成正比。
光电三极管式传感器可以检测到非常弱的光信号,并具有较高的灵敏度和动态范围。
光电式传感器的应用非常广泛。
在工业自动化领域,光电式传感器可以用于检测物体的位置、颜色和形状等参数,用于控制和监测生产流程。
例如,在流水线上,光电式传感器可以检测到物体的有无,从而控制机械手臂的动作。
在机器人领域,光电式传感器可以用于机器人的导航和避障,检测环境中的障碍物并进行规避。
在光学测量领域,光电式传感器可以用于测量光的强度、颜色和形状等参数,用于实现精确的光学测量。
光电式传感器具有许多优点。
首先,它们具有高灵敏度和高可靠性,可以检测到非常微弱的光信号,并具有较长的使用寿命。
其次,光电式传感器具有快速响应的特性,可以在很短的时间内检测到光信号的变化。
此外,光电式传感器结构简单,易于安装和维护,成本相对较低。
总结来说,光电式传感器以光电效应为基础,利用光的能量转化为电的能力进行测量和检测。
在工业自动化、机器人和光学测量等领域有着广泛的应用。
光电式传感器具有高灵敏度、高可靠性、快速响应的特点,具有较长的使用寿命,安装和维护方便,成本较低。
传感器原理及其应用光纤传感器课件
第9章 光纤传感器
2.非功能型(传光型)光纤传感器
这类光纤传感器中光纤仅起导光
作用,只“传”不“感”,对外
界信息的“感觉”功能依靠其他
物理性质的功能元件完成,光纤
在系统中是不连续的。此类光纤
传感器无需特殊光纤及其他特殊
技术,比较容易实现,成本低; 非功能型光纤传感器使用的光
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
光电转换器件采用光电二极管
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
9.2 光纤传感器的分类及其工作原理
光纤传感器与电类传感器的对比
电
被
电源
类
测
电类传感器
电缆
传
参
电量检测
感
量
器
光源
光
被
纤
可以证明,该入射角为
sin0
1 n0
n12 n22
光 纤 的 “ 数 值 孔 径 ” NA ,
NAsin0n10 n12n22
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
9.1.3 光纤的种类 1.按材料分类
1) 高纯度石英(SiO2)玻璃纤维
这种材料的光损耗比较小,在波长时,最低损耗约为 0.47 dB/km 。 锗 硅 光 纤 , 包 层 用 硼 硅 材 料 , 其 损 耗 约 为 0.5 dB/km。
光纤传感器的特点:
①电绝缘性能好。 ②抗电磁干扰能力强。 ③非侵入性。 ④高灵敏度。 ⑤容易实现对被测信号的远距离监控。 光纤传感器可测量位移、速度、加速度、液位、应变、压力、 流量、振动、温度、电流、电压、磁场等物理量
光纤传感器的原理和应用
光纤传感器的原理和应用光纤传感器是一种基于光纤技术的传感器,通过光纤的传输和延时特性来实现对物理量的测量和检测。
它具有高精度、快速响应、抗干扰能力强等优点,被广泛应用于工业、医疗、环境监测等领域。
本文将介绍光纤传感器的基本原理和常见的应用场景。
一、光纤传感器的基本原理光纤传感器是利用光纤波导结构的特性来实现物理量的测量和检测。
光纤波导是一种能够将光信号传送的导光器件,其核心部分是由折射率高于外部包层的光纤芯构成。
基于光的干涉、散射、吸收等特性,光纤传感器能够实现对温度、压力、位移、浓度等多种物理量的测量。
1. 光纤干涉型传感器光纤干涉型传感器是利用光的干涉效应来测量物理量的一种传感器。
光信号在光纤中传播时,受到温度、应变等物理量的影响,使得光的相位发生改变。
通过测量光的相位差,可以确定物理量的大小。
常见的光纤干涉型传感器有光纤布拉格光栅传感器、光纤干涉仪传感器等。
2. 光纤散射型传感器光纤散射型传感器是利用光在光纤中的散射效应来测量物理量的一种传感器。
光信号在光纤中传输时,会与光纤中的杂质或结构缺陷散射,通过测量散射光的特性来推断物理量的变化。
常见的光纤散射型传感器有光时域反射计传感器、拉曼散射光纤传感器等。
3. 光纤吸收型传感器光纤吸收型传感器是利用光在光纤中的吸收效应来测量物理量的一种传感器。
光信号在光纤中传输时,会被光纤材料吸收,通过测量吸收光的强度来判断物理量的变化。
常见的光纤吸收型传感器有红外光纤传感器、光纤化学传感器等。
二、光纤传感器的应用领域光纤传感器具有灵敏度高、抗干扰能力强等优点,被广泛应用于各个领域。
以下是几个典型的应用场景。
1. 工业自动化光纤传感器在工业自动化领域中,常用于测量温度、压力、液位等物理量,用于控制和监测生产过程。
例如,光纤温度传感器可以实时监测设备的温度变化,及时进行报警和控制;光纤压力传感器可以监测管道中的压力变化,用于流体控制和安全保护。
2. 医疗领域光纤传感器在医疗领域中,常用于生理参数的监测和诊断。
光敏传感器的应用与原理
光敏传感器的应用与原理引言光敏传感器是一种用于检测光线强度的设备,广泛应用于各个领域中。
本文将深入探讨光敏传感器的应用和工作原理。
光敏传感器的应用光敏传感器在许多领域中起到了关键作用,下面将列举几个常见的应用案例:1.环境光感应:光敏传感器可以用于检测环境中的光线强度,如用于智能手机的自动调节屏幕亮度功能。
2.红外线检测:光敏传感器可以接收红外线信号,用于红外线遥控器、安防系统等。
3.光电传感器:光敏传感器可以用于检测工业自动化过程中的物体位置、数量等,如流水线上的产品计数。
4.光耦合器:光敏传感器可以作为光耦合器的重要组成部分,用于电气与光学之间的信号传递。
光敏传感器的原理光敏传感器是通过光电效应工作的,其基本原理如下:•光电效应:当光线照射到光敏传感器的光敏元件上时,光敏元件会产生电荷。
光敏传感器通常使用半导体或光电池作为光敏元件,通过光电效应将光能转化为电能。
•光电元件:光电元件是光敏传感器的核心部件,常见的光电元件有光敏二极管(Photodiode)、光敏三极管(Phototransistor)等。
不同类型的光电元件具有不同的特性和灵敏度。
•信号处理:光敏传感器会将电荷转化为电压信号,然后通过信号处理电路对信号进行放大、滤波、转换等处理,以得到可用的光线强度信息。
光敏传感器的优势光敏传感器相比其他传感器具有许多优势,下面将列出几个主要的优点:•高灵敏度:光敏传感器能够高效地检测光线强度,对于微弱的光线也能有很好的响应。
•快速响应:光敏传感器具有较快的响应时间,可以在很短的时间内捕捉到光线的变化。
•宽波长范围:光敏传感器可以对多种波长的光线进行检测,包括可见光、红外线等。
•低功耗:光敏传感器的功耗较低,适用于移动设备和电池供电的系统。
光敏传感器的选择与使用在选择并使用光敏传感器时,需要考虑以下几个因素:1.检测范围和灵敏度:根据具体应用场景确定所需的光敏传感器的检测范围和灵敏度。
2.波长响应:根据实际需要选择适合的光敏传感器,例如对于红外线检测,需要选择具有红外线波长响应的光敏传感器。
光传感器的工作原理及应用
光传感器的工作原理及应用1. 光传感器简介光传感器是一种能够检测光线强度并将其转化为电信号的设备。
它通常由一系列光敏元件组成,可以通过测量光的强度、颜色、方向等参数来实现对环境的监测和控制。
在许多领域,光传感器都起着不可或缺的作用,包括光电子学、通信、自动化控制、医疗设备等。
2. 光传感器的工作原理光传感器的工作原理基于光敏元件的光电效应。
当光线照射在光敏元件上时,光子的能量将被光敏元件吸收,并导致电子在其晶体结构中跃迁。
这些电子的跃迁将产生电流或电势差,从而表示光线的强度或其他参数。
常见的光传感器工作原理包括:2.1 光敏电阻光敏电阻是一种基于光敏材料电导率变化的光传感器。
当光线照射在光敏电阻上时,光敏材料中的电子被激发,电阻值将随之变化。
通过测量电阻的变化,可以得知光线的强度。
2.2 光电二极管光电二极管是一种能够将光能转化为电能的光传感器。
当光线照射在光电二极管上时,光子会激发半导体中的电子,产生电流。
根据光频率的不同,光电二极管可以测量不同范围内的光强度。
2.3 光电导电池光电导电池的工作原理类似于光电二极管,但是光电导电池可以产生更高的电流。
它是由光电二极管和运放电路组成,可以将微弱的光信号放大并转化为电压输出。
2.4 光电二极管阵列光电二极管阵列是由多个光电二极管组成的光传感器。
它可以检测光的方向、位置和强度。
通过在不同位置上的光电二极管上测量到的电流,可以确定光的角度和位置。
3. 光传感器的应用领域光传感器在许多领域都有广泛的应用。
以下是一些常见的应用领域:3.1 光电子学在光电子学领域,光传感器常用于光通信、光存储和光显示等设备中。
例如,在光通信中,光传感器用于接收光信号并转换为电信号,以实现光信号的传输和接收。
3.2 自动化控制光传感器在自动化控制领域发挥着重要作用。
例如,光传感器可以用于检测物体的位置、颜色和形状,实现自动化生产线的控制和监测。
3.3 环境监测光传感器广泛应用于环境监测领域。
光感传感器的原理及应用
光感传感器的原理及应用1. 光感传感器的概述光感传感器是一种能够检测环境光线强度的电子设备。
通过光感传感器可以实时感知环境的光强情况,并根据不同的应用需求,输出相应的电信号或数字信号。
光感传感器在各个领域都有广泛的应用,如环境监测、光线控制、安防设备等。
2. 光感传感器的原理光感传感器的原理基于光电效应。
当光线照射到光感传感器上时,光线会激发光敏元件中的电子,使其从低能级跃迁到高能级,形成光电流。
光感传感器利用电流的变化来检测环境光线的强度。
3. 光感传感器的类型根据光感传感器的工作原理和输出信号类型,可以将光感传感器分为以下几种类型:3.1 光敏电阻光敏电阻是一种利用光敏材料的电阻随光照强度的变化而变化的传感器。
当光照强度增加时,光敏电阻的电阻值减小,反之则增大。
光敏电阻具有简单、成本低廉的特点,常用于光控灯、光强监测等应用。
3.2 光电二极管光电二极管(Photodiode)是一种专门用于检测光线强度的二极管。
光电二极管可以将光信号转换成电信号,其输出电流与光照强度成正比。
光电二极管常用于光电测量、光通信等应用。
3.3 光敏三极管光敏三极管(Phototransistor)是一种光感元件,其结构类似于普通的三极管。
光敏三极管在光线的照射下,可以产生电流增益效应,使其输出信号的幅度变大。
光敏三极管广泛应用于自动光控开关、光通信、遥控器等领域。
3.4 光敏电容光敏电容是一种利用光敏材料电容值随光照强度变化的传感器。
光敏电容的电容值随着光照强度的增加或减少而改变。
光敏电容常用于光敏电感应器、光控开关等应用。
4. 光感传感器的应用光感传感器在各个领域都有广泛的应用,以下列举几个典型的应用场景:4.1 环境光感应光感传感器可以用于实时感知环境的光线强度,并根据光线的变化调节背光亮度,以提供更好的可视性。
这在手机、平板电脑等电子设备中十分常见。
4.2 光控灯光感传感器可以用于光控灯的控制,根据环境光线的强弱自动调节灯光亮度。
光感式传感器原理及其应用
光感式传感器原理及其应用光感式传感器通常由光源、感光元件和信号处理电路组成。
光源发出特定波长的光线,照射在目标物体上,然后被反射或透过后到达感光元件。
感光元件可以是光敏电阻、光敏二极管、光敏三极管等。
当感光元件受到光线的照射时,其电阻或电流发生变化,进而产生电信号。
信号处理电路会对这个电信号进行放大和滤波,最终输出一个与光强度变化相关的电信号。
1.自动照明系统:光感式传感器可以用于自动照明系统,通过检测光线强度的变化来自动调节室内照明的亮度。
当环境光线较暗时,传感器能够自动打开灯光,反之则关闭灯光,从而实现能源的节约和舒适的照明环境。
2.自动光电开关:光感式传感器可以作为自动光电开关使用。
当有物体接近或离开传感器时,物体对光线的遮挡程度会发生变化,从而引发传感器输出信号的变化。
这种特性可以应用于自动门、智能家居等领域。
3.光电测距仪:光感式传感器可以用来测量目标物体与传感器之间的距离。
通过测量光线传播的时间差或光线的强度变化等方式,可以计算出目标物体与传感器的距离。
这在工业自动化、无人驾驶等领域有着广泛的应用。
4.光电编码器:光感式传感器可以用作光电编码器,用于测量旋转运动物体的转速和位置。
通过测量光线传感器输出信号的脉冲数,可以计算出物体的转速和转过的角度。
这在自动化生产线和机械控制系统中有着重要的应用。
总结:光感式传感器是一种能够将光信号转换为电信号的传感器。
其工作原理基于光电效应,利用光敏元件将光信号转换为电信号。
光感式传感器的应用十分广泛,包括自动照明系统、自动光电开关、光电测距仪和光电编码器等。
随着科技的不断进步,光感式传感器将会在更多领域发挥其重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机电工程系传感器与检测技术学习报告专业班级:生产过程自动化14-2姓名:张鹏宇学号:2014060319项目名称:光感式传感器的应用与发展指导教师:刘辉评定成绩:2015年12月15日摘要:光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测光量变化或直接引起光量变化的非电量,也可用于检测能转换成光量变化的其他非电量。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电式传感器具有响应快、精度高、能实现非接触测量等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制领域应用非常广泛。
关键词:光电式传感器;检测光量变化;电信号;检测与控制。
1 前言传感器是将感受的物理量、化学量等信息,按一定规律转换成便于测量和传输的信号的装置。
电信号易于传输和处理,所以大多数的传感器是将物理量等信息转换成电信号输出的。
例如传声器就是一种传感器,它感受声音的强弱,并转换成相应的电信号。
又如电感式位移传感器能感受位移量的变化,并把它转换成相应的电信号。
光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。
因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。
2 光电式传感器工作原理2.1 光电效应光电效应是光照射到某些物质上,使该物质的导电特性发生变化的一种物理现象,可分为外光电效应、内光电效应和光生伏特效应(光生伏特效应包含于内光电效应,在此为特意列出)三类。
外光电效应是指在光线作用下,物体内的电子逸出物体表面向外发射的现象。
光子是以量子化“粒子”的形式对可见光波段内电磁波的描述。
光子具有能量hν,h为普朗克常数,ν为光频。
光子通量则相应于光强。
外光电效应由爱因斯坦光电效应方程描述:EK=hν-W当光子能量等于或大于逸出功时才能产生外光电效应。
因此每一种物体都有一个对应于光电效应的光频阈值,称为红限频率。
对于红限频率以上的入射光,外生光电流与光强成正比。
内光电效应是指在光线作用下,物体的导电性能发生变化或产生光生电动势的效应,分为光电导效应和光生伏特效应两类。
光电导效应是指,半导体材料在光照下禁带中的电子受到能量不低于禁带宽度的光子的激发而跃迁到导带,从而增加电导率的现象。
能量对应于禁带宽度的光子的波长称光电导效应的临界波长。
光生伏特效应指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。
光生伏特效应首先是由光子转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。
可分为势垒效应(结光电效应)和侧向光电效应。
势垒效应的机理是在金属和半导体的接触区(或在PN结)中,电子受光子的激发脱离势垒(或禁带)的束缚而产生电子空穴对,在阻挡层内电场的作用下电子移向N区外侧,空穴移向P区外侧,形成光生电动势。
侧向光电效应是当光电器件敏感面受光照不均匀时,受光激发而产生的电子空穴对的浓度也不均匀,电子向未被照射部分扩散,引起光照部分带正电、未被光照部分带负电的一种现象。
2.2 光电器件基于光电效应原理工作的光电转换元件称为光电器件或光敏元件。
光电效应分为外光电效应、内光电效应和光生伏特效应,相对应的光电器件也有光电发射型、光导型和光伏型三种。
光电发射型光电器件有光电管和光电倍增管;光导型光电器件有光敏电阻、光敏二极管和光敏三极管;光伏型光电器件有光电池。
光电器件的基本特性有光电特性和光照特性、光谱特性、伏安特性、频率特性以及温度特性。
光电式传感器是以光为媒介、以光电效应为基础的传感器,主要由光源、光学通路、光电器件及测量电路等组成。
光电式传感器的基本类型有透射式、反射式、辐射式、遮挡式和开关式。
2.3.1 外光电效应器件工作原理光电管是利用外光电效应制成的光电元件,其外形和结构如图1所示,半圆筒形金属片制成的阴极K 和位于阴极轴心的金属丝制成的阳极A 封装在抽成真空的玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h 。
当电子获得的能量大于阴极材料的逸出功A 时,它就可以克服金属表面束缚而逸出,形成电子发射,这种电子称为光电子。
根据能量守恒定律有A -h m 212νν= 式中,m 为电子质量;v 为电子逸出的初速度。
由上式可知,要使光电子逸出阴极表面的必要条件是h>A 。
由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为“红限”。
相应的波长λK 为 A hc K =λ 式中,c 为光速;A 为逸出功。
光电管正常工作时,阳极电位高于阴极,如图2所示。
在入射光频率大于“红限”的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流。
此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大。
在图2所示的电路中,电流I Ф和电阻只RL 上的电压降U0就和光强成函数关系,从而实现光电转换。
图1 光电管结构示意图图2 光电管测量电路图由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。
图3是光电倍增管结构示意图。
图3 光电倍增管结构示意图光阴极的量子效率是一个重要的参数。
波长为λ的光辐射入射到光阴极时,一个入射光子产生的光电子数,定义为光阴极的量子效率。
光阴极有很多种,常用的有双碱,S11及S20三种。
光阴极通常由脱出功较小的锑铯或钠钾锑铯的薄膜组成,光阴极接负高压,各倍增极的加速电压由直流高压电源经分压电阻分压供给,灵敏检流计或负载电阻接在阳极A处,当有光子入射到光阴极K上,只要光子的能量大于光阴极材料的脱出功,就会有电子从阴极的表面逸出而成为光电子。
在K和D1之间的电场作用下,光电子被加速后轰击第一倍增极D1,从而使D1产生二次电子发射.每一个电子的轰击约可产生3~5个二次电子,这样就实现了电子数目的放大。
D1产生的二次电子被D2和D1之间的电场加速后轰击D2,……。
这样的过程一直持续到最后一级倍增极Dn,每经过一级倍增极,电子数目便被放大一次,倍增极的数目有8~13个,最后一级倍增极Dn发射的二次电子被阳极A收集。
若倍增电极有n级,各级的倍增率为б,则光电倍增管的倍增率可以认为是бn,因此,光电倍增管有极高的灵敏度。
在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系。
光电倍增管的这个特点,使它多用于微光测量。
若将灵敏检流计串接在阳极回路中,则可直接测量阳极输出电流。
若在阳极串接电阻RL作为负载,则可测量RL两端的电压,此电压正比于阳极电流。
图4 光电倍增管基本电路图4所示为光电倍增管的基本电路。
各倍增极的电压是用分压电阻R1、R2、……Rn获得的,阳极电流流经负载电阻RL得到输出电压U0。
当用于测量稳定的辐射通量时,图中虚线连接的电容C1、C2、…、Cn和输出隔离电容C0都可以省去。
这时电路往往将电源正端接地,并且输出可以直接与放大器输入端连接,从而使它能够响应变化缓慢的入射光通量。
但当入射光通量为脉冲通量时,则应将电源的负端接地,因为光电倍增管的阴极接地比阳极接地有更低的噪声,此时输出端应接人隔离电容,同时各倍增极的并联电容亦应接人,以稳定脉冲工作时的各级工作电压,稳定增益并防止饱和。
2.3.2 内光电效应器件工作原理光敏电阻是一种光电效应半导体器件,应用于光存在与否的感应以及光强度的测量等领域。
它的体电阻系数随照明强度的增强而减小,容许更多的光电流流过。
这种阻性特征使得它具有很好的品质:通过调节供应电源就可以从探测器上获得信号流,且有着很宽的范围。
光敏电阻是薄膜元件,它是由在陶瓷底衬上覆一层光电半导体材料。
金属接触点盖在光电半导体面下部。
这种光电半导体材料薄膜元件有很高的电阻。
所以在两个接触点之间,做的狭小、交叉,使得在适度的光线时产生较低的阻值。
光敏二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图5a是其结构示意图。
光敏二极管在电路中通常处于反向偏置状态,如图5b所示。
图5a 光敏二极管结构示意图图5b 光敏二极管基本电路图6 光敏三极管结构示意图及其基本电路光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度。
其结构如图5a所示。
当光敏三极管按图5b所示的电路连接时,它的集电结反向偏置,发射结正向偏置。
无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流IC。
这个过程与普通三极管的电流放大作用相似,它使集电极电流IC是原始光电流的(l+β)倍。
这样集电极电流IC将随入射光照度的改变而更加明显地变化。
3 光电式传感器应用举例3.1 透射式光电传感器应用于烟尘浓度检测透射式光电传感器是将发光管和光敏三极管等,以相对的方向装在中间带槽的支架上。
当槽内无物体时,发光管发出的光直接照在光敏三极管的窗口上,从而产生一定大的电流输出,当有物体经过槽内时则挡住光线,光敏管无输出,以此可识别物体的有无。
适用于光电控制、光电计量等电路中,可检测物体的有无、运动方向、转速等方面。
防止工业烟尘污染是环保的重要任务之一。
为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。
图7 烟尘浓度检测系统组成框图3.2 反射式光电传感器的应用红外漫反射式光电传感器主要用于机器人走迷宫或避障碍物、材料的定位剪切控制、流水线上产品的计数、液面的高低检测、光电测速、程控小车循黑线和避悬崖等。
4 结论光电式传感器除了能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而是一种应用极广泛的重要敏感器件。
光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。
因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。
而且近年来,随着光电科学、信息科学和材料科学发展成果的推动,光电式传感器技术得到了进一步的飞速发展。
随着科学技术的不断进步,人们对现代科技认识的不断深入,光电式传感器必将迎来属于自己的时代。
.。