高一数学函数及其表示1PPT课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

高一数学ppt课件函数

高一数学ppt课件函数
的。
有界性
函数在其定义域内有最 大值和最小值。
周期性
函数在其定义域内每隔 一定周期重复出现。
对称性
函数图像关于某条直线 对称。
02
函数的分类
一次函数
01
02
03
04
一次函数是函数的一种,其图 像为一条直线。
一次函数的一般形式为 y = ax + b,其中 a 和 b 是常数
,且 a ≠ 0。
一次函数的图像会根据 a 和 b 的值变化,当 a > 0 时,函 数为增函数;当 a < 0 时,
在物理学中,许多基本定律和定 理都是通过函数来表达的,如牛
顿第二定律和万有引力定律。
化学反应的动力学
在化学反应动力学中,反应速率 与反应物浓度的关系通常可以用 函数来表示,如指数函数和双曲
线函数。
生物学的生长模型
在生物学中,许多生物体的生长 和繁殖规律可以用函数来描述, 如指数增长和逻辑斯蒂增长模型
函数为减函数。
一次函数在数学、物理和工程 等领域有广泛应用。
二次函数
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,且 a ≠ 0。
二次函数的图像会根据 a 的值变化, 当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
二次函数的图像是一个抛物线,其顶 点坐标可以通过公式 (-b/2a, cb^2/4a) 计算得出。
三角函数
三角函数包括正弦函数、余弦 函数和正切函数等。
三角函数的图像是周期性的波 形曲线。
三角函数的性质包括周期性、 奇偶性和振幅等,对于不同的 函数表达式有不同的性质。
三角函数在解决实际问题如振 动、波动和交流电等方面有广 泛应用。

高一函数课件ppt课件ppt课件

高一函数课件ppt课件ppt课件

偶函数
如果对于函数$f(x)$的定 义域内任意$x$,都有$f(x)=f(x)$,则称$f(x)$为偶 函数。
奇偶性的判断
可以通过计算$f(-x)$并与 $f(x)$进行比较,来判断 函数的奇偶性。
函数的单调性
单调递增
单调性的判断
如果对于函数$f(x)$的定义域内的任 意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则称$f(x)$在定义域内单调 递增。
观地了解它们的性质。
02
反函数和对数函数的性质
反函数和对数函数都有其独特的性质,例如反函数的对称性和对数函数
的单调性等。这些性质在解决实际问题中有着广泛的应用。
03
反函数和对数函数的应用
在实际问题中,反函数和对数函数的应用非常广泛,例如在科学计算、
工程技术和金融领域中都有广泛的应用。
06
函数的实际应用
二次函数性质
函数的图像是一个抛物线,开口方 向由a决定(a>0向上,a<0向下 ),对称轴为x=-b/2a。
二次函数的应用
在现实生活中,二次函数的应用也 非常广泛,如物体自由落体运动、 抛射运动等。
一次函数和二次函数的图像和性质
图像绘制
通过描点法或解析法可以绘制出一次函数和二次函数的图像。
性质分析
可以通过计算$f(x_1) - f(x_2)$的值, 并判断其符号,来判断函数的单调性 。
单调递减
如果对于函数$f(x)$的定义域内的任 意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称$f(x)$在定义域内单调 递减。
函数的周期性
周期函数
如果存在一个非零常数$T$,使 得对于函数$f(x)$的定义域内的 任意$x$,都有$f(x+T) = f(x)$ ,则称$f(x)$为周期函数,$T$

高中函数课件ppt课件ppt

高中函数课件ppt课件ppt

函数的减法运算
总结词
理解函数减法运算的概念
详细描述
函数减法运算是指将一个函数的图像相对于另一个函数的 图像进行平移,使得一个函数的图像与另一个函数的图像 在某一点相交,然后根据该点的坐标求出函数值。
总结词
掌握函数减法运算的规则
详细描述
函数减法运算的规则是将一个函数的值减去另一个函数的 值,得到一个新的函数。在进行函数减法运算时,同样需 要注意函数的定义域和值域,确保结果有意义。
求解方程和不等式
通过观察函数图像,可以直观地求解方程和不等式,如求函数的零点 、解不等式等。
数学建模和数据分析
通过函数图像可以建立数学模型和进行数据分析,如回归分析、趋势 预测等。
04 函数的运算
函数的加法运算
总结词
理解函数加法运算的概念
详细描述
函数加法运算是指将两个函数的图像进行平移,使得一 个函数的图像与另一个函数的图像在某一点相交,然后 根据该点的坐标求出函数值。
总结词
了解函数减法运算的应用
详细描述
函数减法运算在解决实际问题时也有广泛应用。例如,在 金融领域,可以将两个股票价格的函数进行减法运算,得 到差价的函数。
函数的乘法运算
总结词
理解函数乘法运算的概念
详细描述
函数乘法运算是将两个函数的值相乘,得到一个新的函数 。函数乘法运算的图像是将其中一个函数的图像绕原点旋 转180度后与另一个函数的图像叠加。
x$等形式。
三角函数的图像是周期性的曲线际生活中也有着广 泛的应用,如角度、长度、高度
的计算等。
03 函数的图像
函数图像的绘制方法
描点法
通过选取函数定义域内的若干个 点,用平滑的曲线或直线将它们

高中函数ppt课件ppt课件ppt课件

高中函数ppt课件ppt课件ppt课件
到新的函数图像。
函数的除法
总结词
函数除法是指将一个函数的值除以另一个函数的值。
详细描述
函数除法是另一种更高级的数学运算,它是指将一个函数的值除以另一个函数的值。对于任意两个函 数f(x)和g(x),它们的商函数h(x)可以表示为h(x)=f(x)/g(x)。在函数图像上,这意味着将一个函数的图 像在相同x值上的点除以另一个函数的图像在相同x值上的点,得到新的函数图像。
函数图像的变换
平移变换
将函数图像在坐标系内上下或左右移 动,但不改变其形状和大小。平移变 换可以通过在函数表达式中加上或减 去一个常数来实现。
翻转变换
将函数图像沿垂直或水平轴进行翻转 。翻转变换可以通过取函数的反函数 来实现。
伸缩变换
将函数图像的长度或宽度进行缩放, 但不改变其形状。伸缩变换可以通过 在函数表达式中乘以或除以一个常数 来实现。
03
函数的运算
函数的加法
总结词
函数加法是指将两个函数的值一一对应相加。
详细描述
函数加法是一种基本的数学运算,它是指将两个函数的值一一对应相加。对于任 意两个函数f(x)和g(x),它们的和函数h(x)可以表示为h(x)=f(x)+g(x)。在函数图 像上,这意味着将两个函数的图像在相同x值上的点相加,得到新的函数图像。
THANKS
感谢观看
04
函数的实际应用
生活中的函数应用
01 金融计算
在投资、贷款、保险等领域,利率、复利、贴现 等计算都涉及到函数的应用。
02 统计学
在市场调查、数据分析等领域,函数被用于描述 和预测数据的变化趋势。
03 交通规划
在城市交通、高速公路、铁路运输等领域,函数 被用于描述和优化路线、时间表等。

函数的概念及表示法ppt课件

函数的概念及表示法ppt课件

(1)对于x的每一个值,y都满足有唯一的值与之对应吗?
不满足
(2)y是x的函数吗?为什么?
不是,因为y的值不是唯一的.
26
26
随堂练习
演练
1. 下面四个关系式:① y = ;② = x ;
③2 x2- y =0;④ y = ( x >0).
其中 y 是 x 的函数的是(
D )
27
随堂练习
报酬按16元/时计算. 设小明的哥哥这个月工作的时间为t
小时,应得报酬为m元,填写下表:
怎样用关于t的代数式表示m? m = 16t
对于这个函数,当t=5时,把它代入函数表达式,得
m = 16t=16×5=80(元).
m = 80是当自变量t=5时的函数值.
代入法
19
19
探究新知
函数与函数值
对于自变量在可取值范围内的一个确定的值a,函
判断一个关系是否是函数关系,根据函数定义,主
要从以下3个方面分析:
(1) 是否在一个变化过程中;
(2) 在该过程中是否有两个变量;
(3) 对于一个变量每取一个确定的值,另一个变量
是否有唯一确定的值与其对应.
13
13
探究新知
知识点
函数的三种表示法
合作探究
m = 16t
这几个函数用等式来表示,
这种表示函数关系的等式,
16
80
160
240
320

t

16t
怎样用关于t的代数式表示m? m = 16t
5
5
探究新知
合作探究
2.跳远运动员按一定的起跳姿势,其跳远的距离s
(米)与助跑的速度v(米/秒)有关. 根据经验,跳

高中函数ppt课件ppt课件

高中函数ppt课件ppt课件

函数与方程的联系
01
函数与方程在解决问题 时经常相互转换。
02
函数是方程的一种表现 形式,方程是函数的一 种表达方式。
03
通过对方程进行解析, 可以找出函数的表达式 ,从而解决问题。
04
函数和方程都涉及到变 量的取值范围和定义域 ,需要对其进行限制和 约束。
函数与不等式的联系
01
02
03
04
函数和不等式在数学中有着密 切的联系。
高中函数ppt课件
目录
• 函数的基本概念 • 函数的分类 • 函数的运算 • 函数的实际应用 • 函数与其他数学知识的联系
01
函数的基本概念
函数的定义
函数是数学上的一个概念,它描述了两个变量之间的关系。具体来说, 对于每一个自变量x,都存在唯一的因变量y与之对应。
函数的定义可以总结为:对于每一个x的值,都存在唯一的y值与之对应 ,使得对于所有的x,都有f(x)=y。
数列也可以用来研究函数的极限和连续性等问题。
感谢您的观看
THANKS
分段函数
总结词
多段图像表示
详细描述
分段函数是由多个一次或二次函数组成的,其图像由多段线段或曲线组成。分段函数的定义域和值域 都是离散的,常用于描述离散事件的变化关系。
03
函数的运算
函数的加法
总结词
函数加法的基本概念
详细描述
函数加法是指将两个函数的值一 一对应地相加,得到一个新的函 数。这个新的函数称为原来两个 函数的和。
在实际应用中,函数的概念被广泛应用于各种领域,如物理、工程、经 济等。
函数的表示方法
函数的表示方法有多种,其中最常见 的是解析法、表格法和图象法。

函数的概念及其表示法ppt课件

函数的概念及其表示法ppt课件

∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.

高中数学必修第一册3.1函数的概念及其表示课件

高中数学必修第一册3.1函数的概念及其表示课件
那么你认为该怎样确定一个工人每周的工资?一个工人的工资w
(单位:元)是他工作天数d的函数吗?
对于任一个给定的天数d,都有唯一确
定的工资w与之对应;
= 350
变量w和d之间是否是函数关系?它们各自的变化范围是什么 ?
试用集合 A,B 表示?
= 350
集合A
集合B
一一对应
1
2
3
4
5
6
350
记作:y=f(x) , x∈A
注意:
(1)x 叫做自变量,x的取值范围构成的集合A叫做函
数的定义域;
(2)与x的值相对应的 y值 叫做函数值;函数值组成的
集合
叫做函数的值域。
C={y|y=f(x), x∈A}
深化概念
高中和初中函数概念的区分和联系

定义的扩大:初中强调变量之间的关系;高中是在映射概念和集合的概念的基础上进
∈ , , , , , , , . ,
∈ . , . , . , . , . , . , . , . , . , .
集合B
集合A
(3)对于集合A中的任意一个元素 x,在集合B
中都有唯一确定的元素 y 与之对应。
不同点
分别通过解析式、图象、表格刻画变量之间的对
应关系





设A、B是非空数集,如果按照某种确定的
对应关系 f,使对于集合A中的任意一个数 x,
在集合B中都有唯一确定的数 f(x) 和它对应,
就称f : A→B 为从集合A到集合B的一个函数,
700
1050
1400
1750
2100
解析法
实例2:

数学人教A版(2019)必修第一册3.1函数的概念及其表示 说课(共24张ppt)

数学人教A版(2019)必修第一册3.1函数的概念及其表示 说课(共24张ppt)
问题2:根据对应关系S=350t,这趟列车加速到350km/h后,运行1h就前进了350km,
你认为这个说法正确吗?
设计意图:这个函数式在半小时后的运行状态不清楚,提醒学生注意t的范围。
问题3:请用集合的语言精确表示S与t的对应关系.
设计意图:从学生熟悉的情境引入,为学生归纳抽象出函数概念及数集A做铺垫,
质特征吗?
六、 教学过程
概念生成
共同特征有:
(1)都包含两个非空数集,用A,B来表示;
(2)都有一个对应关系 f ;
(3)对于数集A中的任意一个数x,按照对应关系,在数集B中都
有唯一确定的数y和它对应.
设计意图:通过小组合作,教师引导方式,让学生通过归纳四个实例
中函数的共同特征,体会数学抽象过程,概括出用集合与对应语言刻
设计意图:有情境1做铺垫,继续引导学生抽象出函数的概念。
问题5: 情境1和情境2中的函数有相同的对应关系,你认为它们是同一个函数吗?
为什么?
设计意图:与情境1做比较,进一步关注定义域、值域问题,为学生理解函
数的概念做引导。培养学生逻辑推理的数学核心素养。
六、 教学过程
情境创设
• 情境3:下图是北京市2016年11月23日的空气质量指数(Air Quality Index,简
五、教学方法
学情分析
通过活动
教学目标
教学重难点
教学方法
教学过程
板书设计
教学反思
创设情境
学生为主体
教师为主导
情境问题式
启发
引导
点拨
启发式
自主探究式
独立思考
自主学习交流合作来自六、 教学过程1
学情分析
2
教学目标

函数的概念及表示法PPT课件

函数的概念及表示法PPT课件

4
5
6
y(元)
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
, f b 2b 1
3
, .
巩固知识 典型例题
动 脑思考 探索新 知
作函数图像的一般方法——描点法
.
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
总结演示
判断下列对应能否表示y是x的函数
(1)能(2)不能(3) 能 (4)不能
应用知识 强化练习
教材练习3.1.1
1.求下列函数的定义域:
(1) f x 2 ;(2) f x x2 6x 5 .
x4
2.已知 f x 3x 2 ,求 f 0 , f 1 , f a .

高一数学人教A版选择性必修第一册3.1.2函数的表示法 课件【共17张PPT】

高一数学人教A版选择性必修第一册3.1.2函数的表示法  课件【共17张PPT】
t =189600-60000-189600(8%+2%+1%+9%) -52800-4560=0.8×189600-117360
=34320
将t的值代入③,得 y=0.03×34320=1029.6
所以, 小王应缴纳的综合所得个税税额为1029.6元。
同学们,函数的表示方法有哪几种?你能谈谈 它们的优缺点吗?
(3)图象法:就是用图象表示两个变量之间的对 应关系. 如3.1.1的问题3.
这三种方法是常用的函数表示法 .
例4 某种笔记本的单价是5元,买x (x∈{1,2, 3,4,5})个笔记本需要 y 元 . 试用函数的三种 表示法表示函数y=f(x).
解:这个函数的定义域是数集{1, 2, 3, 4, 5}. 用解析法可将函数y=f(x)表示为
y
4 3 2
1
-3 -2 -1 0 1 2 3 x
例6 给定函数f(x)=x+1,g(x)=(x+1)2,x∈R,
(1)在同一直角坐标系中画出函数f(x) , g(x)的图象; 解: (1)在同一直角坐标系中画出函数f(x) , g(x)
的图象,如图。
例6 给定函数f(x)=x+1,g(x)=(x+1)2,x∈R, (2)任意x∈R,用M(x)表示 f(x) , g(x) 中的较大者,
解析法:即全面地概括了变量之间的依赖关系,又 简单明了,便于对函数进行理论上的分析和研究 . 但有时函数不能用解析法表示,或很难找到这个函 数的解析式. 列表法:自变量的值与其对应的函数值一目了然, 查找方便.但有很多函数,往往不可能把自变量的 所有值与其对应的函数值都列在表中.
图像法:非常直观,可以清楚地看出函数的变化情 况.但是,在图像中找对应值时往往不够准确,而 且有时函数画不出它的图像,还有很多函数不可能 得到它的完整图像.

高一函数课件ppt课件ppt

高一函数课件ppt课件ppt

函数的乘法
总结词
理解函数乘法的基本概念和性质
函数乘法的性质
函数乘法满足交换律和结合律,即 f(x)*g(x)=g(x)*f(x)和 (f(x)*g(x))*h(x)=f(x)*(g(x)*h(x))。
ABCD
函数的乘法定义
函数乘法是指将两个函数的对应点一一对应,并 取乘积的函数值。
函数乘法的几何意义
函数乘法的几何意义是将两个函数的图像在坐标 系中一一对应,并取乘积的纵坐标。
函数的除法
总结词
理解函数除法的基本概念和性 质
函数除法的性质
函数除法满足交换律和结合律, 即f(x)/g(x)=g(x)/f(x)和 ((f(x)/g(x)))/h(x)=f(x)/(g(x)*h(x) )。
函数的除法定义
函数图像的解析
极值分析:
对于连续函数,分析其导数的正负变化,确定极值点。
函数图像的解析
单调性分析:
通过分析函数的导数正负变化,确定函数的单调区间。
函数图像的解析
01
实际应用:
02
通过分析函数图像,可以解决与 现实生活相关的问题,如最优化 问题、经济问题等。
05
函数的实际应用
生活中的函数应用
高一函数课件ppt
目 录
• 函数的基本概念 • 函数的分类 • 函数的运算 • 函数的图像 • 函数的实际应用
01
函数的基本概念
函数的定义
总结词
描述函数的基本定义
详细描述
函数是数学中一个重要的概念,它描述了两个集合之间的对应关系。在一个函 数中,每一个自变量x都有唯一的因变量y与之对应。
函数的表示方法
函数减法是指将一个函数的对应点与另一 个函数的对应点一一对应,并取相同的函 数值。

函数的表示法(高一数学人教A版必修一册)PPT课件

函数的表示法(高一数学人教A版必修一册)PPT课件
国家中小学课程资源
函数的表示法
授课教师:XX
日期:XX年XX月XX日
温故知新
函数三要素:定义域、对应关系和值域
函数三种表示法:图象法、列表法和解析法
高中数学
3.1.1问题3:下图是北京市2016年11月23日的空气
质量指数 (AIR Quality Index,简称AQI)变化图:
图象法
定义域:
高中数学
解析法抽象而精准,
图象法直观而形象,
二者相辅相成,能更
好的理解这一函数,
这就是所谓数形结合.
例3 给定函数 = + 1, = + 1 2 , ∈ R,
(1)在同一坐标系中画出 , 的图象;
(2)∀ ∈ R,用 表示 , 中的较大者,记为
∈ |0 ≤ ≤ 24 .
高中数学
图象法:以自变量的取值为横坐标,对应的函数值为
纵坐标,在平面直角坐标系中描出各个点,这些点构成
了函数的图象,这种用图象表示两个变量之间函数关系
的方法叫做图象法.
自变量的取值范围为函数的定义域.
高中数学
3.1.1 问题4:我国某省城镇居民恩格尔系数变化情况表
高中数学
例1 某种笔记本的单价是5元,买( ∈ {1,2,3,4,5})个笔记本需要元.试
用函数的三种表示法表示函数 = ().
【分析】由列表的过程可知,在得到表中第二行钱数的值的时候,也是需
要通过题意简单计算的.其所用的计算式为 = 5, ∈ 1,2,3,4,5 .
解:这个函数的定义域是数集{1,2,3,4,5},
用解析法可将函数 = ()表示为:
= 5, ∈ {1,2,3,4,5}.

人教版A版必修一《函数的概念及其表示》课件ppt

人教版A版必修一《函数的概念及其表示》课件ppt

自主诊断 2.(多选)(2023·南宁质检)下列图象中,是函数图象的是



在函数的对应关系中,一个自变量只对应一个因变量,在图象中, 图象与平行于y轴的直线最多有一个交点,故选项B中的图象不是函 数图象.
自主诊断
3.(多选)下列选项中,表示的不是同一个函数的是
A.y= x3+-3x与 y=
x+3 3-x
(4)若对任意实数x,均有f(x)-2f(-x)=9x+2,求f(x)的解析式.
0
(解方程组法)∵f(x)-2f(-x)=9x+2,

∴f(-x)-2f(x)=9(-x)+2,

由①+2×②得-3f(x)=-9x+6,
∴f(x)=3x-2(x∈R).
思维升华
函数解析式的求法 (1)配凑法.(2)待定系数法.(3)换元法.(4)解方程组法.
√B.y=x2 与 y=(x-1)2 √C.y= x2与 y=x
√D.y=1 与 y=x0
自主诊断
对于 A 选项,y= x3+-3x的定义域是[-3,3), y= x3+-3x的定义域是[-3,3), 并且 x3+-3x= x3+-3x,所以两个函数的定义域相同,对应关系相同, 所以是同一个函数;
√C.f(x)=x-,xx,≥x0<,0, g(t)=|t|
D.f(x)=x+1,g(x)=xx2--11
对于 A,f(x)= x2的定义域为 R,g(x)=( x)2 的定义域为[0,+∞), 不是同一个函数; 对于B,f(x)的定义域为{x|x≠0},g(x)的定义域为{x|x≠1},不是同一 个函数; 对于C,两个函数的定义域、对应关系均相同,是同一个函数; 对于 D,f(x)=x+1 的定义域为 R,g(x)=xx2--11的定义域为{x|x≠1}, 不是同一个函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)一枚炮弹发射后,经过26s落到地面击中目 标,炮弹的射高为845m,且炮弹距地面的高度 h(单位:m)随时间t(单位:s)变化的规律是
h=130t-5t2
(*)
这里,炮弹飞行时间t的变化范围是数集 A={t|0≤t≤26},炮弹距地面的高度h的变化范围是 数集B ={h|0≤h≤845}.从问题的实际意义可知, 对于数集A中的任意一个时间t,按照对应关系(*), 在数集B中都有唯一的高度h和它对应。
1.2 函数及其表示
1.2.1 函数的概念
鹿邑三高 史琳
思考?
初中学习的函数的概念是什么?
设在一个变化过程中有两个变量x与y,如果 对于x的每一个值,y都有唯一的值与它对应,则 称x是自变量,y是x的函数;其中自变量x的取值 的集合叫做函数的定义域,和自变量x值对应的y 的值叫做函数的值域。
下面先看几个实例:
A、1个 B、2个 C、3个 D、4个
例4、若 f(x)ax2 2,a为一个正的常数
f f 2 2,则a____.__是两个实数,而且a<b, 我们规定:
(1)、满足不等式a≤x≤b的实数x的集合叫做闭区间, 表示为 [a,b].
(2)、满足不等式a<x<b的实数x的集合叫做开区间, 表示为 (a,b).
(3) 国际上常用恩格尔系数反映一个国家人民生 活质量的高低,恩格尔系数越低,生活质量越高。 下表中恩格尔系数随时间(年)变化的情况表明, “八五”计划以来我国城镇居民的生活质量发生 了显著变化。
归纳以上三个实例,我们看到,三个实例中变 量之间的关系可以描述为:
对于数集A中的每一个x,按照某种对应关系f, 在数集B中都有唯一确定的y和它对应,记作
(2) 近几十年来,大气中的臭氧迅速减少,因而 出现了臭氧层空洞问题。下图中的曲线显示了南极 上空臭氧空洞的面积从1979~2001年的变化情况:
根据下图中的曲线可知,时间t的变化范围是数集A ={t|1979≤t≤2001},臭氧层空洞面积S的变化范围 是数集B ={S|0≤S≤26}.并且,对于数集A中的每一 个时刻t,按照图中的曲线,在数集B中都有唯一确 定的臭氧层空洞面积S和它对应.
(1)、满足不等式a≤x<b或a<x≤b的实数x的集合叫 做半开半闭区间,表示为 [a,b)或(a,b].
这里的实数a与b都叫做相应区间的端点。
注意:用实心点表示包括在区间内的端点,用空 心点表示不包括在区间内的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作 “无穷大”。 满足x≥a,x>a,x≤a,x<a的实数的集合分别表示为 [a, +∞)、(a, +∞)、(-∞,a]、(-∞,a).
A、1个 B、2个 C、3个 D、4个 例3、给出四个命题: ①函数就是定义域到值域的 对应关系 ②若函数的定义域只含有一个元素,则 值域也只有一个元素 ③因f(x)=5(x∈R),这个函数值 不随x的变化范围而变化,所以f(0)=5也成立 ④定 义域和对应关系确定后,函数值也就确定了 正确有(D )
例1 已知函数 f (x) x 3 1 , x2
(1)求函数的定义域
(2)求f (3), f ( 2 )的值 3
(3)当a 0时,求 f (a), f (a 1)的值.
练习 1、函数 f (x) (x1)0 的定义域 (C为 )
x x
A、 x| x0 B、 {x| x1}
C、 {x| x0,且x1} D、 {x| x0}
f: A→B.
设A、B是非空数集,如果按照某种对应关系f, 使对于集合A中的任意一个数x,在集合B中都有 唯一确定的数f(x)和它对应,那么就称f: A→B为从 集合A到集合B的一个函数,记作
y=f(x),x∈A
其中,x叫做自变量,x的取值范围A叫做函数 的定义域;与x的值相对应的y的值叫做函数值, 函数值合{f(x)|x∈A}叫做函数的值域。
二、两个函数相等
由于函数的定义可知,一个函数的构成要素为: 定义域、对应关系和值域。由于值域是由定义域和 对应关系决定的,所以,如果两个函数的定义域和 对应关系完全一致,我们就称这两个函数相等。
例1、试用区间表示下列实集:
(1) {x|5 ≤ x<6} (2) {x|x ≥9} (3) {x|x ≤ -1} ∩{x| -5 ≤ x<2} (4) {x|x < 9}∪{x| -9 < x<20}
一、函数的定义域
函数的定义域通常是由问题的实际背景确定的, 如前面所述的三个实例。如果只给出解析式y=f(x), 而没有指明它的定义域,那么函数的定义域就是指 能使这个式子有意义的实数的集合。
练习 2、已f(知 x)x11,则函f数 f(x)的定义(C域 )
A、 {x|x1} B、 {x|x-2} C、 {x|x1且 , x-2} D、 {x|x1或 , x-2}
练3、 习k当 为何值f时 (x), k22 x k函 2 xk8 x数 1的 定义R 域 ?的
解: f (x)的定义域为R,kx2 2kx1 0对一切 xR都有意义. 当k 0时, (2k)2 4k 0 0 k 1 当k 0时,kx2 2kx11 0,对xR有意义. 当0 k 1时,函数f (x)的定义域为R.
求定义域的几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数R (2)如果f(x)是分式,那么函数的定义域是使分母 不等于0的实数的集合 (3)如果f(x)是二次根式,那么函数的定义域是使 根号内的式子大于或等于0的实数的集合 (4)如果f(x)是由几个部分的数学式子构成的,那 么函数的定义域是使各部分式子都有意义的实数 集合.(即求各集合的交集)
例1 下列说法中,不正确的是( B )
A、函数值域中的每一个数都有定义域中的一个数与 之对应
B、函数的定义域和值域一定是无限集合
C、定义域和对应关系确定后,函数值域也就确定
D、若函数的定义域只有一个元素,则值域也只有一 个元素
例2、对于函数y=f(x),以下说法正确的有( B )
①y是x的函数 ②对于不同的x,y的值也不同 ③ f(a) 表示当x=a时函数f(x)的值,是一个常量 ④ f(x)一定 可以用一个具体的式子表示出来
相关文档
最新文档