热力学统计物理-统计热力学课件第九章-PPT课件

合集下载

统计热力学初步PPT课件

统计热力学初步PPT课件
物理化学
第九章 统计热力学初步
Statistical Thermodynamics
学习要求:
明确统计热力学的基本假设,理解最概然分布与平衡 分布及摘取最大项原理 掌握 Boltzmann 分布律及其各物理量的意义与适用条 件;理解粒子配分函数、体系配分函数的意义与表达 式,配分函数的析因子性质。 理解不同独立子体系的配分函数,q 及Θ与热力学函 数间的关系。 重点掌握平动能与平动配分函数,转动能与转动配分 函数,振动能与振动配分函数的计算。 理解系统的热容、熵及其他热力学函数与配分函数的 关系。
能 级 : 1 , 2, , i
一 种 分 配 方 式 :N 1 , N 2, , N i
W DCN N1CN N 2N1 N 1!(N N !N 1)!N 2!((N N N N 1 1 )! N 2)!
N! N!
N1!N2 !
Ni !
(能级Ⅰ、Ⅱ)
i
各能级的简并度是g1,g2, …,能级的 分布数是n1,n2,…,由于同一能级的粒 子可处于不同量子态,则
定域子系统和离域子系统
独立子系统和相依(倚)子系统
按粒子间相互作用情况不同,可分为: 独立子系统( system of independent particles)
——粒子之间除弹性碰撞之外,无其它相互作用 (理想气体)。 相依(倚)子系统( system of interacting particles)
3.一维谐振子
v(1 2)h 0,1,2,
ν——粒子的振动频率,与结构有关,数值 可由光谱数据获得。 υ——振动量子数 υ= 0,1,2,
gV , 1
一维谐振子
4.电子和原子核
电子运动及核运动的能级差一般都很大,一 般的温度变化难以产生能级的跃迁或激发,所以 本章只讨论最简单的情况,即一般认为系统中各 粒子的这两种运动处于基态。

第9章统计热力学初步

第9章统计热力学初步

上一内容 下一内容 回主目录
返回
2021/2/9
9.1 粒子各运动形式的能级及能级的简并度
(5)简并度(统计权重,Degeneration):某一能级所 对应的所有不同的量子状态 (简称量子态) 的数目。以符 号 g 表示。
能级,量子状态及简并度的关系:
一个能级相当于一个楼层,简并度相当于该楼层的房间 数目,一个粒子只要处于同一楼层,无论哪个房间,能量都 相等,但由于处于不同房间,因此处于不同的量子状态.
f转振3n3
例:单原子分子 双原子分子
n1 fr 0 fv 0 n2 fr 2 fv 1
线型多原子分子 nnfr 2 fv 3n5 非线型多原子分子 nn fr 3 fv 3n6
C2(O 3,2,4)、 N3(H 3,3,6) CH4(3,3,9)
上一内容 下一内容 回主目录
返回
2021/2/9
2
定域子系统
gv 1
根据
εv
υ 1hν 2
可能的能级:
v,0
1 2
h
v,1
3 2
h
v,2
5 2
h
v,3
7 2
h
上一内容 下一内容 回主目录
返回
2021/2/9
9.2 能级分布的微态数及系统的总微态数
v,0
1 2
hv
v,1
3 2
hv
v,2
5 2
hv
v,3
7 2
hv
能级 能级分布数
分布 n0 n1 n2 n3
注意:三者的大小关系!
上一内容 下一内容 回主目录
返回
2021/2/9
9.2 能级分布的微态数及系统的总微态数

热力学与统计物理学.pptx

热力学与统计物理学.pptx
具体来说有:全微分法、系数比较法、循环关系法、 复合函数微分、混合二阶偏导法
系数比较法(适用对象:求U、H、F、G的偏导数) 复合函数的偏导数法(适用对象:求两个函数偏导数之差)
f f f y (x)z (x)y(y)x(x)z
循环关系法(适用对象:求脚标为U、H、F、G的偏导数) x y z
例、求能态方程和焓态方程及Cp 、 Cv
熵变的计算
S是状态函数。在给定的初态和终态之间,系统 无论通过何种方式变化(经可逆过程或不可逆过程), 熵的改变量一定相同。
当系统由初态A通过一可逆过程R到达终态B时求熵
变的方法:直接用
SB SA
B dQ
(
A
T
)R
来计算。
当系统由初态A通过一不可逆过程到达终态B时求熵变
的方法:
(1)把熵作为状态参量的函数表达式推导出来,再将
T V
V T
UFTSFTF
CV
U T V
H=U+pV
TV ,G=F+pV
(2)吉布斯函数G=G(T、p)
由G=G(T、p)和dG=—SdT+Vdp
例:求表面系统的热力学函数
表面系统指液体与其它相的交界面。
表面系统的状态参量: 、A、T 表面系统的实验关系: =(T) 分析:对于流体有f(p,V,T)=0, 对应于表面系统:p,AV
PA
p p(T)
B
固 A
液 C

在T—p图中,描述复相系统平衡热力学性Βιβλιοθήκη OLALC T
B P


PC
C
PA
A

O
LA
LC T
A---三相点 C---临界点

天大物理化学第五版第九章统计热力学.ppt

天大物理化学第五版第九章统计热力学.ppt
不同物质电子运动基态能级的简并度 ge, 0 及核子运动 基态能级的简并度 gn, 0 可能有所差别,但对指定物质而言 均应为常数。
§9.2 能级分布的微观状态数及系统的总微态数
1. 能级分布
n0, n1, n2, , ni,
能级分布:方程组
E
ni i
i
N
ni
i
的每一组解,称为一种 能级分布。
能级分布数
例:下面以三个在定点A,B,C做独立振动的一维谐振子 构成的系统,总能量为 9h 2 ,确定该系统所有的能级分 布。
解:一维谐振子能级
i
i 1h 2
i
系统总的粒子数 N = 3,因此
ni 3
i
ni i
i
1 2
h
0, 1, 2, 9h 2
上述方程组简化为
ini 3, ni 3
i
此外,由于系统的总能量为 9hn/2,故 i < 4。从而
偶然事件出现次数 复合事件重复次数
性质
P总
Pj 1
j
如果偶然事件 A 和 B 不相容,即A 和 B 不能同时出现,则
该复合事件出现 A 或者 B 中任一结果的概率应为
PA PB
若若事件 A 与事件 B 彼此无关,则 A 与 B 同时出现的概 率应当是
2. 等概率原理
PA PB
N, U, V 确定的系统的微态均为属于能级 U 的简并态。
因此,假定每个微态出现的概率是相等的,即每个微态出
现的概率为
P
1 N ,U ,V
此即为等概率原理。
3. 最概然分布
能级分布 D 的微态数为WD,因此分布 D 出现的概率为
PD
1 WD WD

热力学统计物理-统计热力学课件第九章-49页PPT文档资料

热力学统计物理-统计热力学课件第九章-49页PPT文档资料

N,V
22
系统热平衡条件 : 1 2
热力学中类似的两个系统达到热平衡的条件:
US11
N1,V1
US22
N2,V2
比较可得:
1 kT
Skln
S U
N ,V

1 T
——熵与微观状态数的关系—玻耳兹曼关系。
•不仅适用于近独立粒子系统,也适用于粒子间存在相
01.12.2019
1 E (E 11) 2(E 2) 1(E 1) 2 E (E 22) E E 1 20
ln E 11(E1)N1,V1 ln E 22 (E2)N2,V2 ——系统热平衡条件

lnE(E)



ln V
N
,E
lnN 11E1,V1 lnN 22E2,V2



ln N
E,V
1 1
1 2 1 2
01.12.2019
24
•参量的物理意义
全微分: d ln d E d V d N
开系的热力学基本方程:
dSdUpdVdN
TT T 比较可得:
01.12.2019
1 kT
p kT
kT
1 1
1 2 1 2
T1 T2 p1 p2
1 2
25
经典理想气体——确定常量k
(N,E,V)VN
在经典理想气体中,粒子的位置是互不相关的。一个 粒子出现在空间某一区域的概率与其它粒子的位置无关。 一个粒子处在体积为V的容器中,可能的微观状态数与V 成正比,N个粒子处在体积为V的容器中,可能的微观状 态数将与VN成正比。

统计物理学 课件PPT-第九章 系综理论

统计物理学 课件PPT-第九章 系综理论

得到 将此式代入 (9.1.5),便得到
如果随着一个代表点沿正则方程所确定的轨道在 相空间运动,其邻域的代表点密度不随时间改变. 称刘维定理. Liouville’s theorem 的另一表达
对(9.1.9)作变换 t 到 –t, 公式保持不变.刘维定理可 逆.
§9.2 微正则分布 9.2.1 经典理论
从哈密顿正则方程
在孤立系统中,哈密顿量不是时间的显函数, 总能 量:
能量曲面由(9.1.2) 确定. 能量曲面上的一个确定 点与系统的一个微观状态对应.
相空间和体积元可写为 t 时间内这个体积元内的点数由下式决定 有
若隔着在内相时,空刻系间统t 系轨演统道化在,到相一另空个一间确微密定观度的态随态时qiq+间i,dpq变i,i ,在化pi时.+一d间p般i间. 来沿 说,瞬时变化可表达为,
统计物理的假设之一就是等几率原理.
对于一个小的能量 ΔE 在经典描述下
人们设
等概率原理的量子描述
经典统计是量子统计的极限. 在 E 和 E+ ΔE 之间的微观态数
对于含多种粒子的系统, 推广为
§9.3 微正则分布的热力学表达式
9.3.1 微观态数与熵的关系
孤立系统 A(0)
A1 N1, E1, V1
(2) 系综平均值: 即:(9.2.3),量B在系综上的统计平 均值.
(3) ρ可以理解为一个系统在(q,p)处的概率,也是 系综在(q,p)处的微观态的数目,或态密度,表示 微观态的分布.
9.2.2 量子理论中
确定系综分布函数ρ是系综理论的根本问题
9.2.3 在孤立系统中
(1) 微正则系综: 一个孤立系统的相空间密度,因 而也是统计分布函数在与系统的能量相应的 等能面上是恒量.在面外是零.这样的系综为微 正则系综,分布叫微正则分布.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•由恒温封闭系综组成的正则系综; •由开放系统组成的巨正则系综。
2019/2/16
6
二、刘维尔定理
( q 1
1
q p p t f; 1 f;)
1 f f
T时刻
T+dt时刻
( qq d t , , p p d t ; t d t )
d ( qq d t ,, p p d t ; t d t ) d t 1 1 f f d t
结构完全相同的系统,各自从其初态出发独自地沿着 正则方程的轨道运动。这些系统的运动状态的代表点将在 相空间中形成一个分布。:
d d q q d p p 1 d f 1 d f
——相空间的一个体积元 ( q p 1 q f; 1 ptd f;)
——t时刻运动状态在体积元内代表点数 ( q p p t 1 q f; 1 f;)
d t d q p d t d i i t q p i i i
q p 0 i i t i q p i i
2019/2/16
第九章
系综理论
最概然分布法只能处理由近独立粒子所组成的系统。 如果粒子间的相互作用不能忽略,系统的能量表达式除包
含单个粒子的能量外,还包含粒子间相互作用的势能,上述 理论就不能应用。系综理论是平衡态统计物理的普遍理论, 系综理论可以应用于有相互作用粒子组成的系统。
2019/2/16
1
系综:
在一定的宏观条件下,大量性质和结构完全相同的处于各 种运动状态的各自独立的系统的集合。系综中的每个系统 和被研究的系统具有完全相同的结构,受到完全相同的宏 观约束,但可能处于不同的微观态。系综是统计物理中假 想的工具,而不是实际的客体,实际的客体是组成系综的 单元——系统。
2019/2/16
——代表点密度
5
( q qp ; p ; t ) d N
1 f 1 f
N ——系统总数
当系统达到宏观平衡态时,具有的宏观性质不随时间变 化,任何一个宏观量都不是时间的函数,则分布函数一定不
是时间的函数,即满足平均条件,相应的系综是稳定系综。 根据不同的宏观条件,将常见的稳定系综分为三种: •由孤立系统组成的微正则系综;
d [ q p i i] d t t i q p i i
2019/2/16 7
考虑相空间中一个固定的体积元:
d d q q d p p 1 d f 1 d f
体积元边界:
q , q d qpp ; i, i d p i i i i
1 ,2 , i
qd d t d A qd d i q i i t q q i i
2019/2/16 9
类似的, d t 时间内通过一对平面 pi , pi dpi净进入 d 的代 表点数为:
pi dtd pi
则 d t 时间内净进入 d 的代表点数为:
f Ni ri
i
2019/2/16
3
系统在任一时刻的微观运动状态由f 个广义坐标及相应的f p1 p2 p f 个广义动量在该时刻的数值确定。 q1q2 q f 共2f个变量为直角坐标可以构成一个2f 维空间,称为相空 间或 空间。系统在某一时刻的运动状态,可以用空间中 的一点表示,称为系统运动状态的代表点.
哈密顿正则方程:
1 ,2 , , f i H pi qi 一个能量有固定值的系统,其运动状态的代表点只 能在该能量相当的能量曲面上运动。
2019/2/16 4
H qi pi
qi pi 0 qi pi
能量曲面:
H ( p p p , q q ) E 12 f 1 2 q f
t 时间内通过平面 q i dq i 走出的代表点数为:
q d t d A [ q q d q ] d t d A i i i i q d q q i i i q i
d t 时间内净进入平面的代表点数为:
, f
t时刻代表点数: t+dt时刻代表点数: 增加代表点数:
2019/2/16
d
( dt)d t d td t
8
计算通过 q i 平面进入 d 的代表点数,边界面积为:
d A d q q d q q d p p 1 d i 1 i 1 d f 1 d f
10
qi pi 由正则方程: 0 qi pi
p 0 i i q t i q p i i
又:
d [ q p i i] d t t i q p i i
d ——刘维尔定理 0 dt H H t q p p q i i i i i
表明:如果随着一个代表点沿正则方程所确定的轨道在相空 间中运动,其邻域的代表点密度是不随时间改变的常数。
2019/2/16 11
•表达式交换 t t 保持不变,说明刘维尔定理是可逆的。
•刘维尔定理完全是力学规律的结果,其中并未引入任何统 计的概念。
系综理论中做了两点假设:
•宏观量是相应微观量的时间平均,而时间平均等价于 系统平均; •平衡孤立系的一切可达微观态出现的概率相等。
2019/2/16 2
§9.1 相空间 刘维尔定理
一、相空间
• f 表示整个系统的自由度。设系统是由N个全同粒子组 成的,粒子的自由度为r,则系统的自由度为:
f Nr • 如果系统包含多种粒子,其中第i 种粒子的粒子数为Ni, 第i 种粒子的自由度为ri, 则系统的自由度数为:
相关文档
最新文档