20.1.2中位数和众数第三课时
新人教版八年级数学下册《20.1.2中位数和众数(1)》教案
新人教版八年级数学下册《20.1.2中位数和众数(1)》教案
新人教版八年级数学下册《20.1.2中位数和众
数(1)》教案
第一步:课前引入:
前面已经和同学们研究过了平均数的这个数据代表。
它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
请同学们看下面问题:
NO1、一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表所示:
鞋的尺码
(单位:厘米)2222.52323.52424.525
销售量
(单位:双)12511731
在这个问题里,鞋店比较关心的是哪种尺码的鞋销售得最多.
师引导学生观察表格,并思考表格反映的是多少个数据的全体.(
NO2、在一次数学竞赛中,5名学生的成绩从低分到高分排列庆次是:
5557616298
教师引导学生观察在这5个数据中,前4个数据的大小比较
的个别数据变动较大时,可用中位数描述其趋势。
众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
20.1.2中位数与众数(教案)-2020-2021学年人教版数学八年级下册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中位数与众数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个统计量的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.学生小组讨论环节,大家在探讨中位数与众数在实际生活中的应用时,提出了很多有趣的观点。这说明学生们能够将所学知识运用到实际中,但同时也暴露出他们在理论联系实际方面的不足。为此,我将在后续教学中加入更多实际案例,帮助学生更好地理解和运用这两个统计量。
5.课堂总结环节,学生们对于中位数与众数的掌握程度有所提高,但仍有个别学生存在疑问。为了确保每位学生都能跟上教学进度,我计划在课后进行针对性辅导,解答他们的疑问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中位数与众数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.数据分析:培养学生对一组数据进行排序、求中位数和众数的能力,提高数据处理和分析的能力,使其能够从统计量的角度理解数据的集中趋势。
2.数学抽象:通过中位数和众数的概念,引导学生学会从具体问题中抽象出数学模型,培养学生的数学抽象思维。
3.数学建模:使学生能够运用中位数和众数这两种统计量解决实际问题,建立数学模型,提高数学建模素养。
八年级数学下册20.1.2中位数和众数教案2(新版)新人教版
媒 体教 具
课时
1 课时
教学 过程 教学内容
师生互动
修改栏
配套练习 P67-69 1、 例题讲析
2 、基础演练
板书 设计 作业 布置
教学 反思
Байду номын сангаас
分类讨论是数学中的重 要思想方法,解题时一定 要全面考虑,对可能出现 的各种情况要逐个研究 讨论。
课标 解读 与 教材 分析
教 学 目 标
教学 重点 与 难点
中位数和众数
【课标要求】
经历探索中位数、众数的概念的过程,学会根据数据做出总体的
初步的思想、合理论
证,领会平均数、中位数、众数的特征数的联系和区别。
教学内容分析:
1、认识中位数和众 数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。 它们也是数据代表, 可以反映一定的数据信息,帮助
人们在实际问题中分析并做出决策。
3、会 利用中位数、众数分析数据信息做出决策。
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
知识
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数
据
与
信息,帮助人们在实际问题中分析并做出决策。
技能
3、会利用中位数、众数分析数据信息做出决策。
过程 与
方法 情感 态度 价值观
经历探索中位数、众数的概 念的过程,学会根据数据做出总体的初步的思 想、合理论证,领会平均数、中位数、众数的特征数的联系和区别。
培养学生良好的数字信息处理的意识, 内涵与价值。
建立学好数学的自信心, 体会发展的
重点 认识中位数、众数这两种数据代表
难点 利用中位数 、众数分析数据信息做出决策。
20.1.2中位数和众数
比较两班的学生成绩的平均水平,优秀率(每 分钟输入汉字数≥150个为优秀)的高低。
试一试
1、在一次数学竞赛中,5名学生的成绩从低到高排列依 次是 55,57,61,62,98,那么他们的中位数是多少? 2、10名工人某天生产同一零件,生产的件数是 15, 17,14,10,15,19,17,16,14,12,求这一天 10名工人生产的零件的中位数。 15 3、某班一组12人的英语成绩如下: 84,73,89,78,83,86,89,84,100,100,78, 87 ,• 85 . 100.则这12个数的平均数是_____ 中位数是______ 4、一组数据按从小到大顺序排列为:13、14、 19、x、23、27、28、31,• 其中位数是22,则 21 x为_______.
中位数:
将一组数据按照由小到大的顺序排列: 如果数据的个数是奇数个,则处于中间 位置的数就是这组数据的中位数; 如果数据的个数是偶数个,则中间两个数 据的平均数就是这组数据的中位数;
中位数是一个位置代表值,利用中位数分析数据可以 获得一些信息。 如果已知一组数据的中位数,那么可以知道,小于或 大于这个中位数的数据各占一半。
某教育用个厂生产一批铅球,其 重量(单位:km)如下: 重量/km 2.93 2.96 个数 4 12 3 10 3.02 3.03 8 6
求这组数据的中位数和平均数。
活 动 与 研 究 二
解 答 下 列 问 题
某经理 厨师 厨师 会计 服务 服务 勤杂 甲 乙 员甲 员乙 工 1 1 1 1 1 1 1 人数 工资额 3000 700 500 450 360 340 320 (1)餐厅所有员工的工资的平均数是多少? (2)所有员工的工资的中位数是多少? (3)用平均数还是中位数,描述该餐厅员工工 资的一般水平比较恰当? (4)去掉经理的工资后,其他员工的平均工资是 多少元?是否能反映餐厅员工工资的一般水平?
20.1.2 中位数和众数 课件2024-2025学年人教版数学八年级下册
平均成绩
众数
得分
77
81
a
80
82
80
b
求被遮盖的两个数据a和b.
【自主解答】见全解全析
12
【举一反三】
1.(2023·金华中考)上周双休日,某班8名同学课外阅读的时间如下(单位:时):
1,4,2,4,3,3,4,5,这组数据的众数是
A.1时
B.2时
( D)
C.3时
D.4时
2.已知一组数据:7,a,6,5,5,7的众数为7,求这组数据的中位数.
【解析】∵一组数据:7,a,6,5,5,7的众数为7,
∴a=7,∴这组数据按从小到大的顺序排列为5,5,6,7,7,7,
∴这组数据的中位数是(6+7)÷2=6.5.
13
【技法点拨】
众数的特征
(1)一组数据的众数一定出现在这组数据中.
(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.
(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户
所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否
发生变化?
6
8
【举一反三】
1.(奇数位求法)已知两组数据3,2a,5,b与a,4,2b的平均数都是6,若将这两组数据
5
合并为一组数据,则这组新数据的中位数是_______.
2.(偶数位求法)一组数据:1,0,4,5,x,8.若它们的中位数是3,求x的值.
【解析】除x外5个数由小到大排列为0,1,4,5,8,
∵原数据有6个数,且这组数据的中位数是3;
所以,只有x+4=2×3时才成立,即x=2.
教学设计4:20.1.2中位数和众数(3)
20.1.2中位数和众数(3)一、教学目标1.进一步认识平均数、众数、中位数都是数据的代表;2.通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异;3. 能灵活应用这三个数据代表解决实际问题。
二、温故互查:(二人小组完成)1. 什么是中位数?如何从一组数据中正确找出中位数,关键步骤是什么?2. 什么是众数?如何从一组数据中正确找出众数,关键步骤是什么?三、设问导读:阅读课本P119-120完成下列问题:1.探究1:自学119页“例6”,进一步认识平均数、众数、中位数都是数据的代表.掌握如何用平均数、中位数、众数如何分析数据,如何描述数据的趋势?例 6 某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩。
为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 19 22 17 16 19 3230 16 14 15 26 15 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定位多少合适?说明理由.解:(1)月销售额在15万元的人数最多,中间的月销售额是18万元,平均的月销售额是20万元.(2)如果想确定一个较高的销售目标,你认为月销售额定为20万元合适,因为从样本数据看,在平均数、中位数和众数中,平均数最大,可以估计,月销售额定为每月20万元是一个较高目标,大约有三分之一的营业员会获得奖励.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为18万元合适,因为因为从样本数据看,月销售额在18万元及以上的有16人,占总数的一半左右,可以估计,月销售额定为每月18万元是一个较高目标,大约有一半左右的营业员会获得奖励.2.探究2:自学120页归纳,明确平均数、中位数、众数它们各自的特点以及描述数据的趋势.平均数、中位数是一组数据的“平均水平”的“特征数”,而众数是描述数据的“集中趋势”的“特征数”,它们各自的特点如下:(1)用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。
20-1-2 中位数和众数(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)
探究新知
一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示. 你能根据表中的数据为这家鞋店提供进货建议吗?
尺码/cm 22 22.5 23 23.5 24 24.5 25
销售量/双 1
2
5
11
7
3
1
解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23. 5 cm的鞋销售量最大. 因此可以建议鞋店多进23.5 cm的鞋.
3
探究新知
(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以定为每月18 万元(中位数). 因为从样本情况看,月销售额在18万元以上(含18万元)的有16 人,占总人数的一半左右. 可以估计,如果月销售额定为18万元,将有一半左 右的营业员获得奖励.
探究新知
选择具有代表一组数据特点的数据的方法: 对于一组数据,当没有极端值时,用平均数作为这组数据的代表值;当
02
众数
思考:下表是某公司员工月收入的资料,如果小张是该公司的一名普通员工,那 么你认为他的月工资最有可能是多少元? 如果小李想到该公司应聘一名普通员工岗位,他最关注的是什么信息?
月收入/元 45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
人数
如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数 据的整体水平.
探究新知
归纳总结求中位数的步骤.
1.将数据由小到大(或由大到小)排列; 2.数清数据个数是奇数还是偶数,如果数据个数为奇数,则取中间的数作 为中位数;如果数据个数为偶数,则取中间两数的平均数作为中位数.
典型例题
例1:在一次男子马拉松长跑比赛中,抽得12名选手所用的时 间(单位:min)如下: 136 140 129 180 124 154 146 145 158 175 165 148
《20.1.2 中位数和众数》课件(2课时)
员工
月薪 (元)
经理 6000
副经 理
4000
职员 A
1700
职员 B
1300
职员 C
1200
职员 D
1100
职员 职员 EF
1100 1100
中位数是1300+2 1200
该公司7员工的工资中出现的频数最多的那个工 资,就是他们工资的众数,如:
什么是众数?
月薪 6000 4000 1700 1300 1200 1100 500
销售额(单位: 3 4 5 6 7 8 10 万元) 销售人员数 1 3 2 1 1 1 1 (单位:人) (1)求销售额的平均数、众数、中位数;
解:(1)平均数为5.6万元 众数为4万元 中位数为 5万元.
例1 某公司10名销售员,去年完成的销售额情况如下表:
销售额(单位: 3 4 5 6 7 8 10 万元) 销售人员数 1 3 2 1 1 1 1 (单位:人)
首页
问题: 紫阳“家家福”在“六一”儿童节期间销 售了某种童鞋30双,其中各种尺码的鞋的销售量如 下表所示:
尺码/厘米 18 19 20 21 21.5 22 22.5 销售量/双 1 2 5 11 7 3 1 (1)如果你是鞋厂经理,在平均数、中位数、众数 中你最关心哪个数据?最不关心的是哪个数据?
20.1 数据的集中趋势
20.1.2 中位数和众数
第1课时 中位数和众数
学习目标
会根据样本平均数估计数据总体的集中趋势,进一 步体会用样本估计总体的思想.
情景导入
阿Q回忆十年前大学毕业后找工作经历,开始
想找一份月薪在1700以上的工作,那天他看见三毛
公司门口的招聘广告,上面写着:现因业务需要招
八年级数学下册 20.1.2 中位数和众数教案 (新版)新人教版
中位数与众数教师寄语:成功的人是跟别人学习经验,失败的人只跟自己学习经验教学目标:1、认识众数、中位数,并且知道平均数、众数、中位数是数据的代表。
2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
教学重点众数与中位数的定义与应用教学难点众数与中位数的定义与应用教法选择学生交流讨论与教师点拨相结合教学过程基本要求1.每项教学活动标明所用时间; 2.细案体现备教材、备教法、备学生;3.充分体现小组教学;4.尽可能体现多媒体教学。
教学过程教师活动学生活动其他教师点注一、温故知新先复习平均数的定义,再引出本节内容。
二、自主学习,师生交流1、根据课下预习情况小组内交流预习中存在的疑问,教师做好巡视及时做好指导。
2、学生交流完成后,教师根据自学提纲中的小试牛刀检查学生掌握情况,并根据学生回答情况,做好点拨,使学生对众数及中位数有了更深入的理解,使所学知识更透彻。
教师并反复强调:(1)一组数中的众数不仅仅有一个。
如:2 3 2 4 5 4 6 8 9 1 的众数是2和4(2)找一组数据的中位数时,一定要先把这组数据从大到小(或从小到大)排列好,如果这组数据有偶数个就取中间两个的平均数,如果这组数据有奇数个就取中间那个。
如:2 134 7 8 先把这组数据从小到大排列为1 2 3 4 7 8,中间两个数是3和4,而3和4的平均数是3.5,所以这组数据的中位数是3.53 2 5 7 8 先把这组数据从小到大排列为2 3 5 7 8,中间一个是5,所以这组数据的中位数是5。
三、能力提升在前面小组交流及教师点拨的基础上通过能力提升使学生对知识的掌握在能力上有所提高。
重点强调如何判断平均数、众数、中位数中哪一个能反映整组数据的特征。
四、我能行在前面的基础上使学生自己独立做自学提纲中第四大题,让学生能灵活解决各种类型的题型,使解题能力有一个更大的提升。
1、3号学生回答2、学生交流讨论3、教师点拨,学生回答老师所提问题。
方案二 20.1.2 中位数和众数(含3课时内容)
20.1.2 中位数和众数第1课时中位数和众数【知识与技能】认识中位数和众数,并会求出一组数据中的众数和中位数.【过程与方法】理解中位数和众数的意义和作用,它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策.【情感态度】会利用中位数、众数分析数据信息做出决策.【教学重点】认识中位数、众数这两种数据代表.【教学难点】利用中位数、众数分析数据信息做出决策.一、情境导入,初步认识除了平均数,中位数和众数也常用来作为一组数据的代表.将一组数据按照从小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于正中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.中位数是一个位置代表值,例如在一组不相等的数据中,小于和大于它们的中位数的数据各占一半.说一说下面两组数据的中位数分别是多少?你能说说这两个中位数的意义吗?(1)5,6,2,3,2;(2)5,6,2,4,3,5.二、典例精析,掌握新知例在一次男子马拉松比赛中,抽得12名选手的成绩(单位:分)如下:136 140 129 180 124 154146 145 158 175 165 148(1)这12名选手成绩的中位数是多少?(2)一名选手的成绩为142分,他的成绩如何?【教学说明】教师提出问题后,学生依定义进行探讨.显然(1)是(2)的铺垫,只要找出这组数据的中位数,就可以知道142分的成绩如何.在学生独立探索过程中,教师巡视,关注学生将数据按顺序排列的情况,关注学生是否能准确书写解答过程.一组数据中出现次数最多的那个数据称为这组数据的众数,如果一组数据中两个数据的频数一样,都是最大,那么这两个数据都是这组数据的众数.当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.说一说 下面这组数据的众数是多少?解释它的意义.5,2,6,7,6,3,3,4,3,7,6【教学说明】让学生学以致用,加深对众数意义的理解.三、运用新知,深化理解1.教材P 117练习2~3.教材P 118练习1、2【教学说明】针对上述练习,加深学生平均数、中位数和众数的理解.【答案】1.解:中位数是662+=6(个),表示车间工人日加工零件数大于或小于6个的人数各占一半.2.解:应多进M 号的运动服,少进XXL 号的运动服.3.解:平均数:1321461581631721815268321⨯+⨯+⨯+⨯+⨯++++++=(岁).众数是15岁,中位数是15152+=15(岁),含义略.四、师生互动,课堂小结通过这节课学习你有哪些收获?你是怎样来理解平均数、中位数、众数的意义及各自特征的?与同伴交流.1.布置作业:从教材“习题20.1”中选取.2.完成对应习题.探求中位数和众数的方法是一项技能,是教学重点但不是教学难点.教学时可先让学生直观感知,体验在数据的个数是奇数时求中位数的方法,然后在练习中安排偶数个,学生碰到问题,教师不急于解答,而是由觉得能解决的学生来解答.这样的教学,让学生学得开放,学得明白,教师教得轻松,又省时又高效.第2课时平均数、中位数和众数的应用【知识与技能】描述众数的概念,会求一组数据的众数,能结合具体情境体会平均数、中位数、众数三者的区别,能初步选择恰当的数据代表对数据做出自己的评判.【过程与方法】通过实际背景,区分刻画“平均水平”的三个数据代表,形成获取数据、继续巩固对各种图表信息的识别与获取能力,养成对生活中所见到的统计图表进行数据处理和评判的主动意识.【情感态度】将知识的学习放在解决问题的情境中,作为数据处理过程的一部分,认识到数字与现实的联系.通过与同学间的交流合作,培养大家的合作精神.【教学重点】了解平均数、中位数、众数之间的差异.【教学难点】灵活运用这三个数据代表解决问题.一、情境导入,初步认识平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.二、典例精析,掌握新知例某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.【分析】(1)中的目的是依次探讨月销售额的众数,中位数和平均数,为了便于解答,应对所给出的30个数据进行分析整理(如列出频数分布表或频数分布直方图);(2)(3)小题则是选择平均数、中位数或众数来解决问题,这样可进一步认识用样本估计总体及数据处理.【教学说明】教师先予以分析,引导学生阅读理解题意,找出解决问题的方法,然后由学生自主探究,独立完成.教师巡视,及时引导学生利用频数分布表(或直方图)来找出数据的众数和中位数.对有困难的学生给予个别辅导.三、运用新知,深化理解教材P121练习【教学说明】通过练习,教师帮助学生分析,了解平均数、中位数和众数都可以作为一组数据的代表,它们有各自的特点.【答案】解:(1)第1组数据的平均数:(35+36+38+40+42+42+75)÷7=44(kg).众数是42kg,中位数是40kg.第2组数据的平均数:(35+36+38+40+42+42+45)÷7≈40(kg).众数是42kg,中位数是40kg.(2)第1组数据的平均数大于第2组数据的平均数,众数和中位数相同.四、师生互动,课堂小结今天你有哪些收获?与同伴交流.1.布置作业:从教材“习题20.1”中选取.2.完成对应习题.引导学生采用自主探索与合作交流的学习方式,力求做到让每一个学生都能参与探究,最终学会学习.。
人教版八年级数学下册20.1.2中位数与众数课件
增加小清后,工资的中位数是多少? 取平均数
先按大小排列:
600,600,1100,1100,1100,1200,1800,2100,5000,9000
工资的中位数是1150元.
中位数误区二: 奇数取中间, 偶数取中间两数平均数.
创设情境
探求新知
当堂训练
小结归纳
工资
/元
1100 1100 1100 1200 2000 2300 5000 9000
600
中位数:
中位数
一组数据按大小顺序排列,位于最中间的一个 数据叫做这组数据的中位数。
创设情境
探求新知
当堂训练
小结归纳
布置作业
中位数理解误区一
根据个人能力表现,上个月老板对员工工资作出了调整.
工种 见习 工资
/元
服务 服务 服务 前台 前台 前台 经理 总监 生1 生2 生3 1 2 3 2300 2000 2300 1200 5000 9000 1100 1100 1100 1200
义务教育课程标准试验教科书
数学
人教版 八年级 下册
20.1.2
中位数和众数
徐闻县和安中学 林朝清
本课目标:
(1)理解中位数和众数的定义. (2)会求一组数据的中位数和众数.
创设情境
探求新知
当堂训练
小结提升
布置作业
创设情境
探求新知
当堂训练
小结提升
布置作业
新同事见面会
见习明强 服务生小丽 前台美玉
(元)
600
1100 1100 1100 1200 2000 2300 5000 9000
请大家帮小清算算该酒店员工月平均工资 是多少?
2014年人教版八年级下20.1.2中位数、众数课件
n 1 第 个.n为偶数时,中间 2 n n 位置是第 和 1 个 2 2
在一次马拉松长跑比赛中,其中12名选手 的成绩如下(单位:分钟)
124 136 129 140 136 129 148 145 154 146 158
140 124 145 154 146 180 165 165 176 148 180 176
月薪 6000 (元)
中位数
众数
可见本题用中位数或众数反映一般职员的 实际收入比较合适.
求下列各组数据的中位数和众数:
①
5 2
2
6 2
3
2 3
4
3 5
4
2 6
4
中位数:3 众数:2
②
4
5
中位数:4
众数:4
③
5 2
6 3
2 4
4 5
3 5
5 6
中位数:4.5
众数:5
④
3
7
7
8
8
40
中位数:7.5
众数:7和8
商场统计了30位营业员在某月的 销售额,数据如下:(单位万元)
13 17 28 15 16 17 15 19 15 28
14 18 26 16 19 17 26 22 15 28
15 16 18 16 32 18 15 23 28
15 13 19 16 30 18 32 24 28 30
15 24 22 16 16 19 23 26 16 32
,
2.如果一组数据6,x,2,4的平均数是5,那
么数据 x = 8 。
3.在数据-1, 0, 4, 5, 8中插入一个数据 x,使得这组数据的中位数是3,则x = 2 . 4.数据8, 8, x, 6的众数与平均数相同,那么 8 它们的中位数是 . 5.已知一组数据10,10,x,8(由大到小排列) 的中位数与平均数相等,x = 8 , 9 中位数= .
20.1.2中位数和众数
中位数和众数
将一组数据按照由小到大(或由大到小)的顺序排列, 位于最中间的一个数据 ,(当有偶数个数据时,为最中间 两个数据的平均数) 叫做这组数据的中位数。
下面两组数据的中位数分别是多少?说出这两个中位数的 意义。
( 1) 5 2 ( 2) 5
6 2 6
2 3 3 2
3 5 4
2 6 3 5
你还能为这家鞋店进货提出哪些建议?
课堂练习
1、下面的扇形图描述了某种运动服的S号、M号、 L号、XL号、XXL号在一家商场提出进货建议.
22% 30%
L 16% XL
XXL
M
S
8%
24%
因为众数是M号,所以建议商场多进M号 的运动服,其次是进S号,在其次进L号.少 进XXL号的运动服.
三个数据代表的意义:
还可用平均数评价这名选手的成绩
况
下面的条形图描述了某车间工人日加工零件数的情
人数
10 8 6 4 2 0 3 4 5 6 7 8 日加工零件数 请找出这些工人日加工零件数的中位数,说明这个数的含义 共4+5+8+9+6+5=37个 则按顺序第19个零件数6是中位数 中位数6表示加工6个零件的工人的加工零件数居中等水平
(1)平均数、众数和中位数都是描述一组数据 集中趋势的量; (2)平均数、众数和中位数都有单位; (3)平均数反映一组数据的平均水平,与这组 数据中的每个数都有关系,所以最为重要, 应用最广; (4)中位数不受个别偏大或偏小数据的影响 ; (5)众数与各组数据出现的频数有关,不受个 别数据的影响,有时是我们最为关心的数据。
练习: 1、某餐厅共有7名员工,所有员工的工资情况如下表所示:
人教版八年级数学下册20.1.2中位数与众数 课件
2、 一家鞋店在一段时间内销售了某种 女鞋30双,各种尺码鞋的销售量如下表所 示,你能根据表中的数据为鞋店提供哪些 进货建议呢?
尺码/cm 34 35 36 37 38 39 40
销售量/ 双
1
3
6
11
7
1
1
3、下面的条形图描述了某车间工人日 加工零件数的情况。
请找出这些工人日加工零件数的中位数, 并说明这个中位数的意义。
2.用平均数5000元,反映这家公司员工的一般工资水 平合适吗?为什么?
(二)、探索新知,形成概念
疑问:究竟用什么数据能反映这家公 司员工的一般工资呢?
阅读课本P116-P118内容,完成下面填空。
1、中位数的定义: 将一组数据按照_从__小_到_大___(或_从__大__到__小_)的顺序排列;
学的答题情况绘制成条形统计图,根据图表,全班 每位同学答对的题数的中位数和众数分别为( D )
学生数
25
20
20 18
15
10
5
4
学生数
8
0
7
8
9
10
答对 题数
A 8,8 B 8,9 C 9,9 D 9,8
1 、求下列各组数据的中位数和众数:
数据
中位数
众数
5,6,2,3,2, 3,7,6,8,8,40,10
n 为奇数时,中间位置是第 n 1 个 2
n为偶数时,中间位置是第 n , n 1 个 22
同学相互出题,考考其他同学能不 能“找”出这组数据的中位数
例2 某校女子排球队员的年龄分布如下表:
年龄
13
14
15
人数
4
人教版八年级下册20.1.2中位数和众数说课稿
3.情感态度与价值观目标:培养学生对数学的兴趣,使他们认识到数学在生活中的重要性,增强他们运用数学解决实际问题的意识。
(三)教学重难点
1.教学重点:中位数和众数的定义及其求法,以及它们在实际生活中的应用。
2.小组讨论:教师给出讨论话题,学生分组进行讨论,鼓励他们发表自己的观点,培养他们的合作意识和沟通能力。
3.成果展示:各小组展示自己的研究成果,其他小组进行评价和补充,促进学生之间的交流和学习。
4.课堂练习:教师给出练习题,学生独立完成,教师及时进行点评和指导,帮助学生巩固知识。
四、教学过程设计
(一)导入新课
2.个别辅导:对计算能力不足的学生进行个别辅导,帮助他们提高计算能力。
课后,我将通过学生的课堂表现、作业完成情况和练习成绩来评估教学效果。根据评估结果,我将进行以下反思和改进措施:
1.针对学生的薄弱环节进行重点讲解,提高他们的理解能力。
2.调整教学方法和练习设计,使之更符合学生的学习需求。
3.鼓励学生积极参与课堂活动,提高他们的学习兴趣和动机。
2.同伴评价:鼓励学生互相评价,给出中位数和众数求解过程中的建议和意见。
3.教师评价:教师对学生的学习情况进行总结和评价,针对学生的不足提出改进建议,帮助他们进一步提高。
(五)作业布置
我的课后作业布置情况如下:
1.作业内容:布置一道求中位数和众数的课后作业,让学生独立完成,巩固所学知识。
2.作业目的:通过作业的完成,检验学生对中位数和众数的理解和掌握程度,培养他们的实践能力。
2.课后作业:布置相关的课后作业,如求一组给定数据的中位数和众数,让学生独立完成,巩固所学知识。
20.1.2中位数和众数(优质)教案
中位数和众数第二课时教课目标1、进一步认识均匀数、众数、中位数都是数据的代表。
2、经过本节课的学习还应认识均匀数、中位数、众数在描绘数据时的差异。
3、能灵巧应用这三个数据代表解决实质问题。
要点、难点和打破难点的方法1、要点:认识均匀数、中位数、众数之间的差异。
2、难点:灵巧运用这三个数据代表解决问题。
许多的一种量。
此外要注意:均匀数计算要用到全部的数据,它能够充足利用全部的数据信息,但它受极端值的影响较大 .众数是当一组数据中某一数据重复出现许多时,人们常常关怀的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算极少也不受极端值的影响.均匀数的大小与一组数据中的每个数据均相关系,任何一个数据的改动都会相应惹起均匀数的改动 .中位数仅与数据的摆列地点相关,某些数据的挪动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据改动较大时,可用中位数描绘其趋向 .例习题的企图剖析教材 P146 例 6 的企图( 1)、这是在学习过数据的采集、整理、描绘与剖析以后波及到这四个环节的一个例题,从剖析和解答过程来看它交待了该如何完好的进行这几个过程,为该如何综合运用已学的统计知识解决实质问题作了一个标准典范。
教师在讲课过程中也应注意,对已学知识的稳固复习。
( 2)、从剖析和解答过程来看,此例题的一个主要企图是划分均匀数、众数和中位数这三个数据代表的异同。
(3)、由例题中( 2)问和( 3)问的不一样,致使结果的不一样,其目的是告诉学生应当依据题目详细要求来灵巧运用三个数据代表解决问题。
( 4)、本例题也客观的反应了数学知识对生活实践的指导有重要的意义,也表现了统计知识与生活实践是密切联系的。
讲堂引入本节课的讲堂引入能够经过复习均匀数、中位数和众数定义开始,为达成要点、打破难点作好铺垫,没有必需勉强的加入一个生活实例作为引入问题。
例习题的剖析例题 6 中第一问是在稳固均匀数定义、中位数定义和众数的定义。
人教八年级数学下册- 中位数和众数(附习题)
2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
人教版数学八年级下册-20.1.2中位数和众数教案
20.1.2中位数和众数(1)【课题】:20.1.2中位数和众数(1)【设计与执教者】:【教学时间】:40分钟【学情分析】:(适用于特色班)学生已经对平均数这个数据代表值有了一定的认识,对样本、体概念初步有了了解,在此基础上,根据本堂课的内容,让学生在对比中感受中位数的意义.【教学目标】:1、认识中位数,并会求出一组数据中的中位数。
2、理解中位数的意义和作用。
3、会利用中位数分析数据信息做出决策。
【教学重点】:认识并会求出一组数据中的中位数.【教学难点】:理解中位数的意义.【教学突破点】:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。
教学过程中注重双基,一定要使学生能够很好的掌握中位数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。
【教法、学法设计】:教法:讲授法,引导法学法:师生互动,自主合作、讲练相结合。
【课前准备】:课件【教学过程设计】:(人次)。
(2)落在第四小组。
4、图11是连续十周测试 甲、乙两名运动员体能训 练情况的折线统计图。
教 练组规定:体能测试成绩 70分以上(包括70分)为 合格。
⑴请根据图11中所提 供的信息填写右表:成绩较好;⑶依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效 果较好。
小结: 1、当数据的个数是奇数时,中位数时指处在最中间位置的数;当数据的个数是偶数时,中位数时指处在中间的两个数据的平均数2、中位数不容易受极端值的影响,确定了中位数之后,可以知道小于 中位数的数值和大于中位数的数值在这组数据中各占一半;3、中位数除了中间的值以外,不能反映其他数据的信息 10、8、9、9、8、10、7、9、9、8 的中位数是 20、18、又12,它的中位数是 21,则X 的值23、25、28、22出现的次数依次为 2、5、3、4次,并且没有其他的数据,则这组数据的中位数是4、有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决 赛,他只需知道这 19位同学的5、今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数 据如下表: 档次 A 档第二档第三档第四档第五档分值a (分)a>90 80< a <90 70< a <80 60Wa <70a <60人数7314712286 22平均数中位数体能测试成 绩合格次数甲65乙60⑵请从下面两个不同的角 度对运动员体能测试结果进行 判断: ①依据平均数与成绩合格的次 数比较甲和乙, _的体能测试②依据平均数与中位数比较甲和乙,的体能测试成绩较好。
人教版八年级数学下册《20章 数据的分析 选择适当的统计量描述一组数据的集中趋势》教案_18
20.1.2 平均数、中位数和众数的应用一、教材分析:1.内容解析:本节课是在学习加权平均数、中位数和众数的基础上,结合具体实例进一步比较这三种统计量在描述数据集中趋势的优势与不足,学习根据实际问题情境选择适当的统计量描述数据的集中趋势。
2.教学目标:(1)在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的统计量;(2)能结合具体情境体会平均数、中位数、众数三者的特点与差异,根据具体问题选择这些统计量来分析数据;(3)经历整理、描述、分析数据的过程,发展数据分析观念。
3.教学重难点:重点:运用平均数、中位数、众数相关知识解决问题;难点:在具体问题中,选择适当量描述数据的集中趋势。
二、教学方法:教法分析:在学生已经学习了平均数、中位数和众数的概念后,可以从学生的生活经验和已有的知识背景出发,提供他们研究数学活动的机会,激发学生的积极性,帮助他们更好地理解数学知识和思考方法.学法分析:数学概念一般比较抽象,学生大多喜欢做活动、完任务,所以在课堂上要让学生们在活动中表现自我、发现自我,最终理解数学内容。
在这里,我会采用自主探究、合作交流的方式让学生参与到课堂中来。
三、教学过程:1.知识回顾:什么是平均数、中位数和众数?它们代表的数据意义是什么?【设计意图】:学生作答,回顾一下这三个统计量的概念和意义,为后面的对比做好铺垫。
2.探究新知:例:某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场统计了每位营业员在某月的销售额,数据如下(单位:万元)17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.【设计意图】:让学生自主思考,探究问题,某些不好理解的点上面老师可以帮忙引导一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)填写下表 )
年收入( 年收入(万元)
0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7
1 1 2 3 4 5 3 1
家庭户数
这20个家庭的年平均收入为————万元。 个家庭的年平均收入为 1.6 万元。 1.3 万元。 (2).数据中的中位数是————万元,众数是————万元。 ) 数据中的中位数是 1.2 万元,
1、选择题(选项A:平均数 B:中位数 C:众数) ①为了反映八(1)班同学的平均年龄,应关注学生年 龄的______。 A ②为了资金的迅速周转和减少商品库存积压某手机销售 C 商在进货时要关注各品牌手机销量的 _____。 ③为了考察某同学在一次测验中数学成绩是占上等还是 B 占下等水平,应关注这次数学成绩的______ 。
鞋店老板一般最关心众数 鞋店老板一般最关心众数 公司老板一般以中位数为销售标准 公司老板一般以中位数为销售标准 中位数 裁判一般以平均数为选手最终得分 裁判一般以平均数为选手最终得分 平均数
归纳: 归纳:
平均数、众数及中位数都是描述一组数据 平均数、众数及中位数都是描述一组数据 集中趋势的特征数, 的集中趋势的特征数,但描述的角度和适 用范围有所不同 有所不同。 用范围有所不同。
某商场服装部为了调动营业员的积极性,决定实行 例.某商场服装部为了调动营业员的积极性 决定实行 某商场服装部为了调动营业员的积极性 目标管理,即确定一个月的销售目标 即确定一个月的销售目标,根据目标完成的 目标管理 即确定一个月的销售目标 根据目标完成的 情况对营业员进行适当的奖惩.为了确定一个适当的 情况对营业员进行适当的奖惩 为了确定一个适当的 目标,商场统计了 位营业员在某月的销售额,数据如 商场统计了30位营业员在某月的销售额 目标 商场统计了 位营业员在某月的销售额 数据如 单位万元) 下:(单位万元 单位万元
2.某同学进行社 2.某同学进行社 30% 会调查, 会调查,随机 25% 抽查某地区20 抽查某地区20 个家庭的收入 20% 情况, 情况,并绘制 15% 了统计图请根 10% 据统计图给出 5% 的信息回答: 的信息回答:
0%
所占户数比
所占户数比
年收入 (万元)
0.6 0.9 1 1.1 1.2 1.3 1.4 9.7
例:某公司销售部有营销人员15人,销售部为了制定某 某公司销售部有营销人员 人 种商品的月销售定额,统计了这15人某月销售量如下 人某月销售量如下: 种商品的月销售定额,统计了这 人某月销售量如下:
每人 销售 件数 人数 1800 510 250 210 150 120
1
1
3
5
3
2
位营销人员该月销售量的平均数、 (1)求这 位营销人员该月销售量的平均数、中位 )求这15位营销人员该月销售量的平均数 数和众数 (2)假定销售部负责人把每位营销员的月销售额定为 ) 320件,你认为是否合理?为什么?如不合理,请你给 件 你认为是否合理?为什么?如不合理, 出一个较合理的销售定额。 出一个较合理的销售定额。
1、平均数的计算要用到所有的数据,它 平均数的计算要用到所有的数据, 的计算要用到所有的数据 能够充分利用数据提供的信息, 能够充分利用数据提供的信息,因此 在现实生活中较为常用, 在现实生活中较为常用,但它受极端 值的影响较大; 值的影响较大;
2、众数着眼于对各数据出现的频数的考察, 众数着眼于对各数据出现的频数的考察, 着眼于对各数据出现的频数的考察 其大小只与这组数据中的部分数据有关。 其大小只与这组数据中的部分数据有关。 当一组数据中有不少数据多次重复出现时, 当一组数据中有不少数据多次重复出现时, 其众数往往是我们关心的一种统计量, 其众数往往是我们关心的一种统计量,众 数不受极端值的影响,这是它的一个优点; 数不受极端值的影响,这是它的一个优点; 中位数则仅与数据的排列位置有关, 则仅与数据的排列位置有关 3、中位数则仅与数据的排列位置有关,某些 数据的变动对它的中位数没有影响。 数据的变动对它的中位数没有影响。当一 组数据中的个别数据变动较大时, 组数据中的个别数据变动较大时,可用它 来描述其集中趋势, 来描述其集中趋势,中位数不受极端值的 影响,只需很少的计算,这是它的优点。 影响,只需很少的计算,这是它的优点。
解(1)平均数:320件,众数 平均数: 平均数 件 众数210 中位数: 件,中位数:210件 件
人中只有2个销售额超 (2)不合理。因为 人中只有 个销售额超 )不合理。因为15人中只有 过了320件,而有 人达不到 人达不到320件,尽管 过了 件 而有13人达不到 件 320件是平均数,但它却不能反映营销人员的 件是平均数, 件是平均数 一般水平,销售额定为210件更合适,因为 件更合适, 一般水平,销售额定为 件更合适 210既是众数,又是中位数,是大部分人都能 既是众数, 既是众数 又是中位数, 达到的定额
Байду номын сангаас
17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19 (2)如果想让一半左右的营业员都能达到目标 如果想让一半左右的营业员都能达到目标, 如果想让一半左右的营业员都能达到目标 (1)月销售额在哪个值的人数最多 月销售额在哪个值的人数最多? (1)月销售额在哪个值的人数最多?中间的月 你认为月销售额定为多少合适?说明理由 说明理由. 你认为月销售额定为多少合适 说明理由 销售额是多少?平均的月销售额是多少? 销售额是多少?平均的月销售额是多少? (3)如果想确定一个较高的销售目标 你认为月 如果想确定一个较高的销售目标,你认为月 如果想确定一个较高的销售目标 销售额定为多少合适?说明理由 说明理由. 销售额定为多少合适 说明理由
平均数、中位数和众数都可以作为一组数据的 平均数、中位数和众数都可以作为一组数据的 代表,它们各有自己的特点,能够从不同的角度 代表,它们各有自己的特点,能够从不同的角度 提供信息。 提供信息。 在实际应用中,需要分析具体问题的情况, 在实际应用中,需要分析具体问题的情况,选 具体问题的情况 来代表数据。 择适当的量来代表数据 择适当的量来代表数据。
小结
1、众数的定义 、 2.方法小结: 方法小结 方法小结: 众数由所给数据可直接求出,(一组数据中的 由所给数据可直接求出,( 众数由所给数据可直接求出,(一组数据中的 众数可能不止一个, 众数可能不止一个,众数是一组数据中出现的 次数最多的数据,而不是该数据出现的次数.如 次数最多的数据,而不是该数据出现的次数 如 果有两个数据出现的次数相同, 果有两个数据出现的次数相同,并且比其他数 据出现次数都多,那么这两个数据都是这组数 据出现次数都多, 据的众数)。 据的众数)。 知道了平均数 中位数、众数各自各反映 平均数、 3、知道了平均数、中位数、众数各自各反映 数据的特征。 数据的特征。