2017_2018学年高中数学阶段质量检测二新人教A版选修1_2

合集下载

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

2017-2018学年高中数学人教A版选修2-3:阶段质量检测(一)计数原理含解析

2017-2018学年高中数学人教A版选修2-3:阶段质量检测(一)计数原理含解析

阶段质量检测(一)计数原理(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A.7 B.64C.12 D.81解析:选C 根据分步乘法计数原理,共有4×3=12种.2.若(1+2)4=a+b错误!(a,b为有理数),则a+b=() A.33 B.29C.23 D.19解析:选B ∵(1+错误!)4=C错误!(错误!)0+C错误!(错误!)1+C错误!(错误!)2+C错误!(错误!)3+C错误!(错误!)4=1+4错误!+12+8错误!+4=17+12错误!,由已知,得17+12错误!=a+b错误!,∴a+b=17+12=29.3.(1-x)10展开式中x3项的系数为( )A.-720 B.720C.120 D.-120解析:选D 由T r+1=C错误!(-x)r=(-1)r C错误!x r,因为r=3,所以系数为(-1)3C错误!=-120.4.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有( )A.8种B.10种C.12种D.32种解析:选B 此人从A到B,路程最短的走法应走两纵3横,将纵用0表示,横用1表示,则一种走法就是2个0和3个1的一个排列,只需从5个位置中选2个排0,其余位置排1即可,故共有C错误!=10种.5.已知(1+x)n=a0+a1x+a2x2+…+a n x n,若a0+a1+a2+…+a n=16,则自然数n等于()A.6 B.5C.4 D.3解析:选C 令x=1,得2n=16,则n=4.故选C.6.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300 B.216C.180 D.162解析:选C 由题意知可分为两类,(1)选“0”,共有C错误!C错误!C错误!A错误!=108,(2)不选“0”,共有C错误!A错误!=72,∴由分类加法计数原理得72+108=180,故选C.7.张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数共有( ) A.12 B.24C.36 D.48解析:选B 第一步,将两位爸爸排在两端有2种排法;第二步,将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有2A错误!种排法,故总的排法有2×2×A错误!=24种.8.(2-错误!)8展开式中不含x4项的系数的和为()A.-1 B.0C.1 D.2解析:选B (2-错误!)8展开式的通项为T r+1=C错误!·28-r·(-r=C错误!·28-r·(-1)r·x错误!.由错误!=4得r=8.∴展开式中错误!)x4项的系数为C错误!=1.又(2-错误!)8展开式中各项系数和为(2-1)8=1,∴展开式中不含x4项的系数的和为0.9.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数"共有() A.18个B.15个C.12个D.9个解析:选B 依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.10.已知错误!8展开式中常数项为1 120,其中实数a是常数,则展开式中各项系数的和是()A.28B.38C.1或38D.1或28解析:选C T r+1=(-a)r C错误!x8-2r,令8-2r=0⇒r=4.∴T5=C错误!(-a)4=1 120,∴a=±2.当a=2时,各项系数的和为(1-2)8=1;当a=-2时,各项系数的和为(1+2)8=38.11.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有( )A.66条B.72条C.74条D.78条解析:选B 先考虑x≥0,y≥0时,圆上横、纵坐标均为整数的点有(1,7)(5,5)(7,1),依圆的对称性知,圆上共有3×4=12个点的横、纵坐标均为整数,经过其中任意两点的割线有C错误!=66(条),过每一点的切线共有12条,又考虑到直线ax+by-1=0不经过原点,而上述直线中经过原点的有6条,所以满足题意的直线共有66+12-6=72(条).12.将二项式错误!8的展开式中所有项重新排成一列,有理式不相邻的排法种数为()A.A错误!B.A错误!A错误!C.A66A错误!D.A错误!A错误!解析:选C 错误!8展开式的通项公式T r+1=C错误!·(错误!)8-r·错误!r=C r,82r·x错误!,r=0,1,2,…,8.当错误!为整数时,r=0,4,8.∴展开式共有9项,其中有有理项3项,先排其余6项有A错误!种排法,再将有理项插入形成的7个空档中,有A错误!种方法.∴共有A错误!A 错误!种排法.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.解析:设女生有x人,则C2,8-x·C1x=30,即错误!·x=30,解得x=2或3.答案:2或314.若错误!n的展开式中含有常数项,则最小的正整数n等于________.解析:二项式的通项为T r+1=C错误!(2x3)n-r·错误!r=C错误!2n-r·x3n-错误!,令3n-错误!r=0,即r=错误!n,而r∈N*.∴n为7的整数倍,即最小的正数n等于7.答案:715.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)解析:因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以适合题意的四位数有24-2=14个.答案:1416.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有________种.(用数字作答)解析:先分组错误!,再把三组分配乘以A错误!得:错误!·A错误!=90种.答案:90三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知A={x|1<log2x〈3,x∈N*},B ={x||x-6|〈3,x∈N*},试问:从集合A和B中各取一个元素作为直角坐标系中点的坐标,共可得到多少个不同的点?解:A={3,4,5,6,7},B={4,5,6,7,8}.从A中取一个数作为横坐标,从B中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标且8不是横坐标的情况有4种,故共有5×5+5+4=34个不同的点.18.(本小题满分12分)已知(1+2x)n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的5 6 ,试求展开式中二项式系数最大的项.解:二项式的通项为T k+1=C错误!(2k)x错误!由题意知展开式中第k+1项系数是第k项系数的2倍,是第k+2项系数的错误!,∴错误!解得n=7.∴展开式中二项式系数最大两项是:T4=C错误!(2错误!)3=280x错误!与T5=C错误!(2错误!)4=560x2.19.(本小题满分12分)10件不同厂生产的同类产品:(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?解:(1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A错误!=1 680(或C错误!·A错误!)(种).(2)分步完成.先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A2,6种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A48种方法,共有A错误!·A错误!=50 400(或C错误!·A错误!)(种).20.(本小题满分12分)已知错误!n的展开式中,前三项系数成等差数列.(1)求n;(2)求第三项的二项式系数及项的系数;(3)求含x 项的系数.解:(1)∵前三项系数1,错误!C 错误!,错误!C 错误!成等差数列. ∴2·12C 1,n =1+错误!C 错误!,即n 2-9n +8=0. ∴n =8或n =1(舍).(2)由n =8知其通项公式T r +1=C r 8·(错误!)8-r .错误!r =错误!r .C 错误!.x 4-错误!r ,r =0,1, (8)∴第三项的二项式系数为C 错误!=28.第三项的系数为错误!2·C 错误!=7.(3)令4-34r =1,得r =4, ∴含x 项的系数为错误!4·C 错误!=错误!.21.(本小题满分12分)如图有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?解:分为两类: 第一类:若1,3同色,则1有5种涂法,2有4种涂法,3有1种涂法(与1相同),4有4种涂法.故N1=5×4×1×4=80.第二类:若1,3不同色,则1有5种涂法,2有4种涂法,3有3种涂法,4有3种涂法.故N2=5×4×3×3=180种.综上可知不同的涂法共有N=N1+N2=80+180=260种.22.(本小题满分12分)7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.解:(1)两名女生站在一起有站法A错误!种,视为一种元素与其余5人全排,有A错误!种排法.故有不同站法有A错误!·A错误!=1 440种.(2)先站老师和女生,有站法A错误!种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,有插入方法A错误!种.故共有不同站法A错误!·A错误!=144种.(3)7人全排列中,4名男生不考虑身高顺序的站法有A错误!种,而由高到低有从左到右,或从右到左的不同.故共有不同站法2×错误!学必求其心得,业必贵于专精=420种.(4)中间和两端是特殊位置,可如下分类求解:①老师站两端之一,另一端由男生站,有A错误!·A错误!·A错误!种站法,②两端全由男生站,老师站除两端和正中间的另外4个位置之一,有A错误!·A 错误!·A错误!种站法.故共有不同站法共有A错误!·A错误!·A错误!+A 错误!·A错误!·A错误!=2 112种.。

2017-2018学年高中数学第二章推理与证明2.2.2反证法教学案新人教A版选修1_2

2017-2018学年高中数学第二章推理与证明2.2.2反证法教学案新人教A版选修1_2

2.2.2 反证法预习课本P42~43,思考并完成下列问题(1)反证法的定义是什么?有什么特点?(2)利用反证法证题的关键是什么?步骤是什么?[新知初探]反证法的定义及证题的关键[点睛] 对反证法概念的理解(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.(2)反证法属“间接解题方法”.2.“反证法”和“证逆否命题”的区别与联系(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.( )(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.( )(3)反证法的实质是否定结论导出矛盾.( )答案:(1)√(2)×(3)√2.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用( )①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论A.①②B.①②④C.①②③ D.②③答案:C3.如果两个实数之和为正数,则这两个数( )A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数答案:C4.用反证法证明“如果a>b,那么3a>3b”,假设的内容应是________.答案:3a≤3b用反证法证明否定性命题[典例] 已知三个正数a,b,c成等比数列,但不成等差数列.求证:a,b,c不成等差数列.[证明] 假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.∵a,b,c成等比数列,∴b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0,即a=c.从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.用反证法证明数学命题的步骤[活学活用] 已知f (x )=a x+x -2x +1(a >1),证明方程f (x )=0没有负数根. 证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1,且ax 0=-x 0-2x 0+1, 由0<ax 0<1⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾,所以假设不成立,故方程f (x )=0没有负数根.用反证法证明“至多”“至少”问题[0=0,x 2+2ax -2a =0中至少有一个方程有实数解.[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧(4a )2-4(-4a +3)<0,(a -1)2-4a 2<0,(2a )2+4×2a <0⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,⇒-32<a <-1,-2<a <0.这与已知a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解. [一题多变]1.[变条件,变设问]将本题改为:已知下列三个方程x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实数根,如何求实数a 的取值范围?解:若方程没有一个有实根,则⎩⎪⎨⎪⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a <0,解得⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,即-32<a <-1,-2<a <0.故三个方程至少有一个方程有实根,实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32. 2.[变条件,变设问]将本题条件改为三个方程中至多有2个方程有实数根,求实数a 的取值范围.解:假设三个方程都有实数根,则 ⎩⎪⎨⎪⎧(4a )2-4(-4a +3)≥0,(a -1)2-4a 2≥0,(2a )2+4×2a ≥0,即⎩⎪⎨⎪⎧4a 2+4a -3≥0,3a 2+2a -1≤0,a 2+2a ≥0,解得⎩⎪⎨⎪⎧a ≤-32或a ≥12,-1≤a ≤13,a ≤-2或a ≥0.即a ∈∅.所以实数a 的取值范围为实数R.3.[变条件,变设问]已知a ,b ,c ,d ∈R,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =c +d =1, ∴(a +b )(c +d )=1, ∴ac +bd +bc +ad =1.而ac +bd +bc +ad >ac +bd >1,与上式矛盾, ∴假设不成立,∴a ,b ,c ,d 中至少有一个是负数.用反证法证明“至多”“至少”等问题的两个关注点(1)反设情况要全面,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.(2)常用题型:对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.用反证法证明唯一性命题[典例][证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.巧用反证法证明唯一性命题(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.[活学活用]求证:过直线外一点只有一条直线与它平行.证明:已知:直线b∥a,A∉a,A∈b,求证:直线b唯一.假设过点A还有一条直线b′∥a.根据平行公理,∵b∥a,∴b∥b′,与b∩b′=A矛盾,∴假设不成立,原命题成立.层级一学业水平达标1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为( )A.①②③B.③①②C.①③② D.②③①解析:选B 根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B “至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选 B “至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( ) A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B ∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a >b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.答案:自然数a,b,c中至少有两个偶数或都是奇数7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠18.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB⊂α,CD⊂α,这与AB,CD异面相矛盾,故AC与BD异面.答案:异面9.求证:1,3,2不能为同一等差数列的三项.证明:假设1,3,2是某一等差数列的三项,设这一等差数列的公差为d,则1=3-md,2=3+nd,其中m,n为两个正整数,由上面两式消去d,得n+2m=3(n+m).因为n+2m为有理数,而3(n+m)为无理数,所以n+2m≠3(n+m),矛盾,因此假设不成立,即1,3,2不能为同一等差数列的三项.10.已知函数f(x)在R上是增函数,a,b∈R.(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.解:(1)证明:当a+b≥0时,a≥-b且b≥-a.∵f(x)在R上是增函数,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b).(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.用反证法证明如下:假设a+b<0,则a<-b,∴f(a)<f(-b).同理可得f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,∴a+b≥0成立,即(1)中命题的逆命题成立.层级二应试能力达标1.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x 的方程ax=b(a≠0)()A.无解B.有两解C.至少有两解D.无解或至少有两解解析:选D “唯一”的否定是“至少两解或无解”.2.下列四个命题中错误的是( )A .在△ABC 中,若∠A =90°,则∠B 一定是锐角 B.17,13,11不可能成等差数列C .在△ABC 中,若a >b >c ,则∠C >60°D .若n 为整数且n 2为偶数,则n 是偶数解析:选C 显然A 、B 、D 命题均真,C 项中若a >b >c ,则∠A >∠B >∠C ,若∠C >60°,则∠A >60°,∠B >60°,∴∠A +∠B +∠C >180°与∠A +∠B +∠C =180°矛盾,故选C.3.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:选C 假设都大于-2,则a +1b +b +1c +c +1a>-6,但⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ≤-2+(-2)+(-2)=-6,矛盾. 4.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定解析:选B 分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意.5.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:06.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0. 但0≠奇数,这一矛盾说明p 为偶数. 解析:据题目要求及解题步骤, ∵a 1-1,a 2-2,...,a 7-7均为奇数, ∴(a 1-1)+(a 2-2)+...+(a 7-7)也为奇数. 即(a 1+a 2+...+a 7)-(1+2+...+7)为奇数. 又∵a 1,a 2,...,a 7是1,2,...,7的一个排列, ∴a 1+a 2+...+a 7=1+2+...+7,故上式为0, 所以奇数=(a 1-1)+(a 2-2)+...+(a 7-7) =(a 1+a 2+...+a 7)-(1+2+...+7)=0. 答案:(a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)7.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为0<a <1,0<b <1,0<c <1, 所以1-a >0.由基本不等式, 得(1-a )+b2≥(1-a )b >14=12. 同理,(1-b )+c 2>12,(1-c )+a 2>12.将这三个不等式两边分别相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>12+12+12, 即32>32,这是不成立的, 故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.8.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.解:(1)由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝ ⎛⎭⎪⎫23n -1,故1-a 2n =34·⎝ ⎛⎭⎪⎫23n -1⇒a 2n =1-34·⎝ ⎛⎭⎪⎫23n -1.又a 1=12>0,a n a n +1<0,故a n =(-1)n -11-34·⎝ ⎛⎭⎪⎫23n -1. b n =a 2n +1-a 2n =⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -1-34·⎝ ⎛⎭⎪⎫23n -1=14·⎝ ⎛⎭⎪⎫23n -1. (2)用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只可能有2b s =b r +b t 成立.∴2·14·⎝ ⎛⎭⎪⎫23s -1=14·⎝ ⎛⎭⎪⎫23r -1+14·⎝ ⎛⎭⎪⎫23t -1,两边同乘以3t -121-r,化简得3t -r+2t -r=2·2s -r 3t -s.由于r <s <t ,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f (x )=x 2在R 上是偶函数”的推理过程是( ) A .归纳推理 B .类比推理 C .演绎推理D .非以上答案解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C. 2.自然数是整数,4是自然数,所以4是整数.以上三段论推理( ) A .正确B .推理形式不正确C .两个“自然数”概念不一致D .“两个整数”概念不一致解析:选A 三段论中的大前提、小前提及推理形式都是正确的.3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有( )A.0 B.1C.2 D.3解析:选B 可用反证法推出①,②不正确,因此③正确.4.下列推理正确的是( )A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)解析:选D (xy)z=x(yz)是乘法的结合律,正确.5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )A.(3,9) B.(4,8)C.(3,10) D.(4,9)解析:选D 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.6.求证:2+3> 5.证明:因为2+3和5都是正数,所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立.上述证明过程应用了( )A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.7.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为( )A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9解析:选D 由等差数列性质,有a1+a9=a2+a8=…=2a5.易知D成立.8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n+a n +1}一定是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0解析:选 D 法一:∵a +b +c =0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +b c =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.10.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3,得⎩⎪⎨⎪⎧a -b +c =1,a -b +c =7,a -b +c =34.所以a =12,b =c =14.11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2a n (n ∈N *),可归纳猜想出S n 的表达式为( )A .S n =2n n +1B .S n =3n -1n +1C .S n =2n +1n +2D .S n =2n n +2解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )A.1 C .4D .5解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于1 14.已知a >0,b >0,m =lga +b2,n =lga +b2,则m ,n 的大小关系是________.解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒a +b2>a +b2⇒lga +b2>lga +b2.答案:m >n 15.已知 2+23=223, 3+38=338, 4+415= 4415,…, 6+a b =6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.解析:由题意归纳推理得6+a b =6a b,b =62-1 =35,a =6.∴a +b =6+35=41.答案:4116.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 38.答案:a 38三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab ,∴lg a +b2≥lg ab ,∴lga +b 2≥12lg ab =lg a +lg b2. (2)要证 6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n (n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证明).解:(1)证明:若a n +1=a n ,即2a n1+a n =a n ,解得a n =0或1.从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾,所以a n +1=a n 不成立. 故a n +1≠a n 成立.(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2n -12n -1+1.19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根. 解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 265°+sin 2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.解:一般形式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-α+2+1-α+2=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°)=32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边. 将一般形式写成sin 2(α-60°)+sin 2α+sin 2(α+60°)=32也正确22.(本小题满分12分)根据要求证明下列各题:(1)用分析法证明:已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤2;(2)用反证法证明:1,2,3不可能是一个等差数列中的三项. 证明:(1)a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2.只需证|a |+|b |≤ 2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成立,故原不等式得证.(2)假设1,2,3是某一个等差数列中的三项,且分别是第m,n,k项(m,n,k∈N*),则数列的公差d=2-1n-m=3-1k-m,即2-1=n-mk-m,因为m,n,k∈N*,所以(n-m)∈Z,(k-m)∈Z,所以n-mk-m为有理数,所以2-1是有理数,这与2-1是无理数相矛盾.故假设不成立,所以1,2,3不可能是一个等差数列的三项.。

人教A版高中数学选修1-1:单元质量评估(二) Word版含答案

人教A版高中数学选修1-1:单元质量评估(二) Word版含答案

温馨提示:此套题为Word版,请按住Ctr l,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

单元质量评估(二)第二章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆+=1与双曲线-=1有相同的焦点,则k应满足的条件是( )A.k>3B.2<k<3C.k=2D.0<k<2【解析】选C. k>0,=,所以k=2.2.(2016·菏泽高二检测)若双曲线的顶点为椭圆x2+=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程为( )A.x2-y2=1B.y2-x2=1C.x2-y2=2D.y2-x2=2【解析】选D.由题意设双曲线方程为-=1,离心率为e,椭圆x2+=1长轴端点为(0,),所以a=,又椭圆的离心率为,所以双曲线的离心率为,所以c=2,b=,则双曲线的方程为y2-x2=2.3.(2016·浙江高考)已知椭圆C1:+y2=1(m>1)与双曲线C2:-y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1【解题指南】根据椭圆与双曲线离心率的定义求解,注意a2,b2与c2的关系.【解析】选A.由题意知m2-1=n2+1,即m2=n2+2,(e1e2)2=·=,因为m2=n2+2,m>1,n>0,所以m>n,(e1e2)2>1,所以e1e2>1.4.(2016·潍坊高二检测)设椭圆+=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为( )A.+=1B.+=1C.+=1D.+=1【解析】选B.因为y2=8x的焦点为(2,0),所以+=1的右焦点为(2,0),所以m>n且c=2.又e==,所以m=4.因为c2=m2-n2=4,所以n2=12.所以椭圆方程为+=1.【补偿训练】(2016·成都高二检测)已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-,则此双曲线的方程是( )A.-=1B.-=1C.-=1D.-=1【解题指南】先根据题意设出双曲线的方程-=1,然后与直线方程联立方程组,消元得二元一次方程,根据根与系数的关系及MN中点的横坐标建立a,b的一个方程,又双曲线中有c2=a2+b2,则另得a,b的一个方程,最后解a,b的方程组即得双曲线方程.【解析】选B.设双曲线方程为-=1,将y=x-1代入-=1,整理得(b2-a2)x2+2a2x-a2-a2b2=0,由根与系数的关系得x1+x2=,则==-.又c2=a2+b2=7,解得a2=2,b2=5,所以双曲线的方程为-=1.5.P是长轴在x轴上的椭圆+=1上的点,F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|·|PF2|的最大值与最小值之差一定是( )A.1B.a2C.b2D. c2【解析】选D.由椭圆的几何性质得|PF1|∈,|PF1|+|PF2|=2a,所以|PF1|·|PF2|≤=a2,当且仅当|PF1|=|PF2|时取等号.|PF1|·|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2≥-c2+a2=b2,所以|PF1|·|PF2|的最大值与最小值之差为a2-b2=c2.6.(2016·天津高二检测)已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p= ( )A.1B.C.2D.3【解析】选 C.因为e=2,所以b2=3a2,双曲线的两条渐近线方程为y=±x,不妨设A=,B,则AB=p,又三角形的高为,则S△AOB=××p=,即p2=4,又因为p>0,所以p=2.7.(2016·东营高二检测)已知点P是抛物线y2=-8x上一点,设点P到此抛物线准线的距离是d1,到直线x+y-10=0的距离是d2,则d1+d2的最小值是( )A. B.2C.6D.3【解析】选C.抛物线y2=-8x的焦点F(-2,0),根据抛物线的定义知,d1+d2=|PF|+d2,显然当由点F向直线x+y-10=0作垂线与抛物线的交点为P时,d1+d2取到最小值,即=6.8.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k等于( )A.2或-1B.-1C.2D.1±【解析】选C.由消去y得,k2x2-4(k+2)x+4=0,故Δ=2-4k2×4=64(1+k)>0,解得k>-1,由x1+x2==4,解得k=-1或k=2,又因为k>-1,故k=2.【易错警示】本题易忽略Δ>0而错选A.9.(2016·邯郸高二检测)设双曲线-=1(a>0,b>0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±2x【解析】选A.由题意得解得所以a==,因此双曲线的方程为-y2=1,所以渐近线方程为y=±x.10.(2015·福建高考)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是( )A. B.C. D.【解析】选A.不妨设左焦点为F2,连接AF2,BF2,由椭圆的对称性可知四边形AFBF2的对角线互相平分,所以四边形AFBF2为平行四边形,所以+=+=2a=4,所以a=2,设M(0,b),所以d=b≥⇒b≥1,所以e==≤=,又e∈(0,1),所以e∈.11.(2016·哈尔滨高二检测)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则E的标准方程为( )A.+=1B.+=1C.+=1D.+=1【解析】选D.设A点坐标为(x1,y1),B点坐标为(x2,y2),所以两式相减得,=,即=,因为x1+x2=2,y1+y2=-2,所以k==,又因为k==,所以=,又因为c2=a2-b2=2b2-b2=b2,c2=9,所以b2=9,a2=18,即E的标准方程为+=1.12.(2016·宝鸡高二检测)设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF 为直径的圆过点A(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x【解析】选C.由已知得F,A(0,2),M,因为AF⊥AM,所以k AF·k AM=-1,即×=-1,所以-8y0+16=0,所以y0=4,所以M,因为|MF|=5,所以5=,所以=9.所以-=3或-=-3,所以9p2-36p-64=0,①或9p2+36p-64=0,②由①得p=-(舍),p=.由②得p=,p=-,所以C的方程为y2=4x或y2=16x.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.椭圆mx2+ny2=1与直线l:x+y=1交于M,N两点,过原点与线段MN中点的直线斜率为,则= .【解析】设M(x1,y1),N(x2,y2),所以m+n=1 ①m+n=1 ②又因为=-1,所以①-②得:m=n·,因为==,所以m=n,所以=.答案:14.直线y=kx+1(k∈R)与椭圆+=1恒有公共点,则m的取值范围为.【解析】将y=kx+1代入椭圆方程,消去y并整理,得(m+5k2)x2+10kx+5-5m=0.由m>0,5k2≥0,知m+5k2>0,故Δ=100k2-4(m+5k2)(5-5m)≥0对k∈R恒成立.即5k2≥1-m对k∈R恒成立,故1-m≤0,所以m≥1.又因为m≠5,所以m的取值范围是m≥1且m≠5.答案:m≥1且m≠5【易错警示】本题易忽略隐含条件m≠5而出错.15.(2015·山东高考)过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P,若点P的横坐标为2a,则C的离心率为.【解题指南】本题是双曲线性质的综合应用,应从焦点和渐近线出发构造a,b,c的关系,进而求出离心率e.【解析】将y=(x-c)代入-=1消去y得-=1,因为x P=2a<c,所以-=1,化简得3a2=(2a-c)2,即a=c-2a,所以e=2+.答案:2+【补偿训练】(2016·济宁高二检测)已知椭圆+=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为( )A. B.C. D.【解析】选A.由PF1⊥PF2,知△F1PF2是直角三角形,所以|OP|=c≥b,即c2≥a2-c2,所以a≤c,因为e=,0<e<1,所以≤e<1.16.(2015·浙江高考)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.【解题指南】利用已知条件求出点Q的坐标,从而求出a,b,c的关系.【解析】设F(c,0)关于直线y=x的对称点为Q(m,n),则有解得m=,n=,所以Q在椭圆上,即有+=1,解得a2=2c2,所以离心率e==.答案:三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线的顶点在原点,它的准线过双曲线-=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P,求抛物线方程和双曲线方程.【解析】依题意,设抛物线方程为y2=2px(p>0),因为点在抛物线上,所以6=2p×,所以p=2,所以所求抛物线方程为y2=4x.因为双曲线左焦点在抛物线的准线x=-1上,所以c=1,即a2+b2=1,又点在双曲线上,所以-=1,由解得a2=,b2=.所以所求双曲线方程为4x2-y2=1.【补偿训练】若已知椭圆+=1与双曲线x2-=1有相同的焦点,又椭圆与双曲线交于点P,求椭圆及双曲线的方程.【解析】由椭圆与双曲线有相同的焦点得10-m=1+b,即m=9-b,①又因为点P在椭圆、双曲线上,所以y2=m,②y2=.③解由①②③组成的方程组得m=1,b=8,所以椭圆方程为+y2=1,双曲线方程为x2-=1.18.(12分)求以直线x+2y=0为渐近线,且截直线x-y-3=0所得弦长为的双曲线的标准方程.【解析】由于双曲线的渐近线方程为x+2y=0,故可设双曲线方程为x2-4y2=λ(λ≠0).设直线x-y-3=0与双曲线的交点为A(x1,y1),B(x2,y2).联立方程组消去y,整理得3x2-24x+36+λ=0.由Δ=(-24)2-3×4(36+λ)>0,解得λ<12.由根与系数关系可得代入弦长公式中,|AB|=|x1-x2|=·=·=,于是=,解得λ=4(与λ<12符合).故所求的双曲线的标准方程为-y2=1.19.(12分)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程.(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.【解析】(1)直线AB的方程是y=2,与y2=2px联立,从而有4x2-5px+p2=0,所以x1+x2=,由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,方程4x2-5px+p2=0可化为x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),又=8x3,即2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.20.(12分)已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程.(2)△PF1F2的面积.【解析】(1)令F1(-c,0),F2(c,0)(c>0),则b2=a2-c2.因为PF1⊥PF2,所以·=-1,即·=-1,解得c=5,所以设椭圆方程为+=1.因为点P(3,4)在椭圆上,所以+=1.解得a2=45或a2=5.又因为a>c,所以a2=5(舍去).故所求椭圆方程为+=1.(2)由椭圆定义知|PF1|+|PF2|=6,①又|PF1|2+|PF2|2=|F1F2|2=100,②①2-②得2|PF1|·|PF2|=80,所以=|PF1|·|PF2|=20.【补偿训练】已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA 与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.【解析】(1)将(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求的抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.另一方面,由直线OA到l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.21.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=x2的焦点,离心率为.(1)求椭圆C的标准方程.(2)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于点M,若=m,=n,求m+n的值.【解析】(1)设椭圆C的标准方程为+=1(a>b>0).抛物线方程可化为x2=4y,其焦点为(0,1),则椭圆C的一个顶点为(0,1),即b=1.由e===.得a2=5,所以椭圆C的标准方程为+y2=1.(2)易求出椭圆C的右焦点F(2,0),设A(x1,y1),B(x2,y2),M(0,y0),显然直线l的斜率存在,设直线l的方程为y=k(x-2),代入方程+y2=1,得(1+5k2)x2-20k2x+20k2-5=0.所以x1+x2=,x1x2=.又=(x1,y1-y0),=(x2,y2-y0),=(x1-2,y1),=(x2-2,y2).因为=m,=n,所以m=,n=,所以m+n=,又2x1x2-2(x1+x2)==-,4-2(x1+x2)+x1x2=4-+=,所以m+n=10.22.(12分)(2016·北京高考)已知椭圆C:+=1过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率.(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【解题指南】(1)把A,B两点代入可求得a,b.(2)设P(x0,y0),表示出直线AP,BP方程,求出点M,N坐标,表示出面积.再利用点P在椭圆上化简整理为定值.【解析】(1)把A(2,0),B(0,1)分别代入椭圆方程得a=2,b=1.所以椭圆C的方程为+y2=1. 因为c==,所以离心率e==.(2)设P(x0,y0),其中x0<0,y0<0.则直线AP方程为y=(x-2),直线BP方程为y=x+1.所以M,N.所以|AN|=2+,|BM|=+1.所以四边形ABNM的面积为S=|AN||BM|==××==.因为点P在椭圆C上,所以=4-4.代入上式得S ===2.因此,四边形ABNM的面积为定值2.关闭Word文档返回原板块高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

2017-2018学年高中数学人教A版选修2-1教师用书:2-4

2017-2018学年高中数学人教A版选修2-1教师用书:2-4

第1课时 抛物线及其标准方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 64~P 67的内容,回答下列问题.(1)观察教材P 64-图2.4-1,点F 是定点,l 是不经过点F 的定直线,H 是l 上任意一点,过点H 作MH ⊥l ,线段FH 的垂直平分线m 交MH 于点M ,拖动点H ,观察点M 的轨迹.①M 的轨迹是什么形状? 提示:抛物线.②|MH |与|MF |之间有什么关系? 提示:相等.③抛物线上任意一点M 到点F 和直线l 的距离都相等吗? 提示:都相等.(2)观察教材P 65-图2.4-2,直线l 的方程为x =-p2,定点F 的坐标为⎝⎛⎭⎫p 2,0,设M (x ,y ),根据抛物线的定义可知|MF |=|MH |,则M 点的轨迹方程是什么?提示:y 2=2px (p >0). 2.归纳总结,核心必记 (1)抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)抛物线的标准方程续表[问题思考](1)在抛物线定义中,若去掉条件“l 不经过点F ”,点的轨迹还是抛物线吗? 提示:不一定是抛物线,当直线l 经过点F 时,点的轨迹是过点F 且垂直于定直线的一条直线,l 不过定点F 时,点的轨迹是抛物线.(2)到定点A (3,0)和定直线l :x =-3距离相等的点的轨迹是什么?轨迹方程又是什么? 提示:轨迹是抛物线,轨迹方程为:y 2=12x .(3)若抛物线的焦点坐标为(2,0),则它的标准方程是什么?提示:由焦点在x 轴正半轴上,设抛物线的标准方程为y 2=2px (p >0),其焦点坐标为⎝⎛⎭⎫p 2,0,则p 2=2,故p =4.所以抛物线的标准方程是y 2=8x .[课前反思]通过以上预习,必须掌握的几个知识点.(1)抛物线的定义是: ;(2)抛物线的焦点和准线的定义是: ; (3)抛物线的标准方程是什么?其对应的抛物线的开口方向有什么特点?焦点坐标和准线方程又是什么?.[思考1] 抛物线的标准方程有哪几种类型?名师指津:y 2=2px (p >0);y 2=-2px (p >0);x 2=2py (p >0);x 2=-2py (p >0). [思考2] 抛物线方程中p 的几何意义是什么? 名师指津:p 的几何意义是:焦点到准线的距离.[思考3] 如何根据抛物线标准方程求焦点坐标和准线方程?名师指津:先确定抛物线的对称轴和开口方向,然后求p ,利用焦点坐标及准线的定义求解.讲一讲1.求下列抛物线的焦点坐标和准线方程: (1)y 2=-14x ;(2)5x 2-2y =0; (3)y 2=ax (a >0).[尝试解答] (1)因为p =7,所以焦点坐标是⎝⎛⎭⎫-72,0,准线方程是x =72. (2)抛物线方程化为标准形式为x 2=25y ,因为p =15,所以焦点坐标是⎝⎛⎭⎫0,110,准线方程是y =-110.(3)由a >0知p =a 2,所以焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a 4.根据抛物线方程求其焦点坐标和准线方程时,首先要看抛物线方程是否为标准形式,如果不是,要先化为标准形式;然后判断抛物线的对称轴和开口方向,再利用p 的几何意义,求出焦点坐标和准线方程.练一练1.求抛物线y =ax 2(a ≠0)的焦点坐标和准线方程. 解:把抛物线方程y =ax 2化成标准方程x 2=1ay .当a >0时,焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a ; 当a <0时,焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a. 综上知,所求抛物线的焦点坐标为⎝⎛⎭⎫0,14a ,准线方程为y =-14a.[思考1]抛物线标准方程有什么特点?名师指津:等号一边是某个变量的完全平方,等号的另一边是另一个变量的一次项.[思考2]如何求抛物线的标准方程?名师指津:(1)确定抛物线的对称轴和开口方向;(2)求p的值.讲一讲2.求适合下列条件的抛物线的标准方程:(1)过点M(-6,6);(2)焦点F在直线l:3x-2y-6=0上.[尝试解答](1)∵点M(-6,6)在第二象限,∴过M的抛物线开口向左或开口向上.若抛物线开口向左,焦点在x轴上,设其方程为y2=-2px(p>0),将点M(-6,6)代入,可得36=-2p×(-6),∴p=3.∴抛物线的方程为y2=-6x.若抛物线开口向上,焦点在y轴上,设其方程为x2=2py(p>0),将点M(-6,6)代入可得,36=2p×6,∴p=3,∴抛物线的方程为x2=6y.综上所述,抛物线的标准方程为y2=-6x或x2=6y.(2)①∵直线l与x轴的交点为(2,0),∴抛物线的焦点是F(2,0),∴p2=2,∴p=4,∴抛物线的标准方程是y2=8x.②∵直线l与y轴的交点为(0,-3),即抛物线的焦点是F(0,-3),∴p2=3,∴p=6,∴抛物线的标准方程是x2=-12y.综上所述,所求抛物线的标准方程是y2=8x或x2=-12y.求抛物线标准方程的两种方法(1)当焦点位置确定时,可利用待定系数法,设出抛物线的标准方程,由已知条件建立关于参数p 的方程,求出p 的值,进而写出抛物线的标准方程.(2)当焦点位置不确定时,可设抛物线的方程为y 2=mx 或x 2=ny ,利用已知条件求出m ,n 的值.练一练2.根据下列条件写出抛物线的标准方程: (1)准线方程为y =-1;(2)焦点在x 轴的正半轴上,焦点到准线的距离是3.解:(1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p2=1,则p =2.故抛物线的标准方程为x 2=4y .(2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0), 则焦点坐标为⎝⎛⎭⎫p 2,0,准线为x =-p 2, 则焦点到准线的距离是⎪⎪⎪⎪-p 2-p2=p =3, 因此所求的抛物线的标准方程是y 2=6x .讲一讲3.已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时的P 点坐标.[尝试解答] 如图,作PN ⊥l 于N (l 为准线),作AB ⊥l 于B ,则|P A |+|PF |=|P A |+|PN |≥|AB |,当且仅当P 为AB 与抛物线的交点时,取等号. ∴()|P A |+|PF |min=|AB |=3+12=72.此时y P =2,代入抛物线得x P =2,∴P 点坐标为(2,2).(1)抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故二者可相互转化,这也是利用抛物线定义解题的实质.(2)解决与抛物线焦点、准线距离有关的最值、定值问题时,首先要注意应用抛物线的定义进行转化,其次是注意平面几何知识的应用,例如两点之间线段最短;三角形中三边间的不等关系;点与直线上点的连线中,垂线段最短等.练一练3.已知点P 是抛物线y 2=2x 上的一个动点,求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值.解:由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知, 当点P ,A (0,2),和抛物线的焦点F ⎝⎛⎭⎫12,0三点共线时距离之和最小.所以最小距离d =⎝⎛⎭⎫0-122+(2-0)2=172.讲一讲4.一辆卡车高3 m ,宽1.6 m ,欲通过截面为抛物线型的隧道,已知拱口宽AB 恰好是拱高的4倍,若拱口宽为a m ,求能使卡车通过的a 的最小整数值.[尝试解答] 以拱顶为原点,拱高所在直线为y 轴,建立直角坐标系,如图所示,设抛物线方程为x 2=-2py (p >0),则点B 的坐标为⎝⎛⎭⎫a 2,-a4,由点B 在抛物线上, 得⎝⎛⎭⎫a 22=-2p ⎝⎛⎭⎫-a 4, 所以p =a2,所以抛物线方程为x 2=-ay .将点(0.8,y )代入抛物线方程,得y =-0.64a.欲使卡车通过隧道,应有a 4-|y |=a 4-0.64a >3.解得a >12.21,或a <-0.21(舍去). ∵a 取整数, ∴a 的最小值为13.在建立抛物线的方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得方程不含常数项,形式更为简单,便于计算.练一练4.喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解:如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上, 所以25=-2p ·(-5),因此2p =5, 所以抛物线的方程为x 2=-5y , 点A (-4,y 0)在抛物线上, 所以16=-5y 0,即y 0=-165,所以OA 的长为5-165=1.8(m).所以管柱OA 的长为1.8 m.—————————————[课堂归纳·感悟提升]——————————————— 1.本节课的重点是抛物线标准方程的求法和焦点坐标、准线的求法.难点是抛物线定义的应用和抛物线方程的实际应用.2.本节课要重点掌握的规律方法(1)由抛物线方程求焦点坐标和准线方程,如讲1; (2)求抛物线的标准方程,如讲2; (3)利用抛物线的定义解决最值问题,如讲3.3.由抛物线方程求焦点坐标和准线方程时,如果不是标准方程应先转化为标准方程,这是本节课的易错点.课时达标训练(十二)[即时达标对点练]题组1 由抛物线方程求焦点坐标和准线方程 1.对抛物线y =4x 2,下列描述正确的是( ) A .开口向上,焦点为(0,1) B .开口向上,焦点为⎝⎛⎭⎫0,116 C .开口向右,焦点为(1,0) D .开口向右,焦点为⎝⎛⎭⎫0,116 解析:选B 由y =4x 2,得x 2=14y ,故抛物线开口向上,且焦点坐标为⎝⎛⎭⎫0,116. 2.抛物线y =-x 28的准线方程是( )A .x =132B .y =2C .x =14D .y =4解析:选B 由y =-x 28,得x 2=-8y ,故抛物线开口向下,其准线方程为y =2.3.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2 C .|a | D .-a 2解析:选B ∵2p =|a |,∴p =|a |2.∴焦点到准线的距离是|a |2.题组2 求抛物线的标准方程4.焦点是F (0,5)的抛物线的标准方程是( ) A .y 2=20x B .x 2=20y C .y 2=120x D .x 2=120y解析:选B 由5=p2得p =10,且焦点在y 轴正半轴上,故方程形式为x 2=2py ,所以x 2=20y .5.顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4x B .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y解析:选C 设抛物线方程为y 2=-2p 1x 或x 2=2p 2y ,把(-4,4)代入得16=8p 1或16=8p 2,即p 1=2或p 2=2.故抛物线的标准方程为y 2=-4x 或x 2=4y . 题组3 抛物线定义的应用6.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆解析:选A 由题意知,圆C 的圆心到点(0,3)的距离比到直线 y =0的距离大1,即圆C 的圆心到点(0,3)的距离与到直线y =-1的距离相等,根据抛物线的定义可知,所求轨迹是一条抛物线.7.若抛物线y 2=8x 上一点P 到其焦点F 的距离为9,则点P 的坐标为( ) A .(7,±14) B .(14,±14) C .(7,±214) D .(-7,±214)解析:选C 由y 2=8x ,得抛物线的准线方程为x =-2,因P 点到焦点的距离为9,故P 点的横坐标为7.由y 2=8×7,得y =±214,即P (7,±214).8.若点P 是抛物线y 2=2x 上的一个动点,求点P 到直线3x -4y +72=0的距离与P 到该抛物线的准线的距离之和的最小值.解:如图.|P A |+|PQ |=|P A |+|PF |≥|AF |min .AF 的最小值为F 到直线3x -4y +72=0的距离.d =⎪⎪⎪⎪3×12+7232+42=1.题组4 抛物线方程的实际应用9.某抛物线拱桥跨度是20米,拱桥高度是4米,在建桥时,每4米需用一根支柱支撑,求其中最长支柱的长.解:如图,建立直角坐标系,设抛物线方程为x 2=-2py (p >0).依题意知,点P(10,-4)在抛物线上,所以100=-2p×(-4),2p=25.即抛物线方程为x2=-25y.因为每4米需用一根支柱支撑,所以支柱横坐标分别为-6,-2,2,6.由图知,AB是最长的支柱之一,设点B的坐标为(2,y B),代入x2=-25y,得y B=-4 25.所以|AB|=4-425=3.84(米),即最长支柱的长为3.84米.10.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少有0.5米.(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)?解:如图所示,(1)依题意,设该抛物线的方程为x2=-2py(p>0),因为点C(5,-5)在抛物线上,所以该抛物线的方程为x 2=-5y .(2)设车辆高h ,则|DB |=h +0.5,故D (3.5,h -6.5),代入方程x 2=-5y ,解得h =4.05,所以车辆通过隧道的限制高度为4.0米.[能力提升综合练]1.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12B .1C .2D .4解析:选C ∵抛物线y 2=2px 的准线x =-p 2与圆(x -3)2+y 2=16相切,∴-p 2=-1,即p =2.2.抛物线y =12x 2上的点到焦点的距离的最小值为( )A .3B .6 C.148 D.124解析:选C 将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148. 3.动点到点(3,0)的距离比它到直线 x =-2的距离大1,则动点的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线解析:选D 已知条件可等价于“动点到点(3,0)的距离等于它到直线x =-3的距离”,由抛物线的定义可判断,动点的轨迹为抛物线,故选D.4.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B .1 C.54 D.74解析:选C ∵|AF |+|BF |=x A +x B +12=3, ∴x A +x B =52. ∴线段AB 的中点到y 轴的距离为x A +x B 2=54. 5.已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a =1的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.解析:根据抛物线的定义得1+p 2=5,解得p =8.不妨取M (1,4),则AM 的斜率为2,由已知得-a ×2=-1,故a =14. 答案:146.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.解析:如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6,∴|PF |=x 0+2=8.答案:87.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.解:法一:如图所示,设抛物线的方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎫0,-p 2,准线l :y =p 2,作MN ⊥l ,垂足为N ,则|MN |=|MF |=5,而|MN |=3+p 2=5,即p =4.所以抛物线方程为x 2=-8y ,准线方程为y =2.由m 2=-8×(-3)=24,得m =±2 6.法二:设所求抛物线方程为x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎫0,-p 2. ∵M (m ,-3)在抛物线上,且|MF |=5,故⎩⎪⎨⎪⎧ m 2=6p , m 2+⎝⎛⎭⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6. ∴抛物线方程为x 2=-8y ,m =±26,准线方程为y =2.8.已知圆C 的方程x 2+y 2-10x =0,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.解:设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R =|x |.∵动圆与定圆C :(x -5)2+y 2=25外切,∴|PC |=R +5.即|PC |=|x |+5.当点P 在y 轴右侧时,即x >0,则|PC |=x +5,故点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为y 2=20x (x >0);当点P 在y 轴左侧时,即x <0,则|PC |=-x +5,此时点P 的轨迹是x 轴的负半轴,即方程y =0(x <0).故点P 的轨迹方程为y 2=20x (x >0)或y =0(x <0).。

2017-2018学年高中数学人教A版选修1-2课时跟踪检测:(三) 合情推理 Word版含解析

2017-2018学年高中数学人教A版选修1-2课时跟踪检测:(三) 合情推理 Word版含解析

课时跟踪检测(三) 合情推理层级一 学业水平达标1.观察图形规律,在其右下角的空格内画上合适的图形为( )A. B .△ C.D .○解析:选A 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n 边形的内角和是(n -2)·180°(n ∈N *,且n ≥3).A .①②B .①③④C .①②④D .②④解析:选C ①是类比推理;②④是归纳推理,∴①②④都是合情推理.3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为( )A .1∶2B .1∶4C .1∶8D .1∶16解析:选C 由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是( )A .①②B .②③C .③④D .①④解析:选B 根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论. 5.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:选A 观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A 正确.6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第n 个等式为________.解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n -1,故第n 行等式左边的数依次是n ,n +1,n +2,…,(3n -2);每一个等式右边的数为等式左边加数个数的平方,从而第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)27.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_______________________.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =__________.解析:根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n . 答案:n9.在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜想凸n 边形有几条对角线?解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,…,于是猜想凸n 边形的对角线条数比凸(n -1)边形多(n -2)条对角线,由此凸n 边形的对角线条数为2+3+4+5+…+(n -2),由等差数列求和公式可得12n (n -3)(n ≥4,n ∈N *).所以凸n 边形的对角线条数为12n (n -3)(n ≥4,n ∈N *).10.已知f (x )=13x+3,分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并证明你的结论.解:f (x )=13x +3,所以f (0)+f (1)=130+3+131+3=33,f (-1)+f (2)=13-1+3+132+3=33,f (-2)+f (3)=13-2+3+133+3=33.归纳猜想一般性结论;f (-x )+f (x +1)=33. 证明如下:f (-x )+f (x +1)=13-x +3+13x +1+3=3x 1+3·3x +13x +1+3=3·3x 3+3x +1+13x +1+3 =3·3x +13+3x +1=3·3x +13(1+3·3x )=33. 层级二 应试能力达标1.由代数式的乘法法则类比得到向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =ab ”.其中类比结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 2.类比三角形中的性质: (1)两边之和大于第三边; (2)中位线长等于底边长的一半; (3)三内角平分线交于一点. 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;(3)四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3)D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.3.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0172<( )A.4 0312 017 B.4 0322 017 C.4 0332 017D.4 0342 017解析:选C 观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12,22,32,…,(n +1)2;右端分母为n +1,分子成等差数列,首项为3,公差为2,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1,所以当n =2 016时不等式为:1+122+132+…+12 0172<4 0332 017. 4.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c ;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4解析:选C 将△ABC 的三条边长a ,b ,c 类比到四面体P -ABC 的四个面面积S 1,S 2,S 3,S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选 C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,∴V =13S 1r +13S 2r+13S 3r +13S 4r ,∴r =3V S 1+S 2+S 3+S 4. 5.观察下图中各正方形图案,每条边上有n (n ≥2)个圆圈,每个图案中圆圈的总数是S ,按此规律推出S 与n 的关系式为____________.解析:每条边上有2个圆圈时共有S =4个;每条边上有3个圆圈时,共有S =8个;每条边上有4个圆圈时,共有S =12个.可见每条边上增加一个点,则S 增加4,∴S 与n 的关系为S =4(n -1)(n ≥2).答案:S =4(n -1)(n ≥2)6.可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①、②中体会这个原理.现在图③中的两个曲线的方程分别是x 2a 2+y 2b 2=1(a >b >0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为______________.解析:由于椭圆与圆截y 轴所得线段之比为ba , 即k =b a ,∴椭圆面积S =πa 2·b a =πab . 答案:πab7.观察下列两个等式:①sin 210°+cos 240°+sin 10°cos 40°=34①;②sin 26°+cos 236°+sin 6°cos 36°=34②.由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想. 解:由①②知若两角差为30°,则它们的相关形式的函数运算式的值均为34.猜想:若β-α=30°,则β=30°+α,sin 2α+cos 2(α+3 0°)+sin αcos(α+30°)=34.下面进行证明:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α] =sin 2α+⎝⎛⎭⎫32cos α-12sin α⎝⎛⎭⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.8.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于点D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.解:猜想:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD .则1AE 2=1AB 2+1AC 2+1AD2.下面证明上述猜想成立如图所示,连接BE ,并延长交CD 于点F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , AC ∩AD =A , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AD 2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.。

新人教A版选修1-2高中数学第一、二章测试题及答案

新人教A版选修1-2高中数学第一、二章测试题及答案

数学选修1-2第一、二章测试题参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,回归直线方程:1221ni ii nii x ynx y b xnx==-=-∑∑,一、选择题(共10小题,每小题5分,共50分。

) 1、下列两个量之间的关系是相关关系的为( )A .匀速直线运动的物体时间与位移的关系B .学生的成绩和体重C .路上酒后驾驶的人数和交通事故发生的多少D .水的体积和重量2、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.98 B. 模型2的相关指数2R 为0.80 C. 模型3的相关指数2R 为0.50 D. 模型4的相关指数2R 为0.253. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y = 7.19 x +73.93. 用这个模型预测这个孩子10岁时的身高,则正确的叙述是(A) 身高一定是145.83 cm ; (B) 身高在145.83 cm 以上; (C) 身高在145.83 cm 以下; (D) 身高在145.83 cm 左右 4、下列说法正确的是( )A.由归纳推理得到的结论一定正确 B.由类比推理得到的结论一定正确 C.由合情推理得到的结论一定正确D.演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确。

5、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 6、下表为某班5位同学身高x (单位:cm)与体重y (单位kg)的数据,若两个量间的回归直线方程为1.16y x a =+,则a 的值为( ) A .-121.04 B .123.2 C .21 D .-45.127、用反证法证明命题:“,,,a b c d R ∈,1a b +=,1c d +=,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为( )A .,,,a b c d 中至少有一个正数B .,,,a b c d 全为正数C .,,,a b c d 全都大于等于0D .,,,a b c d 中至多有一个负数8、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x 为( )A .6πB .4πC .3πD .π1259、在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )A .1:2 B. 1:4 C. 1:8 D. 1:610、设函数()y f x =定义在R 上,满足(2)4f =,且对任意12,x x R ∈,恒12()f x x +=12()()f x f x +,则满足()f x 的表达式为( )(A)2()log f x x = (B)()2x f x = (C)()2f x x = (D)1()2f x x =二、填空题(共4小题,每小题5分,共20分)11、回归直线方程为0.57514.9y x =-,则100x =时,y 的估计值为12、黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖________________块.13、若()()()(,),f a b f a f b a b N +=⋅∈且(1)2f =,则=+++)2011()2012()3()4()1()2(f f f f f f 14、当n=1时,有(a-b )(a+b )=a 2-b2当n=2时,有(a-b )(a 2+ab+b 2)=a 3-b 3当n=3时,有(a-b )(a 3+a 2b+ab 2+b 3)=a 4-b 4当n *∈N 时,你能得到的结论是三、解答题(共6小题,共80分) 15、(本题满分12分)在数列{a n }中,1121,()2n n na a a n N a ++==∈+,试写出这个数列的前4项,并猜想这个数列的通项公式。

高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)

高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)

2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1的全部内容。

1.2 充分条件与必要条件[课时作业][A组基础巩固]1.设a,b∈R,那么“错误!>1”是“a>b〉0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉1得,错误!-1=错误!〉0,即b(a-b)〉0,得错误!或错误!,即a>b>0或a<b<0,所以“ab〉1"是“a〉b>0”的必要不充分条件,选B.答案:B2.“θ≠错误!"是“cos θ≠错误!”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为“θ≠π3”是“cos θ≠错误!”的逆否命题:“cos θ=错误!”是“θ=错误!”的必要不充分条件,选B.答案:B3.命题p:错误!〉0;命题q:y=a x是R上的增函数,则p是q成立的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉0得a〉1或a〈0;由y=a x是R上的增函数得a>1。

因此,p是q成立的必要不充分条件,选A。

高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)

高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)

2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3的全部内容。

第一章计数原理章末检测时间:120分钟满分: 150分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种解析:因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种进行排列,共有C2,3A错误!=18种.故选B。

答案:B2.若A3,n=12C错误!,则n等于()A.8 B.5或6C.3或4 D.4解析:A3n=n(n-1)(n-2),C错误!=错误!n(n-1),∴n(n-1)(n-2)=6n(n-1),又n∈N*,且n≥3,解得n=8.答案:A3.关于(a-b)10的说法,错误的是( )A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.答案:C4.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8 B.122017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3C.16 D.24解析:∵A错误!=n(n-1)=132,∴n=12(n=-11舍去).故选B。

人教A版高中数学选修1章末检测2第二章直线和圆的方程

人教A版高中数学选修1章末检测2第二章直线和圆的方程

第二章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0【答案】A【解析】设与直线x -2y -2=0平行的直线方程为x -2y +c =0(c ≠-2),将点(1,0)代入直线方程x -2y +c =0,得1-2³0+c =0,解得c =-1.所以所求直线方程为x -2y -1=0.2.直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60° D .30° 【答案】A【解析】设直线l 的倾斜角为θ,θ∈[0,π),直线l 的方程为3x +3y -1=0,则k =tan θ=-33,解得θ=5π6.所以直线l 的倾斜角为150°.故选A . 3.直线l 1:ax -y -3=0和直线l 2:x +(a +2)y +2=0平行,则实数a 的值为( ) A .3 B .-1 C .-2 D .3或-1【答案】B【解析】由a ²(a +2)+1=0,即a 2+2a +1=0,解得a =-1.经检验成立,所以a =-1.4.无论m 取何实数,直线l :mx +y -1+2m =0恒过一定点,则该定点坐标为( ) A .(-2,1) B .(-2,-1) C .(2,1) D .(2,-1)【答案】A【解析】直线l :mx +y -1+2m =0可整理为m (x +2)+y -1=0,当⎩⎪⎨⎪⎧x +2=0,y -1=0,解得x =-2,y =1,无论m 为何值,直线总过定点(-2,1).5.已知圆心在y 轴上的圆C 与直线x =3切于点M (3,2).若直线3x +4y +m =0与圆C 相切,则m 的值为( )A .9B .7C .-21或9D .-23或7【答案】D【解析】圆心在y 轴上的圆C 与直线x =3切于点M (3,2),可得圆C 的半径为3,圆心为(0,2).因为直线3x +4y +m =0与圆C 相切,所以|8+m |32+42=3,解得m =-23或m =7.故选D .6.(2021年哈尔滨期末)圆(x -1)2+(y +2)2=2关于直线l :x +y -2=0对称的圆的方程为( )A .(x -4)2+(y -1)2=2 B .(x +4)2+(y +1)2=2 C .(x -4)2+(y +1)2=2 D .(x +4)2+(y -1)2=2【答案】A【解析】由于圆心(1,-2)关于直线x +y -2=0对称的点的坐标为(4,1),半径为2,故圆(x -1)2+(y +2)2=2关于直线x +y -2=0对称的圆的方程为(x -4)2+(y -1)2=2.故选A .7.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8【答案】B【解析】圆x 2+y 2+2x -2y +a =0化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,弦心距为d =|-1+1+2|12+12=2.因为圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦长为4,所以22+(2)2=2-a ,所以a =-4.8.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( ) A .2 B .-5 C .2或-5 D .不确定【答案】C【解析】由圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4,得C 1(m ,-2),C 2(-1,m ),半径分别为3和2.∵两圆外切,∴m +122-m2=3+2,化简得(m +5)(m -2)=0,∴m =-5或m =2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0【答案】ABC【解析】当直线经过原点时,斜率为k =2-01-0=2,所求的直线方程为y =2x ,即2x -y=0;当直线不过原点时,设所求的直线方程为x ±y =k ,把点A (1,2)代入可得1-2=k 或1+2=k ,解得k =-1或k =3,故所求的直线方程为x -y +1=0或x +y -3=0.综上,所求的直线方程为2x -y =0或x -y +1=0或x +y -3=0.10.已知直线l :3x -y +1=0,则下列结论正确的是( ) A .直线l 的倾斜角是π6B .若直线m :x -3y +1=0,则l ⊥mC .点(3,0)到直线l 的距离是2D .过(23,2)与直线l 平行的直线方程是3x -y -4=0 【答案】CD【解析】对于A ,直线l 的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B ,因为直线m 的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C ,点(3,0)到直线l 的距离d =|3²3-0+1|3212=2,故C 正确;对于D ,过点(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.11.已知圆(x -1)2+(y -1)2=4与直线x +my -m -2=0,下列选项正确的是( ) A .圆的圆心坐标为(1,1) B .直线过定点(-2,1)C .直线与圆相交且所截最短弦长为2 3D .直线与圆可以相切 【答案】AC【解析】由题意,圆(x -1)2+(y -1)2=4的圆心C (1,1),半径r =2,A 对.直线x +my -m -2=0变形得x -2+m (y -1)=0,得直线过定点A (2,1),B 错.∵|CA |=2-121-12=1<2,∴直线与圆必相交,D 错.如图,由平面几何知识可知,当直线与过定点A 和圆心的直线垂直时,弦长有最小值,此时弦长为2r 2-|CA |2=23,C 对.12.在同一平面直角坐标系中,直线y =ax +a 2与圆(x +a )2+y 2=a 2的位置不可能是( )A B C D【答案】ABD【解析】直线y =ax +a 2经过圆(x +a )2+y 2=a 2的圆心(-a,0),且斜率为a ,故不可能为A ,B ,D .三、填空题:本题共4小题,每小题5分,共20分.13.在△ABC 中,已知A (2,1),B (-2,3),C (0,1),则BC 边上的中线所在的直线的一般方程为__________.【答案】x +3y -5=0【解析】BC 的中点D (-1,2),BC 边上的中线所在的直线的方程为y -1=2-1-1-2(x -2),即x +3y -5=0.14.若直线l 1:y =kx -3与l 2:2x +3y -6=0的交点M 在第一象限,则直线l 1恒过定点________;l 1的倾斜角α的取值范围是________.【答案】(0,-3) ⎝⎛⎭⎪⎫π4,π2【解析】直线l 1:y =kx -3恒过定点(0,-3).直线l 2:2x +3y -6=0在x 轴和y 轴上的截距分别为3,2,如图所示,因为k PA =1,所以直线PA 的倾斜角为π4,由图可知,要使直线l 1:y =kx -3与l 2:2x +3y -6=0的交点M 在第一象限,则l 1的倾斜角的取值范围是⎝ ⎛⎭⎪⎫π4,π2.15.已知圆x 2-2x +y 2-2my +2m -1=0,当圆的面积最小时,直线y =x +b 与圆相切,则b =________.【答案】± 2【解析】将x 2-2x +y 2-2my +2m -1=0化为(x -1)2+(y -m )2=m 2-2m +2,所以圆的半径为m 2-2m +2.当圆面积最小时,圆的半径最小,此时m =1,圆的方程为(x -1)2+(y -1)2=1.因为直线y =x +b 与圆相切,所以|1-1+b |2=1,解得b =±2.16.已知圆O :x 2+y 2=1,l 为过点(0,2)的动直线,若l 与圆O 相切,则直线l 的倾斜角为________.【答案】π3或2π3【解析】若直线l 与圆相切,则l 的斜率肯定存在,设l :y =kx +2,则d =2k 2+1=1,所以k =±3.所以直线l 的倾斜角为π3或2π3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 经过两条直线l 1:x +y -4=0和l 2:x -y +2=0的交点,直线l 3:2x -y -1=0.(1)若l ∥l 3,求l 的直线方程; (2)若l ⊥l 3,求l 的直线方程.解:(1)由⎩⎪⎨⎪⎧x +y -4=0,x -y +2=0,得⎩⎪⎨⎪⎧x =1,y =3,∴l 1与l 2的交点为(1,3).设与直线2x -y -1=0平行的直线为2x -y +c =0,则2-3+c =0,∴c =1. ∴所求直线方程为2x -y +1=0.(2)设与直线2x -y -1=0垂直的直线为x +2y +c =0, 则1+2³3+c =0,解得c =-7. ∴所求直线方程为x +2y -7=0.18.(12分)已知直线l :(1+2m )x +(m -1)y +7m +2=0. (1)求证:不论m 为何实数,直线恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被点M 平分,求直线l 1的方程. (1)证明:直线l 整理得(x -y +2)+m (2x +y +7)=0.联立⎩⎪⎨⎪⎧x -y +2=0,2x +y +7=0,解得⎩⎪⎨⎪⎧x =-3,y =-1.所以无论m 为何实数,直线l 恒过定点(-3,-1).(2)解:当直线l 1的斜率不存在或等于零时,显然不合题意. 设直线l 1的方程为y =k (x +3)-1(k ≠0). 令x =0,则y =3k -1; 令y =0,则x =1k-3.所以直线l 1与坐标轴的交点为A (0,3k -1),B ⎝ ⎛⎭⎪⎫1k-3,0.由于过定点M (-3,-1)作一条直线l 1,使夹在两坐标轴之间的线段被点M 平分, 则点M 为线段AB 中点, 即⎩⎪⎨⎪⎧3k -12=-1,12⎝ ⎛⎭⎪⎫1k -3=-3,解得k =-13.所以直线l 1的方程为y =-13x -2,即x +3y +6=0.19.(12分)已知直线l :y =kx 与圆C 1:(x -1)2+y 2=1相交于A ,B 两点,C 2与圆C 1相外切,且与直线l 相切于点M (3,3).(1)求k 的值,并求AB 的长; (2)求圆C 2的方程.解:(1)直线l :y =kx 经过点M (3,3), 所以3=3k ,得k =33. 圆C 1:(x -1)2+y 2=1的圆心为C 1(1,0),半径为1,直线l :3x -3y =0, 点C 1(1,0)到直线l 的距离d =33+9=12,所以|AB |=212-⎝ ⎛⎭⎪⎫122=3.(2)设过点M 作与直线l 垂直的直线l 1,l 1的方程是y -3=-3(x -3),即y =-3x +43.设C 2(a ,-3a +43),又因为C 1(1,0),圆C 2与圆C 1相外切,且与直线l 相切于点M (3,3),所以|C 1C 2|=1+|MC 2|, 即a -12-3a +432=1+a -323a +43-32,化简得a 2-4a =0,解得a =4或a =0. 当a =4时,C 2(4,0),此时r 2=(4-3)2+(0-3)2=4,C 2:(x -4)2+y 2=4.当a =0时,C 2(0,43),此时r 2=(0-3)2+(43-3)2=36,C 2:x 2+(y -43)2=36.20.(12分)已知△ABC 的顶点C (2,-8),直线AB 的方程为y =-2x +11,AC 边上的高BH 所在直线的方程为x +3y +2=0.(1)求顶点A 和B 的坐标; (2)求△ABC 外接圆的一般方程.解:(1)由⎩⎪⎨⎪⎧y =-2x +11,x +3y +2=0,得顶点B (7,-3).由AC ⊥BH ,k BH =-13.所以可设AC 的方程为y =3x +b ,将C (2,-8)代入,得b =-14.由⎩⎪⎨⎪⎧y =-2x +11,y =3x -14,得顶点为A (5,1).所以点A 和B 的坐标分别为(5,1)和(7,-3). (2)设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,将点A (5,1),B (7,-3),C (2,-8)分别带入圆的方程代入, 得⎩⎪⎨⎪⎧5D +E +F +26=0,7D -3E +F +58=0,2D -8E +F +68=0,解得⎩⎪⎨⎪⎧D =-4,E =6,F =-12,所以△ABC 的外接圆的一般方程为x 2+y 2-4x +6y -12=0.21.(12分)某种体育比赛的规则是:进攻队员与防守队员均在安全线l 的垂线AC 上(C 为垂足),且分别位于距C 为2a 和a (a >0)的点A 和点B 处,进攻队员沿直线AD 向安全线跑动,防守队员沿直线方向拦截,设AD 和BM 交于点M ,若在点M ,防守队员比进攻队员先到或同时到,则进攻队员失败.已知进攻队员速度是防守队员速度的两倍,且他们双方速度不变,问进攻队员的路线AD 应为什么方向才能取胜?解:如图,以l 为x 轴,C 为原点建立平面直角坐标系.设防守队员速度为v ,则进攻队员速度为2v .设点M 的坐标为(x ,y ),进攻队员与防守队员跑到点M 所需时间分别为t 1=|AM |2v ,t 2=|BM |v. 若t 1<t 2,则|AM |<2|BM |, 即x2y -2a2<2x2y -a2,整理得x 2+⎝ ⎛⎭⎪⎫y -23a 2>⎝ ⎛⎭⎪⎫23a 2,这说明点M 应在圆E :x 2+⎝ ⎛⎭⎪⎫y -23a 2=⎝ ⎛⎭⎪⎫23a 2以外,进攻队员方能取胜.设AN 为圆E 的切线,N 为切点.在Rt △AEN 中,AE =2a -2a 3=4a 3,EN =2a 3,所以sin ∠EAN =EN AE =2a34a 3=12,故sin ∠EAN =30°.所以进攻队员的路线AD 与AC 所成角大于30°即可. 22.(12分)已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点B 的坐标; (2)直线l 关于点A 对称的直线a 的方程;(3)以点A 为圆心,3为半径长作圆,直线b 过点M (2,2),且被圆A 截得的弦长为27,求直线b 的方程.解:(1)设点B (m ,n ),则⎩⎪⎨⎪⎧n +2m +1²23=-1,2²m -12-3²n -22+1=0,解得⎩⎪⎨⎪⎧m =-3313,n =413,所以点A 关于直线l 的对称点B 的坐标为⎝ ⎛⎭⎪⎫-3313,413. (2)设P (x ,y )是直线a 上任意一点,则点P (x ,y )关于点A (-1,-2)的对称点C (-2-x ,-4-y )在直线l 上, 所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.(3)设圆心A 到直线b 的距离为d ,直线b 被圆A 截得的弦长为27,因此d =9-7=2.当直线b 斜率不存在时,x =2不满足条件;当直线b 斜率存在时,设其方程为y -2=k (x -2),则|3k -4|1+k 2=2, 解得k =12±467.综上,直线b 的方程为y =12+467x -10+2467或y =12-467x -10-2467.。

2017-2018学年高中数学第二章推理与证明阶段通关训练新人教A版选修2-2

2017-2018学年高中数学第二章推理与证明阶段通关训练新人教A版选修2-2

第二章推理与证明阶段通关训练(60分钟100分)一、选择题(每小题5分,共30分)1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形,等腰三角形,等边三角形内角和是180°归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°. A.①② B.①③④ C.①②④ D.②④【解析】选C.合情推理包括归纳推理,类比推理,①是类比推理,②是归纳推理,④是归纳推理.2.(2017·绵阳高二检测)下列关系式中一定成立的是( )A.若a>0,b>0,则a4+b4≤a3b+ab3B.+>2C.若|a|<1,|b|<1,则<1D.a2+b2+c2≤ab+bc+ca【解析】选C.对于选项C,<1⇔|a+b|<|1+ab|⇔(a+b)2<(1+ab)2⇔(1-a2)(1-b2)>0,而|a|<1,|b|<1,故(1-a2)(1-b2)>0成立,所以<1成立.3.设等比数列{a n}的公比q=2,前n项和为S n,则= ( )A.2B.4C.D.【解析】选C.在等比数列{a n}中,q=2≠1,设首项为a1≠0,则S4==15a1,又a2=a1q=2a1,故==.【补偿训练】已知实数a,b,c满足a+b+c=0,abc>0,则++的值( )A.一定是正数B.一定是负数C.可能是零D.正、负不能确定【解析】选B.因为a+b+c=0,所以(a+b+c)2=0.所以a2+b2+c2+2(ab+bc+ca)=0,所以ab+bc+ca=-(a2+b2+c2)<0.又abc>0,所以++=<0.4.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7kB.2+7k-1C.2(2+7k+1)D.3(2+7k)【解析】选D.特殊值法:当k=1时只有3(2+7k)能被9整除.5.已知f(n)=+++…+,则( )A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有(n+1)项,当n=2时,f(2)=++C.f(n)中共有(n2-n)项,当n=2时,f(2)=+D.f(n)中共有(n2-n+1)项,当n=2时,f(2)=++【解析】选D.项数:看分母,分母有n,n+1,…,n2,所以项数为n2-n+1,f(2)=++.6.对于等式sin3x=sin2x+sinx,下列说法中正确的是( )A.对于任意x∈R,等式都成立B.对于任意x∈R,等式都不成立C.存在无穷多个x∈R使等式成立D.等式只对有限个x∈R成立【解析】选C.当x=0时,等式显然成立.又x=kπ(k∈Z)时等式也恒成立,而x=时等式不成立.二、填空题(每小题5分,共20分)7.(2017·杭州高二检测)=2,=3,=4,…,若=6(a,b 均为实数),猜想,a=________,b=________.【解析】由2+,3+,4+,可以求出3=22-1,8=32-1,15=42-1,故在6+中,a=6,b=a2-1=62-1=35.答案:6 358.(2017·东莞高二检测)当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a-b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,你能得到的结论是__________________.【解析】根据题意,由于当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a-b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,左边第二个因式可知为a n+a n-1b+…+ab n-1+b n,那么对应的表达式为(a-b)·(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+1.答案:(a-b)(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+1【补偿训练】已知等式cosα=,cosα·cos2α=,cosα·cos2α·cos4α=,…,请你写出一个具有一般性的等式,使你写出的等式包含了已知等式(不要求证明),那么这个等式是:__________________.【解析】该题通过观察前几个特殊式子的特点,通过归纳推理得出一般规律,写出结果即可.答案:cosα·cos2α·…·cos(2n-1α)=,n∈N*9.在△ABC中,D为BC的中点,则=(+),将上述命题类比到四面体A BCD中,得到一个类似的命题:________________________________.【解析】线段的中点,类比到三角形中为三角形的重心,由此有在四面体A BCD中,G为△BCD的重心,则=(++).答案:在四面体A-BCD中,G为△BCD的重心,则=(++)10.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立.类比上述性质,相应地,在等比数列{b n}中,若b9=1,则有等式________成立.【解析】在等差数列中,若m+n=2p,则a m+a n=2a p,而在等比数列中,若m+n=2p,则a m a n=.因为b9=1,所以b n+1·b17-n==1.又因为b n+1b17-n=b n+2b17-n-1=…==1,所以有等式b1b2…b n=b1b2b3…b17-n,n<17,且n∈N*.答案:b1b2…b n=b1b2b3…b17-n,n<17,且n∈N*【拓展延伸】类比推理的技巧类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性也类似的一类推理方法.在解决这种问题时,要尽可能多地找到这两组对象的类似的属性,找到的越多,类比出的结论正确性就会越大,由于类比推理所得到的结论并不一定是正确的,因此需要对所猜想的结论加以证明.三、解答题(共4小题,共50分)11.(12分)已知椭圆具有以下性质:若点M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,若直线PM,PN的斜率都存在,并记为k PM,k PN,那么k PM与k PN之积是与点P的位置无关的定值.试对双曲线-=1写出具有类似的性质,并加以证明.【解析】类似的性质为:若点M,N是双曲线-=1上关于原点对称的两个点,点P是双曲线上任意一点,若直线PM,PN的斜率都存在,并记为k PM,k PN,那么k PM与k PN之积是与点P的位置无关的定值.证明如下:设点M,P的坐标为(m,n),(x,y),则N(-m,-n).因为点M(m,n)在已知双曲线上,所以n2=m2-b2.同理y2=x2-b2.则k PM·k PN=·==·=(定值).12.(12分)若x>0,y>0,用分析法证明:(x2+y2>(x3+y3.【证明】要证(x2+y2>(x3+y3,只需证(x2+y2)3>(x3+y3)2,即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,即证3x4y2+3y4x2>2x3y3.又因为x>0,y>0,所以x2y2>0,故只需证3x2+3y2>2xy.而3x2+3y2>x2+y2≥2xy成立,所以(x2+y2>(x3+y3成立.【补偿训练】已知|x|≤1,|y|≤1,用分析法证明:|x+y|≤|1+xy|.【证明】要证|x+y|≤|1+xy|,即证(x+y)2≤(1+xy)2,即证x2+y2≤1+x2y2,即证(x2-1)(1-y2)≤0,因为|x|≤1,|y|≤1,所以x2-1≤0,1-y2≥0,所以(x2-1)(1-y2)≤0,不等式得证.13.(13分)(2017·临沂高二检测)已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不可能都大于.【证明】假设三个式子同时大于,即(1-a)b>,(1-b)c>,(1-c)a>,三式相乘得(1-a)a·(1-b)b·(1-c)c>, ①又因为0<a<1,所以0<a(1-a)≤=.同理0<b(1-b)≤,0<c(1-c)≤,所以(1-a)a·(1-b)b·(1-c)c≤, ②①与②矛盾,所以假设不成立,故原命题成立.14.(13分)(2017·泰安高二检测)已知函数f(x)=(x>0),数列{a n}满足a1=f(x),a n+1=f(a n).(1)求a2,a3,a4.(2)猜想数列{a n}的通项公式,并用数学归纳法予以证明.【解题指南】由a1=f(x),a n+1=f(a n),依次令n=1,2,3可求得a2,a3,a4;观察a2,a3,a4的表达式的构成规律可猜想出{a n}的通项公式,用数学归纳法证明时关键是将a k+1变形为与a n相同的形式.【解析】(1)由a1=f(x),a n+1=f(a n)得:a2=f(a1)==,a3=f(a2)===,a4=f(a3)===.(2)猜想数列{a n}的通项公式a n=.证明:①当n=1时,结论显然成立;②假设当n=k(k≥1,k∈N*)时结论成立,即a k=,则当n=k+1时,a k+1=f(a k)==.显然,当n=k+1时结论也成立.由①②可得,数列{a n}的通项公式a n=.【能力挑战题】已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程.(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求出x4.【解题指南】(1)利用导数的几何意义解题.(2)通过求导,找出函数f(x)的两个极值点,因为f(x)的零点为a或b,所以适当对f(x)零点和极值点排序后,满足等差数列,若解出,则x4存在,否则x4不存在.【解析】(1)当a=1,b=2时,因为f′(x)=(x-1)(3x-5),故f′(2)=1,又f(2)=0,所以f(x)在点(2,0)处的切线方程为y=x-2.(2)因为f′(x)=3(x-a),由于a<b,故a<,所以f(x)的两个极值点为x=a和x=.不妨设x1=a,x2=,因为x3≠x1,x3≠x2,且x3是f(x)的零点,故x3=b,又因为-a=2,故可令x4==,此时a,,,b依次成等差数列,所以存在实数x4满足题意,且x4=.。

2017_2018学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程学案含解析新人教A版选修

2017_2018学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程学案含解析新人教A版选修

2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ<2π).圆(数方程.根据圆的特点,结合参数方程概念求解. 如图所示,设圆心为O ′,连接O ′M , ∵O ′为圆心, ∴∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数)(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(φ为参数)(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数,0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则 ⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数).这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.若 (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.求原点到曲线C :⎩⎪⎨⎪⎧x =3+2sin θ,y =-2+2cos θ(θ为参数)的最短距离.解:原点到曲线C 的距离为:x -0 2+ y -0 2= 3+2sin θ 2+ -2+2cos θ 2=17+4 3s in θ-2cos θ =17+413⎝⎛⎭⎪⎫313sin θ-213cos θ= 17+413sin θ+φ≥17-413= 13-2 2=13-2. ∴原点到曲线C 的最短距离为13-2.4.已知圆C :⎩⎪⎨⎪⎧ x =cos θ,y =-1+sin θ(θ为参数)与直线x +y +a =0有公共点,求实数a的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1,∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+2,即a 的取值范围是. 法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+2,即a 的取值范围是.课时跟踪检测(八)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:选C 将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r , 故直线与圆相交,有两个公共点.3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:选D 圆心坐标为(0,0),半径为2,显然直线不过圆心, 又圆心到直线距离d =95<2,故选D.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入,得 (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ). ∴最大值为36. 二、填空题5.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ(φ为参数)表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆6.已知圆C的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ=1,则直线l 与圆C 的交点的直角坐标为________.解析:由极坐标系与直角坐标系互化关系可知,直线l 的直角坐标方程为x =1. 由圆C 的参数方程可得x 2+(y -1)2=1, 由⎩⎪⎨⎪⎧x =1,x 2+ y -1 2=1得直线l 与圆C 的交点坐标为(1,1). 答案:(1,1)7.(广东高考)已知曲线C 的极坐标方程为 ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:由极坐标方程与直角坐标方程互化公式可得,曲线C 的直角坐标方程为(x -1)2+y 2=1,故曲线C 对应的参数方程可写为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)三、解答题8.P 是以原点为圆心,半径r =2的圆上的任意一点,Q (6,0),M 是PQ 中点. (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程.解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数).(2)设M (x ,y ),P (2cos θ,2sin θ), ∵Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数).9.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θ cos θ+sin θ =cos 2θ+cos θsin θ,y 1=sin θ cos θ+sin θ =sin θcos θ+sin 2θ,∴⎩⎪⎨⎪⎧x 1+y 1=1+sin 2θ,x 1y 1=12sin 2θ+12sin 22θ.将sin 2θ=x 1+y 1-1代入另一个方程, 整理,得⎝⎛⎭⎪⎫x 1-122+⎝ ⎛⎭⎪⎫y 1-122=12.∴所求轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,以22为半径的圆.10.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3 x -1 ,x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝⎛⎭⎪⎫14,0,半径为14的圆.。

2017-2018年人教A版选修1-1《2.1-2椭圆》练习含答案

2017-2018年人教A版选修1-1《2.1-2椭圆》练习含答案

第二章 2.1-2椭圆A 级 基础巩固一、选择题1.已知椭圆x 210-m +y 2m -2=1的长轴在y 轴上,若焦距为4,则m 等于 ( D )A .4B .5C .7D .8[解析] 由题意知,c =2,a 2=m -2,b 2=10-m , ∴m -2-10+m =4,∴m =8.2.椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e 为 ( A ) A .12B .13C .14D .22[解析] 由题意,得a =2c ,∴e =c a =12.3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 ( B ) A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1[解析] 椭圆9x 2+4y 2=36的焦点为(0,5),(0,-5), ∵b =25,∴a 2=25,故选B .4.若椭圆的焦距、短轴长、长轴长构成一个等比数列,则椭圆的离心率为 ( A ) A .5-12 B .3-12 C .32D .5+12[解析] 设椭圆的焦距为2c ,短轴长为2b ,长轴长为2a ,由题意得(2b )2=4ac ,即b 2=ac .又b 2=a 2-c 2,∴a 2-c 2=ac ,∴e 2+e -1=0,∴e =-1±52.∵e ∈(0,1),∴e =5-12.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 ( A ) A .14B .12C .2D .4[解析] 由题意y 21m +x 2=1,且1m=2, ∴m =14.故选A .6.(2017·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为 ( A )A .63B .33C .23D .13[解析] 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b ,∴b a =13,∴e =ca=a 2-b 2a=1-(b a)2=1-(13)2=63.二、填空题7.已知椭圆的中心在原点,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆标准方程为 x 281+y 272=1或x 272+y 281=1 .[解析] ∵椭圆长轴长为18,∴a =9. 又两个焦点将长轴三等分,∴a -c =2c ,∴c =3,∴b 2=a 2-c 2=72.∵焦点位置不确定,∴方程为x 281+y 272=1或x 272+y 281=1.8.椭圆x 24+y 2m =1的离心率为12,则m = 3或163 .[解析] 当焦点在x 轴上时,e =4-m 2=12, ∴m =3.当焦点在y 轴上时,e =m -4m=12,∴m =163. 三、解答题9.(2016·江苏苏州高二检测)已知椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直.(1)求椭圆的离心率; (2)求△PF 1F 2的面积.[解析] (1)由题意可知a 2=49,b 2=24, ∴a =7,b =26,c 2=a 2-b 2=25,∴c =5,e =57.(2)由椭圆定义|PF 1|+|PF 2|=2a =14,由题意可知在Rt △PF 1F 2中有:|PF 1|2+|PF 2|2=(2c )2=100,∴2|PF 1||PF 2|=(|PF 1|+|PF 2|)2-(|PF 1|2+|PF 2|2)=142-100=96, ∴|PF 1||PF 2|=48.∴S △PF 1F 2=12|PF 1||PF 2|=24.B 级 素养提升一、选择题1.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为 ( C )A .x 2144+y 2128=1或x 2128+y 2144=1B .x 26+y 24=1C .x 236+y 232=1或x 232+y 236=1D .x 24+y 26=1或x 26+y 24=1[解析] 由条件知a =6,e =c a =13,∴c =2,∴b 2=a 2-c 2=32,故选C .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为 ( C )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1D .x 212+y 24=1[解析] 根据条件可知c a =33,且4a =43,∴a =3,c =1,b 2=2,椭圆的方程为x 23+y 22=1.3.若直线y =x +6与椭圆x 2+y 2m2=1(m >0且m ≠1)只有一个公共点,则该椭圆的长轴长为 ( D )A .1B . 5C .2D .2 5[解析] 由⎩⎪⎨⎪⎧y =x +6x 2+y 2m 2=1,得 (1+m 2)x 2+26x +6-m 2=0,由已知Δ=24-4(1+m 2)(6-m 2)=0,解得m 2=5, ∴椭圆的长轴长为2 5.4.已知直线l 过点(3,-1),且椭圆C :x 225+y 236=1,则直线l 与椭圆C 的公共点的个数为 ( C )A .1B .1或2C .2D .0[解析] 因为直线过定点(3,-1)且3225+(-1)236<1,所以点(3,-1)在椭圆的内部,故直线l 与椭圆有2个公共点.5.(2015·江西八校联考)已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a 2+y 2b 2=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是 ( B ) A .⎣⎡⎭⎫12,1 B .⎝⎛⎦⎤0,12 C .⎣⎡⎭⎫22,1D .⎝⎛⎦⎤0,22 [解析] 圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c,0),上顶点(c ,c )在椭圆内部,∴只需⎩⎪⎨⎪⎧2c ≤a ,c 2a 2+c 2b2≤1⇒0<c a ≤12.即椭圆离心率的取值范围是⎝⎛⎦⎤0,12. 二、填空题6.若椭圆的一个焦点将其长轴分成3︰2[解析] 椭圆的一个焦点将其长轴分成a +c 与a -c 两段, ∴a +c a -c=32,∴(3-2)a =(3+2)c , ∴e =ca=5-2 6.7.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是__(0,1]∪[9,+∞)__.[解析] 方法1:设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan ∠AMB =tan(∠AMN +∠BMN )=3+x |y |+3-x|y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3.又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1可得x 2=3-3y 2m,则23|y |3-3y 2m +y 2-3=23|y |(1-3m)y2=- 3. 解得|y |=2m 3-m.又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞). 方法2:当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即3m ≥3, 解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b ≥tan 60°=3,即m 3≥3,解得m ≥9. 故m 的取值范围为(0,1]∪[9,+∞). 三、解答题8.(2017·北京文,19)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4︰5.[解析] (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,n ),则D (m,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2, 故直线DE 的斜率k DE =-m +2n ,所以直线DE 的方程为y =-m +2n (x -m ),直线BN 的方程为y =n2-m (x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m(x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2, 所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4︰5.C 级 能力提高1.已知B 1、B 2为椭圆短轴的两个端点,F 1、F 2是椭圆的两个焦点,若四边形B 1F 1B 2F 2为正方形,则椭圆的离心率为2. [解析] 如图,由已知得b =c =22a ,∴e =c a =22.2.(2017·全国Ⅱ文,20)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .[解析] (1)设P (x ,y ),M (x 0,y 0), 则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →= 2 NM →,得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ). 由OP →·PQ →=1得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .。

2017_2018学年高中数学课时跟踪检测(二)独立性检验的基本思想及其初步应用(含解析)新人教A版选修1_2

2017_2018学年高中数学课时跟踪检测(二)独立性检验的基本思想及其初步应用(含解析)新人教A版选修1_2

课时跟踪检测(二) 独立性检验的基本思想及其初步应用一、选择题1.判断两个分类变量是彼此相关还是相互独立的常用的方法中,最为精确的是( ) A.2×2列联表 B.独立性检验C.等高条形图 D.其他解析:选B A、C只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.2.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大.即k越小,“X与Y有关系”的可信程度越小.故选B.3.利用独立性检验对两个分类变量是否有关系进行研究时,若在犯错误的概率不超过0.005的前提下认为事件A和B有关系,则具体计算出的数据应该是( )A.k≥6.635 B.k<6.635C.k≥7.879 D.k<7.879解析:选C 犯错误的概率为0.5%,对应的k0的值为7.879,由独立性检验的思想可知应为k≥7.879.4.(江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩 B.视力C.智商 D.阅读量解析:选D 因为k 1=-2 16×36×32×20=52×8216×36×32×20,k 2=-2 16×36×32×20=52×112216×36×32×20,k 3=-2 16×36×32×20=52×96216×36×32×20,k 4=-2 16×36×32×20。

2017-2018学年高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念学案(含解析)新人教A版选修2-

2017-2018学年高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念学案(含解析)新人教A版选修2-

1.5.3 定积分的概念问题1提示:分割、近似代替、求和、取极限. 问题2:你能将区间等分吗? 提示:可以.定积分的概念如果函数f (x )在区间上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间等分成n 个小区间,在每个小区间上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -a nf (ξi ).当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间上的定积分,记作⎠⎛ab f(x)d x ,即⎠⎛ab f(x)d x =lim n→∞∑i =1nb -an f(ξi ).其中a 与b 分别叫做积分下限与积分上限,区间叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)d x 叫做被积式.对定积分概念的理解由定义可得定积分⎠⎛ab f(x)d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a b f(x)d x =⎠⎛a b f(t)d t =⎠⎛ab f(u)d u.问题1:根据定积分的定义,求⎠⎛12(x +1)d x 的值是多少.提示:⎠⎛12(x +1)d x =52.问题2:⎠⎛12(x +1)d x 的值与直线x =1,x =2,y =0,f(x)=x +1围成的梯形的面积有什么关系?提示:相等.定积分的几何意义从几何上看,如果在区间上函数f(x)连续且恒有f (x )≥0,那么定积分⎠⎛ab f(x)d x 表示由直线x =a ,x =b ,y =0和曲线y =f(x)所围成的曲边梯形的面积.这就是定积分⎠⎛ab f(x)d x的几何意义.评析定积分的几何意义关于定积分的几何意义,当函数f(x)在区间上恒为正时,定积分⎠⎛a b f (x )d x 的几何意义是以曲线f(x)为曲边的曲边梯形的面积.一般情况下,如图,定积分⎠⎛ab f(x)d x 的几何意义是介于x 轴、函数f(x)的图象以及直线x =a ,x =b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.问题1:利用定积分的定义,试求⎠⎛12x 2d x ,⎠⎛122x d x ,⎠⎛12(x 2+2x)d x.提示:计算得⎠⎛12x 2d x =73,⎠⎛122x d x =3,⎠⎛12(x 2+2x)d x =163.问题2:由问题1计算得出什么结论?提示:⎠⎛12x 2d x +⎠⎛122x d x =⎠⎛12(x 2+2x)d x.问题3:还有相类似的性质吗? 提示:有.定积分的性质(1)⎠⎛ab kf(x)d x =k ⎠⎛ab f(x)d x(k 为常数);(2)⎠⎛a bd x =⎠⎛abf 1(x)d x±⎠⎛abf 2d x;(3)⎠⎛a b f(x)d x =⎠⎛a c f(x)d x +⎠⎛cb f(x)d x(其中a<c<b).对定积分的性质的说明定积分的性质(1)(2)被称为定积分的线性运算,定积分的性质(3)被称为区间的连续可加性,定积分的性质可以推广为:①⎠⎛a bd x =⎠⎛abf 1(x)d x±⎠⎛abf 2d x±…±⎠⎛ab f m (x)d x(m ∈N *).②⎠⎛a b f(x)d x =∫c 1a f(x)d x +⎠⎛c 1c 2f(x)d x +…+⎠⎛bc kd x (a<c 1<c 2<…<c k <b ,且k ∈N *).⎠⎛1令f(x)=3x +2. (1)分割在区间上等间隔地插入n -1个分点,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n),每个小区间的长度为Δx =n +i n -n +i -1n =1n.(2)近似代替、作和取ξi =n +i -1n(i =1,2,…,n),则S n =∑i =1nf ⎝ ⎛⎭⎪⎫n +i -1n ·Δx =∑i =1n+i -n+2·1n =∑i =1n⎣⎢⎡⎦⎥⎤-n2+5n =3n 2+5=32×n 2-n n 2+5=132-32n.(3)取极限⎠⎛12(3x +2)d x =li m n→∞S n =li m n→∞ ⎝ ⎛⎭⎪⎫132-32n =132.利用定义求定积分的步骤利用定积分的定义,计算⎠⎛12(x +1)d x 的值.解:f(x)=x +1在区间上连续,将区间等分成n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n),每个区间的长度为Δx =1n.在⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi=1+i -1n (i =1,2,…,n), ∴f(ξi )=1+1+i -1n =2+i -1n,∴∑i =1nf(ξi )·Δx =∑i =1n⎝⎛⎭⎪⎫2+i -1n ·1n=∑i =1n⎝⎛⎭⎪⎫2n +i -1n 2=2n ·n+1n2 =2+n -12n =2+12-12n =52-12n,∴⎠⎛21(1+x)d x =lim n→∞ ⎝ ⎛⎭⎪⎫52-12n =52.(1)⎠⎛012d x ;(2)⎠⎛12x d x ;(3) ⎠⎛-111-x 2d x.(1)⎠⎛012d x 表示的是图①中阴影部分所示长方形的面积,由于这个长方形的面积为2,所以⎠⎛012d x =2.(2)⎠⎛12x d x 表示的是图②中阴影部分所示梯形的面积,由于这个梯形的面积为32,所以⎠⎛12x d x =32.(3)⎠⎛1-11-x 2d x 表示的是图③中阴影部分所示半径为1的半圆的面积,其值为π2,所以⎠⎛-111-x 2d x =π2.利用几何意义求定积分的方法利用定积分所表示的几何意义求⎠⎛ab f(x)d x 的值的关键是确定由曲线y =f(x),直线x =a ,直线x =b 及x 轴所围成的平面图形的形状.常见形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.用定积分表示下图中阴影部分的面积,并根据定积分的几何意义求出定积分的值.解:图①中,被积函数f(x)=-1-x 在区间上连续不间断,且f(x)≤0, 根据定积分的几何意义,图中阴影部分的面积为 S =-⎠⎛-12 (-1-x)d x =12×3×3=92,所以阴影部分的面积为92.图②中,被积函数f(x)=-1-x 2在区间上连续不断,且f(x)≤0, 根据定积分的几何意义,图中阴影部分的面积为S =-⎠⎛-11-1-x 2d x =12π×12=π2,所以阴影部分的面积为π2.已知⎠⎛01x 3d x =4,⎠⎛12x 3d x =4,⎠⎛12x 2d x =3,⎠⎛24x 2d x =3,求下列各式的值:(1)⎠⎛02(3x 3)d x ;(2)⎠⎛14(6x 2)d x ;(3)⎠⎛12(3x 2-2x 3)d x .(1)⎠⎛02(3x 3)d x =3⎠⎛02x 3d x =3⎠⎛01x 3d x +⎠⎛12x 3d x =3×⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛14(6x 2)d x =6⎠⎛14x 2d x =6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6×⎝ ⎛⎭⎪⎫73+563=126.(3)⎠⎛12(3x 2-2x 3)d x =⎠⎛12(3x 2)d x -⎠⎛12(2x 3)d x=3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=-12.定积分与函数的奇偶性若函数f (x )的奇偶性已经明确,且f (x )在上连续,则: (1)若函数f (x )为奇函数,则⎠⎛-a a f (x )d x =0;(2)若函数f (x )为偶函数,则⎠⎛-aa f (x )d x =2⎠⎛0a f (x )d x .已知⎠⎛a b d x =12,⎠⎛ab g(x )d x =6,求⎠⎛ab 3f (x )d x .解:∵⎠⎛a b f (x )d x +⎠⎛a b g(x )d x =⎠⎛ab d x ,∴⎠⎛a b f (x )d x =12-6=6,∴⎠⎛ab 3f (x )d x =3⎠⎛ab f (x )d x =3×6=18.5.错用定积分的几何意义致误由y =cos x 及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表示为________.由y =cos x 及x 轴围成的介于0与2π之间的平面图形可以分成三部分:⎣⎢⎡⎦⎥⎤0,π2,⎣⎢⎡⎦⎥⎤π2,3π2,⎣⎢⎡⎦⎥⎤3π2,2π,利用定积分的几何意义可得,所求面积为π⎰2cos x d x -ππ⎰322cos x d x +2ππ⎰32cos x d x .π⎰2cos x d x -ππ⎰322cos x d x +2ππ⎰32cos x d x1.若对定积分的几何意义理解不到位,则易错误地表示为∫2π0cos x d x. 2.写定积分时应注意:当f(x)≥0时,S =⎠⎛abd x ;而<0时,S =-⎠⎛abd x.由定积分的几何意义可得⎠⎛-13(3x +1)d x =________. 解析:由直线x =-1,x =3,y =0以及y =3x +1所围成的图形,如图所示.⎠⎛-13(3x +1)d x 表示由直线x =-1,x =3,y =0以及y =3x +1所围成的图形在x 轴上方的面积减去在x 轴下方的面积,∴⎠⎛-13 (3x +1)d x=12×⎝ ⎛⎭⎪⎫3+13×(3×3+1)-12×⎝ ⎛⎭⎪⎫-13+1×2=503-23=16. 答案:161.下列等式不成立的是( ) A. ⎠⎛a b d x =m ⎠⎛a b f (x )d x +n ⎠⎛ab g(x )d xB. ⎠⎛a b d x =⎠⎛ab f (x )d x +b -aC. ⎠⎛ab f (x )g(x )d x =⎠⎛a b f (x )d x ·⎠⎛ab g(x )d xD.⎠⎛-2π2πsin x d x =⎠⎛-2ππsin x d x +⎠⎛02πsin x d x解析:选C 利用定积分的性质可判断A ,B ,D 成立,C 不成立. 例如⎠⎛02x d x =2,⎠⎛022d x =4,⎠⎛022x d x =4,⎠⎛022x d x ≠⎠⎛02x d x ·⎠⎛022d x . 2.图中阴影部分的面积用定积分表示为()A.⎠⎛012xd xB.⎠⎛01(2x-1)d xC .⎠⎛01(2x +1)d xD.⎠⎛01(1-2x)d x解析:选B 根据定积分的几何意义,阴影部分的面积为⎠⎛012xd x -⎠⎛011d x =⎠⎛01(2x-1)d x .3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________.解析:∵0<x <π2∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为π⎰2sin x d x .答案:π⎰2sin x d x4.若⎠⎛a b d x =3,⎠⎛a b d x =1,则⎠⎛ab d x =________.解析:⎠⎛ab d x=⎠⎛a b d x=⎠⎛ab d x -⎠⎛ab d x=3-1=2. 答案:25.用定积分的几何意义求⎠⎛-114-x 2d x .解:由y =4-x 2可知x 2+y 2=4(y ≥0),其图象如图.⎠⎛-114-x 2d x 等于圆心角为60°的弓形CD 的面积与矩形ABCD 的面积之和. S 弓形=12×π3×22-12×2×2sin π3=2π3-3,S 矩形=AB·BC =23, ∴⎠⎛-114-x 2d x =23+2π3-3=2π3+ 3.一、选择题1.若⎠⎛a b f(x)d x =1,⎠⎛ab g(x)d x =-3,则⎠⎛ab d x 等于( )A .2B .-3C .-1D .4解析:选C ⎠⎛a b d x =2⎠⎛a b f(x)d x +⎠⎛ab g(x)d x =2×1-3=-1.2.由定积分的几何意义可得⎠⎛02x2d x 的值等于( )A .1B .2C .3D .4解析:选A 定积分⎠⎛02x 2d x 等于直线y =x 2与x =0,x =2,y =0围成三角形的面积S =12×2×1=1.3.已知f(x)为偶函数,且⎠⎛06f(x)d x =8,则⎠⎛6-d x 等于( )A .0B .4C .8D .16解析:选D ∵被积函数f(x)是偶函数,∴在y 轴两侧的函数图象对称,从而对应的曲边梯形的面积相等,∴⎠⎛6-6f(x)d x =2⎠⎛06f(x)d x =2×8=16.4.定积分⎠⎛13(-3)d x 等于( )A .-6B .6C .-3D .3解析:选A ⎠⎛133d x 表示的面积S =3×2=6,⎠⎛13(-3)d x =-⎠⎛133d x =-6.5.定积分⎠⎛01x d x 与⎠⎛01x d x 的大小关系是( )A .⎠⎛01x d x =⎠⎛01x d xB .⎠⎛01x d x >⎠⎛01x d xC .⎠⎛01x d x <⎠⎛01x d x D .无法确定解析:选C 由定积分的几何意义结合右图可知⎠⎛01x d x <⎠⎛01x d x. 二、填空题6.设f(x)是连续函数,若⎠⎛01f(x)d x =1,⎠⎛02f(x)d x =-1,则⎠⎛12f(x)d x =________.解析:⎠⎛02f(x)d x =⎠⎛01f(x)d x +⎠⎛12d x ,所以⎠⎛12d x =⎠⎛02f(x)d x -⎠⎛01f(x)d x =-2.答案:-27.如下图所示的阴影部分的面积用定积分表示为________.解析:由定积分的几何意义知,S =⎠⎛2-4x 22d x. 答案:⎠⎛2-4x 22d x 8.⎠⎛2-2(sin x +2x)d x =________. 解析:由定积分的性质可得⎠⎛2-2(sin x +2x)d x = ⎠⎛2-2sin x d x +⎠⎛2-22x d x.又因为y =sin x 与y =2x 都是奇函数,故所求定积分为0. 答案:0三、解答题9.求⎠⎛1-1f(x)d x 的值,其中f(x)=⎩⎪⎨⎪⎧ 2x -1,-1≤x<0,e -x ,0≤x≤1,且⎠⎛0--d x =-2,⎠⎛01e -x d x =1-e -1.解:对于分段函数的定积分,通常利用积分区间可加性来计算,即⎠⎛1-1f(x)d x =⎠⎛0-1f(x)d x +⎠⎛01d x=⎠⎛0-1(2x -1)d x +⎠⎛01e -x d x =-2+1-e -1=-(e -1+1).10.利用定积分的性质和定义表示下列曲线围成的平面区域的面积.(1)⎠⎛1-1|x|d x ; (2)⎠⎛01d x.解:(1)如下图,因为A 1=A 2,所以⎠⎛1-1|x|d x =2A 1=2×12=1. (A 1,A 2分别表示图中相应各处面积)(2)⎠⎛01d x =⎠⎛011d x -⎠⎛011--2d x ,即用边长为1的正方形的面积减去圆(x -1)2+y 2=1的面积的14,为1-π4.。

2017-2018学年高中数学人教A版选修2-2练习:第2章 推理与证明2.1.2 Word版含解析

2017-2018学年高中数学人教A版选修2-2练习:第2章 推理与证明2.1.2 Word版含解析

第二章 2.1 2.1.2A 级 基础巩固一、选择题1.(2016·滨州高二检测)“三段论”①只有船准时起航,才能准时到达目的港;②这艘船是准时到达目的港的;③这艘船是准时起航的,其中大前提是( A )导学号 84624507A .① B .② C .①②D .③[解析] 根据三段论的定义,①为大前提,②为小前提,③为结论,故选A . 2.(2016·福州高二检测)“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( A )导学号 84624508A .演绎推理 B .类比推理 C .合情推理D .归纳推理[解析] 大前提为所有金属都能导电,小前提是金属,结论为铁能导电,故选A . 3.(2017·崇仁县校级月考)有个小偷在警察面前作了如下辩解:是我的录像机,我就一定能把它打开.看,我把它打开了.所以它是我的录像机.请问这一推理错在导学号 84624509( A )A .大前提B .小前提C .结论D .以上都不是[解析] ∵大前提的形式:“是我的录像机,我就一定能把它打开”错误;故此推理错误原因为:大前提错误,故选A .4.(2016·大同高二检测)函数y =x cos x -sin x 在下列哪个区间内是增函数( B )导学号 84624510A .(,)B .(π,2π) π23π2C .(,) D .(2π,3π)3π25π2[解析] 令y ′=x ′cos x +x (-sin x )-cos x =-x sin x >0. 由选项知x >0,sin x <0.∴π<x <2π,故选B .5.(2016·三明高二检测)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( D )导学号 84624511A .f (x ) B .-f (x ) C .g (x )D .-g (x )[解析] 观察所给例子可看出偶函数求导后都变成了奇函数,∵f(-x)=f(x),∴f(x)为偶函数,∵g(x)=f′(x),∴g(-x)=-g(x),选D.6.(2016·锦州市高二检测)若三角形两边相等,则该两边所对的内角相等,在△ABC中,导学号 84624512AB=AC,所以在△ABC中,∠B=∠C,以上推理运用的规则是( A ) A.三段论推理B.假言推理C.关系推理D.完全归纳推理[解析] ∵三角形两边相等,则该两边所对的内角相等(大前提),在△ABC中,AB=AC,(小前提)∴在△ABC中,∠B=∠C(结论),符合三段论推理规则,故选A.二、填空题log2x-2a7.求函数y=的定义域时,第一步推理中大前提是有意义时,a≥0,小log2x-2导学号 84624513前提是有意义,结论是__log2x-2≥0__.[解析] 由三段论方法知应为log2x-2≥0.8.以下推理过程省略的大前提为:__若a≥b,则a+c≥b+c__.导学号 84624514∵a2+b2≥2ab,∴2(a2+b2)≥a2+b2+2ab.[解析] 由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.三、解答题9.将下列演绎推理写成三段论的形式.导学号 84624515(1)菱形的对角线互相平分.(2)奇数不能被2整除,75是奇数,所以75不能被2整除.[解析] (1)平行四边形的对角线互相平分大前提菱形是平行四边形小前提菱形的对角线互相平分结论(2)一切奇数都不能被2整除大前提75是奇数小前提75不能被2整除结论10.(2016·南京高二检测)设m为实数,利用三段论证明方程x2-2mx+m-1=0有两个相异实根.导学号 84624516[解析] 因为如果一元二次方程ax2+bx+c=0(a≠0)的判别式Δ=b2-4ac>0,那么方程有两个相异实根.(大前提)Δ=(-2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两个相异实根.(结论)B 级 素养提升一、选择题1.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立,以上推理中( A )导学号 84624517A .大前提错误 B .小前提错误 C .结论正确D .推理形式错误[解析] ∵对于可导函数f (x ),若f (x )在区间(a ,b )上是增函数,则f ′(x )≥0对x ∈(a ,b )恒成立.∴大前提错误,故选A .2.下面几种推理过程是演绎推理的是( A )导学号 84624518A .因为∠A 和∠B 是两条平行直线被第三条直线所截得的同旁内角,所以∠A +∠B =180°B .我国地质学家李四光发现中国松辽地区和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油C .由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个素数的和D .在数列{a n }中,a 1=1,a n =(n ≥2),通过计算a 2,a 3,a 4,a 5的值12(an -1+1a n -1)归纳出{a n }的通项公式[解析] 选项A 中“两条直线平行,同旁内角互补”是大前提,是真命题,该推理为三段论推理,选项B 为类比推理,选项C 、D 都是归纳推理.二、填空题3.“∵α∩β=l ,AB ⊂α,AB ⊥l ,∴AB ⊥β”,在上述推理过程中,省略的命题为__如果两个平面相交,那么在一个平面内垂直于交线的直线垂直于另一个平面__.导学号 846245194.(2016·深圳高二检测)已知2sin 2α+sin 2β=3sin α,则sin 2α+sin 2β的取值范围为 [0,]∪{2} . 54导学号 84624520[解析] 由2sin 2α+sin 2β=3sin α 得sin 2α+sin 2β=-sin 2α+3sin α=-(sin α-)2+且sin α≥0,sin 2α∈[0,1].3294因为0≤sin 2β≤1,sin 2β=3sin α-2sin 2α, 所以0≤3sin α-2sin 2α≤1.。

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(1+i )3(1-i )2等于()A .1+iB .-1+iC .1-iD .-1-i解析:(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=-1-i. 答案:D2.如图所示的框图是结构图的是( ) A.P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B.Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件C.D.入库→找书→阅览→借书→出库→还书 解析:选项C 为组织结构图,其余为流程图. 答案:C3.若大前提:任何实数的平方都大于0,小前提:a ∈R ,结论:a 2>0,那么这个演绎推理出错在()A .大前提B .小前提C .推理形式D .没有出错 答案:A4.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是()A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误解析:对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.答案:A5.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为()A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:易知等式的左边是两项和,其中一项为序号n ,另一项为序号n -1的9倍,等式右边是10n -9.猜想第n 个等式应为9(n -1)+n =10n -9. 答案:B6.已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:因为(1-i )2z=1+i ,所以z =(1-i )21+i =(1-i )2(1-i )(1+i )(1-i )=(1+i 2-2i )(1-i )1-i 2=-2i (1-i )2=-1-i.答案:D7.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A.a >0,b C .a <0,b >0D .a <0,b <0解析:作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0, 当x =0时,y ^=a >0.故a >0,b <0. 答案:B8.下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥2lg a ·lg bD .若a 为正实数,ab <0,则a b +b a=-⎝⎛⎭⎪⎫-a b +-b a ≤-2⎝ ⎛⎭⎪⎫-a b ·⎝ ⎛⎭⎪⎫-b a =-2解析:A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.D 利用基本不等式,推理正确.答案:D9.下面的等高条形图可以说明的问题是()A .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C .此等高条形图看不出两种手术有什么不同的地方D .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:由等高条形图知,D 正确. 答案:D10.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数B .a ,b ,c 都大于1C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾所以a ,b ,c 中至少有一个不小于12.答案:D11.已知直线l ,m ,平面α,β且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β.其中正确命题的个数是() A .1B .2C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B12.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:输入x =0,y =1,n =1,得x =0,y =1,x 2+y 2=1<36,不满足条件;执行循环:n =2,x =12,y =2,x 2+y 2=14+4<36,不满足条件;执行循环:n =3,x =32,y =6,x 2+y 2=94+36>36,满足条件,结束循环,输出x =32,y =6,所以满足y =4x . 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·某某卷)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:a -i 2+i =15(a -i)(2-i)=2a -15-a +25i依题意a +25=0,所以a =-2.答案:-214.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为______________________________________________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.(2017·卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________; ②该小组人数的最小值为________.解析:设男学生人数、女学生人数、教师人数分别为a ,b ,c ,则有2c >a >b >c ,且a ,b ,c ∈Z.①当c =4时,b 的最大值为6;②当c =3时,a 的值为5,b 的值为4,此时该小组人数的最小值为12.答案:①6②1216.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______.解析:首先把两组值代入回归直线方程得⎩⎨⎧3b ^+a ^=17,8b ^+a ^=22,解得⎩⎨⎧b ^=1,a ^=14. 所以回归直线方程是y ^=x +14. 答案:y ^=x +14三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,某某数a ,b ,使az +2b z -=(a +2z )2. 解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a =-2,b =-1,或⎩⎪⎨⎪⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)设a ,b ,c 为一个三角形的三边,S =12(a +b +c ),且S 2=2ab ,求证:S <2a .证明:因为S 2=2ab ,所以要证S <2a ,只需证S <S 2b,即b <S .因为S =12(a +b +c ),只需证2b <a +b +c ,即证b <a +c .因为a ,b ,c 为三角形三边, 所以b <a +c 成立,所以S <2a 成立. 19.(本小题满分12分)观察以下各等式:tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°, tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°, tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°. 分析上述各式的共同特点,猜想出表示一般规律的等式,并加以证明. 解:表示一般规律的等式是:若A +B +C =π,则tan A +tan B +tan C =tan A ·tan B ·tan C . 证明:由于tan(A +B )=tan A +tan B1-tan A tan B ,所以tan A +tan B =tan(A +B )(1-tan A tan B ). 而A +B +C =π,所以A +B =π-C .于是tan A +tan B +tan C =tan(π-C )(1-tan A tan B )+tan C =-tan C +tan A tanB tanC +tan C =tan A ·tan B ·tan C .故等式成立.20.(本小题满分12分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值;(2)当a >0且b a >14时,证明该方程没有实数根.解:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,所以⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)证明:原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .因为a >0,所以b a ≤14,这与题设b a >14相矛盾,故原方程无实数根.21.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解:设等差数列{a n }的公差为d ,则⎩⎨⎧a 1=1+2,3a 1+3d =9+32,联立得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 从而(q +2)2=(p +2)(r +2), 所以(q 2-pr )+(2q -p -r )2=0. 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0, 所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段质量检测(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一段“三段论”,推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x =x0是函数f(x)的极值点.因为f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.以上推理中( )A.小前提错误 B.大前提错误C.推理形式错误 D.结论正确2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n(n∈N*)个等式应为( )A.9(n+1)+n=10n+9B.9(n-1)+n=10n-9C.9n+(n-1)=10n-1D.9(n-1)+(n-1)=10n-103.观察下面图形的规律,在其右下角的空格内画上合适的图形为( )A.■ B.△ C.□ D.○4.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )A.各正三角形内任一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28 B.76 C.123 D.1996.已知c>1,a=c+1-c,b=c-c-1,则正确的结论是( )A.a>b B.a<bC.a=b D.a、b大小不定7.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +28.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:记A (s ,t )表示第s 行的第t 个数,则A (11,12)等于( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 9.已知f (x +y )=f (x )+f (y ),且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎝ ⎛⎭⎪⎫n n +12C.n n +12D.n n +12f (1)10.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},…,依此类推,则每组内奇数之和S n 与其组的编号数n 的关系是( )A .S n =n 2B .S n =n 3C .S n =n 4D .S n =n (n +1)11.在等差数列{a n }中,若a n >0,公差d >0,则有a 4a 6>a 3a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( )A .b 4+b 8>b 5+b 7B .b 4+b 8<b 5+b 7C .b 4+b 7>b 5+b 8D .b 4+b 7<b 5+b 812.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 016等于( )A.12B .-1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1,在用反证法证明时,假设应为________.14.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.15.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n[f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sinx 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.16.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n -2(n >2)个图形中共有________个顶点.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)已知a >b >c ,且a +b +c =0,求证:b 2-aca< 3.18.(本小题12分)已知实数x ,且有a =x 2+12,b =2-x ,c =x 2-x +1,求证:a ,b ,c 中至少有一个不小于1.19.(本小题12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 20.(本小题12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c成等差数列.(1)比较b a 与cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.21.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1. (1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列; (2)设c n =a n2n (n =1,2,…),求证:数列{c n }是等差数列.22.通过计算可得下列等式: 22-12=2×1+1; 32-22=2×2+1; 42-32=2×3+1; …(n +1)2-n 2=2n +1.将以上各式两边分别相加,得(n +1)2-1=2×(1+2+3+…+n )+n ,即1+2+3+…+n =n n +12.类比上述方法,请你求出12+22+32+…+n 2的值.答案1.解析:选B 可导函数f (x ),若f ′(x 0)=0且x 0两侧导数值相反,则x =x 0是函数f (x )的极值点,故选B.2.解析:选B 由所给的等式可以根据规律猜想得:9(n -1)+n =10n -9. 3.解析:选A 由每一行中图形的形状及黑色图形的个数,则知A 正确.4.解析:选C 正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.5.解析:选C 记a n+b n=f (n ), 则f (3)=f (1)+f (2)=1+3=4,f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3), 则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47; f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123.所以a 10+b 10=123.6.解析:选B 要比较a 与b 的大小,由于c >1, 所以a >0,b >0,故只需比较1a 与1b的大小即可,而1a=1c +1-c=c +1+c ,1b=1c -c -1=c +c -1,显然1a >1b,从而必有a <b .7.解析:选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差为6的等差数列,通项公式为a n =6n +2.8.解析:选D 该三角形每行所对应元素的个数分别为1,3,5,…那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D.9.解析:选C f (x +y )=f (x )+f (y ), 令x =y =1,得f (2)=2f (1),令x =1,y =2,f (3)=f (1)+f (2)=3f (1) ⋮f (n )=nf (1),所以f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n n +12f (1).所以A ,D 正确.又f (1)+f (2)+…+f (n )=f (1+2+…+n )=f ⎝⎛⎭⎪⎫n n +12,所以B 也正确.故选C. 10.解析:选B ∵当n =1时,S 1=1;当n =2时,S 2=8=23;当n =3时,S 3=27=33;∴归纳猜想S n =n 3,故选B.11.解析:选A b 5+b 7-b 4-b 8=b 4(q +q 3-1-q 4)=b 4(q -1)(1-q 3)=-b 4(q -1)2(1+q +q 2)=-b 4(q -1)2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫q +122+34. ∵b n >0,q >1,∴-b 4(q -1)2·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫q +122+34<0,∴b 4+b 8>b 5+b 7.12.解析:选C ∵a 1=12,a n +1=1-1a n,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2, ∴a n +3k =a n (n ∈N *,k ∈N *), ∴a 2 016=a 3+3×671=a 3=2.13.解析:“至少有一个”的反面为“一个也没有”,即“x ,y 均不大于1”,亦即“x ≤1且y ≤1”.答案:x ,y 均不大于1(或者x ≤1且y ≤1)14.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b2=115.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +s in B +sin C )≤sin A +B +C3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33216.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…,a n =(n +2)+(n +2)·(n +2),a n -2=n 2+n .答案:n 2+n17.证明:因为a >b >c ,且a +b +c =0,所以a >0,c <0. 要证明原不等式成立,只需证明b 2-ac <3a , 即证b 2-ac <3a 2,从而只需证明(a +c )2-ac <3a 2, 即(a -c )(2a +c )>0,因为a -c >0,2a +c =a +c +a =a -b >0,所以(a -c )(2a +c )>0成立, 故原不等式成立.18.证明:假设a ,b ,c 都小于1, 即a <1,b <1,c <1, 则a +b +c <3.∵a +b +c =⎝⎛⎭⎪⎫x 2+12+(2-x )+(x 2-x +1)=2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3,且x 为实数,∴2⎝ ⎛⎭⎪⎫x -122+3≥3, 即a +b +c ≥3,这与a +b +c <3矛盾. ∴假设不成立,原命题成立. ∴a ,b ,c 中至少有一个不小于1. 19.解:(1)选择(2)式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+si n 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.20.解:(1)b a <c b. 证明如下: 要证b a <c b ,只需证b a <c b. ∵a ,b ,c >0, ∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c≥21ac,∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac .故所得大小关系正确.(2)证明:法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac >2ac -b 22ac >ac -b 22ac>0,这与cos B <0矛盾, 故假设不成立. 所以角B 不可能是钝角.法二:假设角B 是钝角,则角B 的对边b 是最大边, 即b >a ,b >c , 所以1a >1b >0,1c >1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b矛盾,故假设不成立. 所以角B 不可能是钝角.21.证明:(1)因为S n +1=4a n +2, 所以S n +2=4a n +1+2,两式相减得S n +2-S n +1=4a n +1-4a n (n =1,2,…), 即a n +2=4a n +1-4a n ,变形得a n +2-2a n +1=2(a n +1-2a n ), 因为b n =a n +1-2a n (n =1,2,…), 所以b n +1=2b n ,由此可知,数列{b n }是公比为2的等比数列. (2)由S 2=a 1+a 2=4a 1+2,a 1=1, 得a 2=5,b 1=a 2-2a 1=3. 故b n =3·2n -1.因为c n =a n2n (n =1,2,…),所以c n +1-c n =a n +12n +1-a n2n =a n +1-2a n2n +1=b n2n +1, 将b n =3·2n -1代入得c n +1-c n =34(n =1,2,…).由此可知,数列{c n }是公差d =34的等差数列.22.解:23-13=3×12+3×1+1, 33-23=3×22+3×2+1, 43-33=3×32+3×3+1, …(n +1)3-n 3=3n 2+3n +1, 将以上各式两边分别相加,得(n +1)3-13=3(12+22+32+…+n 2)+3(1+2+3+…+n )+n , 所以12+22+32+…+n 2=13⎣⎢⎡⎦⎥⎤n +13-1-n -3×n n +12=n n +12n +16.。

相关文档
最新文档