机械优化设计总复习

合集下载

机械优化设计总复习

机械优化设计总复习
机械优化设计总复习
1
第一章 机械优化设计的基本概念和理论
机械优化设计过程包括: (1) 将实际问题加以数学描述,形成数学模型; (2) 选用适当的一种最优化数值方法和计算程序运
算求解。
2
• 建立最优化问题数学模型的三要素:
• (1)设计变量和参数。

设计变量是由数学模型的解确定的未知数。
• (2)约束或限制条件。
解析解法 图解法 数值解法
8
第二章 优化设计的数学基础
多元函数的梯度
f
x1
f
X
f xf2
f X
x1
xn
f X
x2
f X
xn
T
9
例1:求二次函数 fx 1 , x 2 x 1 2 x 2 2 4 x 1 4 在点 3,2T
处的梯度。
解:
f
f
(
x)
x1 f
x2x1
2 f
xn
x1
2 f
x1x2
2 f x22
2 f xnx2
2 f
x1xn
2 f
x2xn
2 f
xn2
x
海色(Hessian)矩阵 H ( x ) 正定,即各阶主 子式均大于零,则X*为极小点。
15
4、凸规划
对于约束优化问题
min f X
s .t . gj X 0 (j1,2,3,,m) 若 f X g j X 都为凸函数,
则称此问题为凸规划。
16
六、不等式约束优化问题的极值条件
对于多元函数不等式的约束优化取得极值的条 件:
库恩—塔克条件
f x m xi j 1

机械优化设计复习资料

机械优化设计复习资料

1、优化问题的三要素:设计变量,约束条件,目标函数。

2、机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子3、外推法确定搜索区间,函数值形成高-低-高区间4、数值迭代法的公式:X k+1=X K+αk·S k5、若n维空间中有两个非零向量d0,d1,满足(d0)T Gd1=0,则d0、d1之间存在__共轭____关系与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值不变方向。

6、外点;内点的判别7、那三种方法不要求海赛矩阵:最速下降法共轭梯度法变尺度法8、那种方法不需要要求一阶或二阶导数:坐标轮换法9、拉格朗日乘子法是升维法 P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种二、解答题1、试述两种一维搜索方法的原理,它们之间有何区别搜索的原理是:区间消去法原理区别:(1)、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法(2)、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值。

这种方法称为插值法,又叫函数逼近法。

2、在变尺度法中,为使变尺度矩阵H与1 k G近似,并具有容易计算的特点,k Hk必须附加哪些条件?(1)必须是对称正定的(2)要求有简单的迭代形式(3)必须满足拟牛顿条件3、共轭梯度法是利用梯度求共轭方向的,那共轭方向与梯度之间有什么关系课本P904、惩罚函数法求解约束优化问题的基本原理是什么?基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数——惩罚函数∑∑==++=mj lk k j x h H r x g G r x f r r x 112121)]([)]([)(),,(φ求解该新目标函数的无约束极值,以期得到原问题的约束最优解三、计算题: 极值法求解:例2-3 求函数 的极值。

机械优化设计复习总结

机械优化设计复习总结

1.优化设计问题的求解方法:解析解法和数值近似解法。

解析解法是指优化对象用数学方程(数学模型)描述,用数学解析方法的求解方法.解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。

数值解法:优化对象无法用数学方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理为指导,通过试验逐步改进得到优化解。

数值解法可用于复杂函数的优化解,也可用于没有数学解析表达式的优化问题.但不能把所有设计参数都完全考虑并表达,只是一个近似的数学描述。

数值解法的基本思路:先确定极小点所在的搜索区间,然后根据区间消去原理不断缩小此区间,从而获得极小点的数值近似解。

2.优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目标函数达到极小值)。

3.机械优化设计中,两类设计方法:优化准则法和数学规划法。

优化准则法:(为一对角矩阵)数学规划法:(分别为适当步长\某一搜索方向——数学规划法的核心)4.机械优化设计问题一般是非线性规划问题,实质上是多元非线性函数的极小化问题。

重点知识点:等式约束优化问题的极值问题和不等式约束优化问题的极值条件.5.对于二元以上的函数,方向导数为某一方向的偏导数。

函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。

梯度方向是函数值变化最快的方向(最速上升方向),建议用单位向量表示,而梯度的模是函数变化率的最大值。

6.多元函数的泰勒展开。

海赛矩阵:=(对称方阵)7.极值条件是指目标函数取得极小值时极值点应满足的条件.某点取得极值,在此点函数的一阶导数为零,极值点的必要条件:极值点必在驻点处取得.用函数的二阶倒数来检验驻点是否为极值点。

二阶倒数大于零,取得极小值。

二阶导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点,奇次则为拐点。

二元函数在某点取得极值的充分条件是在该点出的海赛矩阵正定。

极值点反映函数在某点附近的局部性质。

机械优化设计总复习[超详细]

机械优化设计总复习[超详细]
基本思想: 对f(x)任选一个初始点a1及初始步长h, 通过比较这两 点函数值的大小,确定第三点位置,比较这三点的函数 值大小,确定是否为 “高—低—高” 形态。 步骤: (1)选定初始点a1, 初始步长h=h0 > 0,计算 y1=f(a1), y2=f(a1+h)。 (2)比较y1和y2。 (a)如y1>y2, 向右前进;加大步长 h=2 h ,转(3)向前; (b)如y1<y2, 向左后退;h=- h0, 将a1与a2,y1与y2的 值互换。转(3)向后探测; (c)如y1=y2,极小点在a1和a1+h之间。
b
29
*一、黄金分割法 1、在寻找一个区间 [ Xa , Xb ],使函数 f (X)在该区间的极小点 X* ∈ [ Xa , Xb ] 。
2、用黄金分割法在区间[ Xa , Xb ]中寻找 X* 。
X1 X b X b X a X2 Xa Xb Xa
23
K-T条件是多元函数取得约束极值的必 要条件,以用来作为约束极值的判断条件, 又可以来直接求解较简单的约束优化问题。
对于目标函数和约束函数都是凸函数 的情况, 符合K-T条件的点一定是全局最 优点。这种情况K-T条件即为多元函数取
得约束极值的充分必要条件。
24
第三章 一维搜索的最优化方法
试探法 一维搜索方法数值解法分类 插值法
0.618 [ Xa ,X1, X2, Xb ]
• •
如何消去子区间? f (X1) < f (X2) ,消去[X2, Xb],保留[Xa, X2] f (X1) ≥ f (X2) ,消去[Xa, X1],保留[X1, Xb]
30
第三章 一维搜索的最优化方法
一维搜索也称直线搜索。这种方法不仅对 于解决一维最优化本身具有实际意义,而且也 是解多维最优化问题的重要支柱。

机械优化设计期末考试试卷

机械优化设计期末考试试卷

机械优化设计期末复习题一、填空题1。

组成优化设计数学模型的三要素是设计变量、目标函数、约束条件。

2。

函数在点处的梯度为,海赛矩阵为3。

目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数。

4。

建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

5。

约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

6。

随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。

7.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。

8。

二元函数在某点处取得极值的必要条件是, 充分条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。

13.目标函数是n维变量的函数,它的函数图像只能在n+1,空间中描述出来,为了在n维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。

14。

数学规划法的迭代公式是,其核心是建立搜索方向,和计算最佳步长。

15协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。

16。

机械优化设计的一般过程中,建立优化设计数学模型是首要和关键的一步,它是取得正确结果的前提。

二、选择题1、下面方法需要求海赛矩阵。

A、最速下降法B、共轭梯度法C、牛顿型法D、DFP法2、对于约束问题根据目标函数等值线和约束曲线,判断为,为。

A.内点;内点B。

外点;外点C。

内点;外点D。

外点;内点3、内点惩罚函数法可用于求解__________优化问题.A 无约束优化问题B只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种___________。

~机械优化设计总结复习习题及答案

~机械优化设计总结复习习题及答案

欢迎阅读机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X * 附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.34.其6.F(X) A.x 17. A.8. A.9.多元函数F(X)在点X *附近的偏导数连续,∇F(X *)=0且H(X *)正定,则该点为F(X)的( )。

A.极小值点B.极大值点C.鞍点D.不连续点10.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( )。

A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 11.在单峰搜索区间[x 1 x 3] (x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1 x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( )。

A. [x 1 x 4]B. [x 2 x 3]C. [x 1 x 2]D. [x 4 x 3]12.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) A. n 次 B. 2n 次 C. n+1次 D. 2次 13.在下列特性中,梯度法不具有的是( )。

A.二次收剑性 B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向 14. A.15. A C.16.和λi≥0 A. D.17 A.18.( A. Ф C. Ф19. A. 梯度法 B. Powell 法 C. 共轭梯度法 D. 变尺度法1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 20. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( )A. [0,0.382]B. [0.382,1]C. [0.618,1]D. [0,1] 21. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hessian 矩阵是( ) A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )A. ∇F(X)=∑=∇λm1 iii(X)g,其中λi为拉格朗日乘子B. -∇F (X)= ∑=∇λm1 iii(X)g,其中λi为拉格朗日乘子C. ∇F(X)= ∑=∇λq1 iii(X)g,其中λi为拉格朗日乘子,q为该设计点X处的约束面数D. -∇F(X)= ∑∇λq i i(X)g,其中λi为拉格朗日乘子,q为该设计点X处的约束面数23.A. SB. SC. SD. S24.25.26.A.C.27. 优化设计的维数是指( )A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中,如已知x=0:10,则x有______个元素。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

机械优化设计复习题解答一、填空题1、用最速下降法求fX=100x 2- x 12 2+1- x 1 2的最优解时,设X 0=,T ,第一步迭代的搜索方向为 -47,-50T ;2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长;3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解;4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势;5、包含n 个设计变量的优化问题,称为 n 维优化问题;6、函数C X B HX X T T++21的梯度为HX+B ; 7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足d 0T Gd 1=0,则d 0、d 1之间存在共轭关系;8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素;9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是正定 ;10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合; 11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 10 ; 12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件;13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置; 14、将函数fX=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 ;15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭; 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点;17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长;1k k H g --18、与负梯度成锐角的方向为函数值下降的方向,与梯度成直角的方向为函数值变化为零的方向;19、对于一维搜索,搜索区间为[]b a ,,中间插入两个点()()111111,,,b f a f b a b a <<计算出,则缩短后的搜索区间为11b a20、由于确定搜索方向和最佳步长的方法不一致,派生出不同的无约束优化问题数值求解方法;1、导出等式约束极值条件时,将等式约束问题转换为无约束问题的方法有消元法和拉格朗日法;2、优化问题中的二元函数等值线,从外层向内层函数值逐渐变小;3、优化设计中,可行设计点位可行域内内的设计点;4、方向导数定义为函数在某点处沿某一方向的变化率5、在n 维空间中互相共轭的非零向量个数最多有n 个;6、外点惩罚函数法的迭代过程可在可行域外进行,惩罚项的作用是随便迭代点逼近边界或等式约束曲面; 二、选择题1、下面C 方法需要求海赛矩阵; A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 ;D A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B 优化问题; A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为a,b,中间插入两个点a1、b1,a1<b1,计算出fa1<fb1,则缩短后的搜索区间为D;A a1,b1B b1,bC a1,bD a,b15、D不是优化设计问题数学模型的基本要素;A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽fx k,下列不属于H k必须满足的条件的是C ;A. Hk之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的A;A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数;A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)(Xf为定义在凸集R上且具有连续二阶导数的函数,则)(Xf在R上为凸函数的充分必要条件是海塞矩阵GX在R上处处B;A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间a,b插入两点α1、α2,且α1<α2;A、其缩短率为B、α1=b-λb-aC、α1=a+λb-aD、在该方法中缩短搜索区间采用的是外推法;11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值 C方向;A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是 B;A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k和d k+1必为 B 向量;A 相切B 正交C 成锐角D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A;A 可用来求解含不等式约束和等式约束的最优化问题;B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点;D 初始点必须在可行域内三、问答题看讲义1、试述两种一维搜索方法的原理,它们之间有何区答:搜索的原理是:区间消去法原理区别:1、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法2、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值;这种方法称为插值法,又叫函数逼近法;2、惩罚函数法求解约束优化问题的基本原理是什么答,基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数——惩罚函数求解该新目标函数的无约束极值,以期得到原问题的约束最优解3、试述数值解法求最佳步长因子的基本思路;答主要用数值解法,利用计算机通过反复迭代计算求得最佳步长因子的近似值4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点;答:最速下降法此法优点是直接、简单,头几步下降速度快;缺点是收敛速度慢,越到后面收敛越慢;牛顿法优点是收敛比较快,对二次函数具有二次收敛性;缺点是每次迭代需要求海塞矩阵及其逆矩阵,维数高时及数量比较大;5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义;6、什么是共轭方向满足什么关系共轭与正交是什么关系四、解答题1、试用梯度法求目标函数fX=+ x1x2-2x1的最优解,设初始点x0=-2,4T,选代精度ε=迭代一步;解:首先计算目标函数的梯度函数,计算当前迭代点的梯度向量值梯度法的搜索方向为, 因此在迭代点x0的搜索方向为12,-6T 在此方向上新的迭代点为:===把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代; 第一迭代步完成;2、试用牛顿法求f X =x1-22+x1-2x22的最优解,设初始点x0=2,1T;解1:注:题目出题不当,初始点已经是最优点,解2是修改题目后解法;牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、海色矩阵及其逆矩阵不用搜索,当前点就是最优点;解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当;以下修改求解题目的初始点,以体现牛顿方法的典型步骤;以非最优点x0=1,2T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、以及海色矩阵及其逆矩阵梯度函数:初始点梯度向量:海色矩阵:海色矩阵逆矩阵:当前步的搜索方向为:=新的迭代点位于当前的搜索方向上:====把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代;第二迭代步:因此不用继续计算,第一步迭代已经到达最优点;这正是牛顿法的二次收敛性;对正定二次函数,牛顿法一步即可求出最优点;3、设有函数 fX=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值;解:首先利用极值必要条件找出可能的极值点:令=求得,是可能的极值点;再利用充分条件正定或负定确认极值点;因此正定, 是极小点,极值为fX=-84、求目标函数f X =x12+x1x2+2x22 +4x1+6x2+10的极值和极值点;解法同上5、试证明函数 f X =2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点1,1,-2T处具有极小值;解:必要条件:将点1,1,-2T带入上式,可得充分条件=40正定;因此函数在点1,1,-2T处具有极小值6、给定约束优化问题min fX=x1-32+x2-22. g1X=-x12-x22+5≥0g 2X=-x1-2x2+4≥0g 3X= x1≥0g 4X=x2≥0验证在点TX]2[,1=Kuhn-Tucker条件成立; 解:首先,找出在点TX]2[,1=起作用约束:g1X =0g2X =0g3X =2g4X =1因此起作用约束为g1X、g2X;然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合;==,求解线性组合系数得到均大于0因此在点T X ]2[,1=Kuhn-Tucker 条件成立 7、设非线性规划问题用K-T 条件验证[]TX 0,1*=为其约束最优点;解法同上8、已知目标函数为fX= x 1+x 2,受约束于:g 1X=-x 12+x 2≥0 g 2X=x 1≥0 写出内点罚函数; 解:内点罚函数的一般公式为其中: r 1>r 2 >r 3… >r k … >0 是一个递减的正值数列 r k =Cr k-1, 0<C <1 因此 罚函数为:9、已知目标函数为fX= x 1-12+x 2+22受约束于:g 1X=-x 2-x 1-1≥0g 2X=2-x 1-x 2≥0 g 3X=x 1≥0 g 4X=x 2≥0试写出内点罚函数; 解法同上10、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法x 取何值才能获得最大容器的箱子;试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;11、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;12、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序;13、求表面积为300m 2的体积最大的圆柱体体积;试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序; 14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大;写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解写出M文件和求解命令;15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1;管道内液体的流速与管道截面的周长s的倒数成比例关系s只包括底边和两侧边,不计顶边;试按照使液体流速最大确定该管道的参数;写出这一优化设计问题的数学模型;并用matlab软件的优化工具箱求解写出M文件和求解命令;16、某电线电缆车间生产力缆和话缆两种产品;力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元;若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用;如要获得最大利润,每天应生产力缆、话缆各多少米写出该优化问题的数学模型以及用MATLAB软件求解的程序;。

大学期末考试机械优化设计复习题及其答案

大学期末考试机械优化设计复习题及其答案

1化问题的三要素:设计变量,约束条件, 目标函数。

2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间4数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。

外点;内点的判别7那三种方法不要求海赛矩阵:最速下降法 共轭梯度法 变尺度法 8、那种方法不需要要求一阶或二阶导数: 坐标轮换法 9、拉格朗日乘子法是 升维法 P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种11,.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,同时必须是设计变量的可计算函数 。

13.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。

14.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

15,.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

16.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。

17二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定18.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。

19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩20坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题21.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。

机械优化设计复习题全集

机械优化设计复习题全集

一、 填空题1. 用最速下降法求()()2211f x =100)1x x -+-(x 最优解时,设()[]00.5,0.5T x =-,第一步迭代的搜索方向为_______________。

2. 机械优化设计采用数学的规划法,其核心一是最佳步长,二是搜索方向。

3. 当优化问题是凸规划的情况下,在任何局部最优解就是全域最优解。

4. 应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点,中间点和终点,他们的函数值形成趋势高低高。

5. 包含n 个设计变量的优化问题,称为 n 维优化问题。

6. 函数12T T x Hx B x c ++的梯度为_________。

7. 与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值的不变方向。

8. 设G 为n n ⨯对称正定矩阵,若n 维空间中有两个非零向量0d ,1d ,满足()010d Gd =,则0d ,1d 之间存在共轭关系。

9. 设计变量,目标函数,约束条件是优化设计问题的数学模型的基本要素。

10. 对于无约束二元函数()12,f x x ,若在()01234,x x x =点处取得极小值,其必要条件是在0x 点的梯度为0,充分条件是在0x 点的海赛矩阵正定。

11. K-T 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。

12. 用黄金分割法求一元函数()21036f x x x =-+的极值点,初始搜索区间[][],10,10a b =-,经第一次区间消去后得到新区间_________。

13. 优化设计问题的数学模型的基本要素有设计变量,目标函数,约束条件。

14. 牛顿法搜索方向k d =()()21()k k f x f x --∇∇,其计算是大,且要求初始在级极小点附近位置。

15. 将函数()2112121210460f x x x x x x x =+---+表示成的形式_______。

16. 存在矩阵H ,向量1d ,2d ,当满足()0T i j d Hd =向量1d 和向量2d 是关于H 共轭方向。

机械优化设计复习题最新版

机械优化设计复习题最新版

机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...)i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。

A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。

A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。

A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。

A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。

A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X附近偏导数连续;则该点位极小值点的充要条件为A .()*0F X ∇= B. ()*0F X ∇=;()*H X 为正定 C .()*0H X = D. ()*0F X ∇=;()*H X 为负定2.为克服复合形法容易产生退化的缺点;对于n 维问题来说;复合形的顶点数K 应A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数Fx=4x 21+5x 22;具有等式约束;其等式约束条件为hx=2x 1+3x 2-6=0;则目标函数的极小值为A .1B . 19.05C .0.25D .0.14.对于目标函数FX=ax+b 受约束于gX=c+x ≤0的最优化设计问题;用外点罚函数法求解时;其惩罚函数表达式ΦX;M k 为 .. A. ax+b+M k {min0;c+x}2;M k 为递增正数序列 B. ax+b+M k {min0;c+x}2;M k 为递减正数序列 C. ax+b+M k {maxc+x;0}2;M k 为递增正数序列hn D. ax+b+M k {maxc+x;0}2;M k 为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 0.186 C6.FX 在区间x 1;x 3上为单峰函数;x 2为区间中一点;x 4为利用二次插值法公式求得的近似极值点..如x 4-x 2>0;且Fx 4>Fx 2;那么为求FX 的极小值;x 4点在下一次搜索区间内将作为 ..A.x 1B.x 3C.x 2D.x 47.已知二元二次型函数FX=AX X 21T ;其中A=⎥⎦⎤⎢⎣⎡4221;则该二次型是 的.. A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列9.多元函数FX 在点X 附近的偏导数连续;∇FX=0且HX 正定;则该点为FX 的 ..A.极小值点B.极大值点C.鞍点D.不连续点10.FX 为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数;若HX 正定;则称FX 为定义在凸集D 上的 ..A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A11.在单峰搜索区间x 1 x 3 x 1<x 3内;取一点x 2;用二次插值法计算得x 4在x 1 x 3内;若x 2>x 4;并且其函数值Fx 4<Fx 2;则取新区间为 .. A. x 1 x 4 B. x 2 x 3 C. x 1 x 2 D. x 4 x 312.用变尺度法求一n 元正定二次函数的极小点;理论上需进行一维搜索的次数最多为A. n 次B. 2n 次C. n+1次D. 2次 13.在下列特性中;梯度法不具有的是 ..A.二次收剑性B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向14.外点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列15.内点惩罚函数法的特点是 ..A .能处理等式约束问题 B.初始点必须在可行域中C.初始点可以在可行域外D.后面产生的迭代点序列可以在可行域外16.约束极值点的库恩—塔克条件为∇FX=)X (g i q1i i ∇λ-∑=;当约束条件g i X ≤0i=1;2;…;m 和λi ≥0时;则q 应为 ..A.等式约束数目;B.不等式约束数目;C.起作用的等式约束数目D.起作用的不等式约束数目17 已知函数FX=-1222121x 2x x x 2x 2+-+;判断其驻点1;1是 ..A.最小点B.极小点C.极大点D.不可确定18.对于极小化FX;而受限于约束g μX ≤0μ=1;2;…;m 的优化问题;其内点罚函数表达式为 A. ФX; r k=FX-rk11/()gX u u m=∑ B. ФX; r k =FX+rk11/()gX u u m=∑C. ФX; r k =FX-rkmax[,()]01gX u u m=∑ D. ФX; r k =FX-rkmin[,()]01gX u u m=∑19. 在无约束优化方法中;只利用目标函数值构成的搜索方法是A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A20. 利用0.618法在搜索区间a;b 内确定两点a 1=0.382;b 1=0.618;由此可知区间a;b 的值是A. 0;0.382B. 0.382;1C. 0.618;1D. 0;1 21. 已知函数FX=x 12+x 22-3x 1x 2+x 1-2x 2+1;则其Hessian 矩阵是 A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minFX 受约束于g i x ≤0i=1;2;…;m 的约束优化设计问题;当取λi ≥0时;则约束极值点的库恩—塔克条件为 A. ∇FX=∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子B. -∇F X= ∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子C. ∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数D. -∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数23. 在共轭梯度法中;新构造的共轭方向S k+1为 A. S k+1= ∇FX k+1+βk S K ;其中βk 为共轭系数 B. S k+1=∇FX k+1-βk S K ;其中βk 为共轭系数C. S k+1=-∇FX k+1+βk S K;其中βk为共轭系数D. S k+1=-∇FX k+1-βk S K;其中βk为共轭系数24. 用内点罚函数法求目标函数FX=ax+b受约束于gX=c-x≥0的约束优化设计问题;其惩罚函数表达式为A. ax+b-r kx-c1;r k为递增正数序列B. ax+b-r kx-c1;r k为递减正数序列C. ax+b+ r kx-c1;r k为递增正数序列D. ax+b+r kx-c1;r k为递减正数序列25. 已知FX=x1x2+2x22+4;则FX在点X0=⎭⎬⎫⎩⎨⎧-11的最大变化率为A. 10B. 4C. 2D. 1026.在复合形法中;若映射系数α已被减缩到小于一个预先给定的正数δ仍不能使映射点可行或优于坏点;则可用A.好点代替坏点B.次坏点代替坏点C.映射点代替坏点D.形心点代替坏点1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A27. 优化设计的维数是指A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中;如已知x=0:10;则x有______个元素..A. 10B. 11C. 9D. 1229.如果目标函数的导数求解困难时;适宜选择的优化方法是 ..A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 30.在0.618法迭代运算的过程中;迭代区间不断缩小;其区间缩小率在迭代的过程中 ..A .逐步变小B 不变C 逐步变大D 不确定二 填空1.在一般的非线性规划问题中;kuhn-tucker 点虽是约束的极值点;但 是全域的最优点..2.判断是否终止迭代的准则通常有 . 和 三种形式..3.当有两个设计变量时;目标函数与设计变量关系是 中一个曲面..4.函数在不同的点的最大变化率是 ..5.函数()2212144f x x x x =+-+;在点()[]132TX = 处的梯度为 ..6.优化计算所采用的基本的迭代公式为 .. 7.多元函数Fx 在点x 处的梯度▽Fx =0是极值存在的 条件.. 8.函数Fx=3x 21+x 22-2x 1x 2+2在点1;0处的梯度为 .. 9.阻尼牛顿法的构造的迭代格式为 .. 10.用二次插值法缩小区间时;如果p x x <2;p f f >2;则新的区间a;b 应取作 ;用以判断是否达到计算精度的准则是 .. 11.外点惩罚函数法的极小点是从可行域之 向最优点逼近;内点惩罚函数法的极小点是从可行域之 向最优点逼近.. 12.罚函数法中能处理等式约束和不等式约束的方法是 罚函数法..13.Powell 法是以 方向作为搜索方向..14.当有n 个设计变量时;目标函数与n 个设计变量间呈 维空间超曲面关系..1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1三 问答题1. 变尺度法的基本思想是什么2. 梯度法的基本原理和特点是什么3.什么是库恩-塔克条件 其几何意义是什么4. 在内点罚函数法中;初始罚因子的大小对优化计算过程有何影响5. 选择优化方法一般需要考虑哪些因素6. 满足什么条件的方向是可行方向 满足什么条件的方向是下降方向 作图表示..7. 简述传统的设计方法与优化设计方法的关系.. 8. 简述对优化设计数学模型进行尺度变换有何作用.. 9. 分析比较牛顿法.阻尼牛顿法和共轭梯度法的特点 10.为什么选择共轭方向作为搜索方向可以取得良好的效果11.多目标问题的解与单目标问题的解有何不同 如何将多目标问题转化为单目标问题求解12.黄金分割法缩小区间时的选点原则是什么 为何要这样选点四.计算题1.用外点法求解此数学模型2 将()22121212262233f x x x x x x x =+++++写成标准二次函数矩阵的形式..3 用外点法求解此数学模型 :()()()12211221min ..00f X x x s tg X x x g X x =+=-≤=-≤4 求出()221122262420f x x x x x =-+-+的极值及极值点..5 用外点法求解此数学模型 :()()()()31211221min 13..100f X x x s tg X x g X x =++=-+≤=≥6.用内点法求下列问题的最优解:提示:可构造惩罚函数 []∑=-=21)(ln )(),(u u x g r x f r x φ;然后用解析法求解....7.设已知在二维空间中的点[]T x x x 21=;并已知该点的适时约束的梯度[]T g 11--=∇;目标函数的梯度[]T f 15.0-=∇;试用简化方法确定一个适用的可行方向..8. 用梯度法求下列无约束优化问题:Min FX=x 12+4x 22;设初始点取为X 0=2 2T ;以梯度模为终止迭代准则;其收敛精度为5..9. 对边长为3m 的正方形铁板;在四个角处剪去相等的正方形以制成方形无盖水槽;问如何剪法使水槽的容积最大 建立该问题的优化设计的数学模型.. 10. 已知约束优化问题: 试以[][][]T T T x x x 33,14,1230201===为复合形的初始顶点;用复合形法进行一次迭代计算..机械优化设计综合复习题参考答案一.单项选择题1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A 二 填空1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1 三 问答题1.变尺度法的基本思想是:通过变量的尺度变换把函数的偏心程度降低到最低限度;显着地改进极小化方法的收敛性质..2.梯度法的基本原理是搜索沿负梯度方向进行;其特点是搜索路线呈“之”字型的锯齿路线;从全局寻优过程看速度并不快..3.库恩-塔克条件是判断具有不等式约束多元函数的极值条件..库恩—塔克条件的几何意义是: 在约束极小值点*X 处;函数()x F 的负梯度一定能表示成所有起使用约束在该点梯度法向量的非负线性组合..4.初始罚因子0r ;一般来说0r 太大将增加迭代次数;0r 太小会使惩罚函数的性态变坏;甚至难以收敛到极值点..5.选择优化方法一般要考虑数学模型的特点;例如优化问题规模的大小;目标函数和约束函数的性态以及计算精度等..在比较各种可供选用的优化方法时;需要考虑的一个重要因素是计算效率.. 6.可行条件应满足第二式: 7.下降条件应满足第一式:搜索方向应与起作用的约束函数在k x 点的梯度及目标函数的梯度夹角大于或等于900..8.数学模型的尺度变换是一种改善数学模型性态;使之易于求解的技巧..一般可以加速优化设计的收敛;提高计算过程的稳定性.. 9.牛顿法的迭代关系式为:阻尼牛顿法的迭代关系式为: 共轭梯度法的迭代关系式为:牛顿法适合二次型问题;阻尼牛顿法有防止目标函数值上升的阻尼因子;适合非二次型问题;两者均需计算海森矩阵及其逆矩阵;计算量大..共轭梯度法用梯度构造共轭方向;仅需梯度计算且具有共轭性质;收敛速度快;不必计算海森矩阵;使用更加方便..10.根据共轭方向的性质:从任意初始点出发顺次沿n 个G 的共轭方向进行一维搜索;最多经过n 次迭代就可找到二次函数的极小点;具有二次收敛性.. 11.单目标问题的解一般是唯一理想解;多目标的解一般是相对理想解..多目标问题转成单目标问题的常用方法有:主要目标法.线性加权法.理想点法.平方和加权法.分目标乘除法.功率系数法和极大极小法..12.选点原则是插入点应按0.618分割区间..因为这样选点可以保持两次迭代区间的相同比例分布;具有相同的缩短率.. 四.计算题1.提示:先转化为惩罚函数形式 答案1=x 2.二次函数的矩阵标准形式为C x B Gx x T T++21 答案为121[()]()(0,1,2,)k k kk f fk +-=-∇∇=x x x x⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1222421T x x +[]32x +3 3.参考第六章复习题提示 结果为][T x 00= 4. 用梯度计算极值点 答案为][T 15.1 5. 先构造外点罚函数 答案为][T 01- 6. 先构造内点罚函数 答案为][T 317. 用图解法;先画出约束函数梯度及目标函数梯度;做两者的垂线;与两梯度夹角均大于900的任意方向均可..8. 以负梯度为搜索方向进行迭代计算 答案为[]T 00 9. 设剪掉的正方形边长为1x数学模型为 Min []12)23()(x x x F -=10. 提示 先算三点的目标函数值并排序;将最差点沿其余点中心进行反射;计算反射点函数值并判断可行性.. 答案为][T 5.31。

机械优化设计复习题答案

机械优化设计复习题答案

机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。

A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。

A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。

A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。

答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。

答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。

答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。

答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。

2. 描述机械优化设计中约束条件的分类及其意义。

答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。

等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。

这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。

3. 举例说明机械优化设计中设计变量的选择原则。

答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。

机械优化设计复习总结 .docx

机械优化设计复习总结  .docx

1. 优化设il •问题的求解方法:解析解法和数值近似解法。

解析解法是指优化对彖用数学方程(数学模型)描述,用 数学解析方法的求解方法。

解析法的局限性:数学描述复朵,不便于或不可能用解析方法求解。

数值解法:优 化对象无法用数学方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解:以数学原理 为指导,通过试验逐步改进得到优化解。

数值解法可用于复杂函数的优化解,也可用于没有数学解析表达式的 优化问题。

但不能把所有设计参数都完全考虑并表达,只是•个近似的数学描述。

数值解法的基本思路:先确 定极小点所在的搜索区间,然后根据区间消去原理不断缩小此区间,从而获得极小点的数值近似解。

2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目 标函数达到极小值)。

3. 机械优化设计中,两类设计方法:优化准则法和数学规划法。

优化准则法:(为一对角矩阵)数学规划法:X®二#+购〃"(畋\〃*分别为适当步长\某一搜索方向一一数学规划法的核心)4•机械优化设计问题一般是非线性规划问题,实质上是多元非线性函数的极小化问题。

重点知识点:等式约束优 化问题的极值问题和不等式约朿优化问题的极值条件。

5. 对于二元以上的函数,方向导数为某一方向的偏导数。

函数沿某一方向的方向导数等丁•函数在该点处的梯度与这一方向单位向虽:的内积。

梯度方向是函数值变化最快的方 向(最速上升方向),建议用单位向量表示,而梯度的模是函数变化率的最大值。

6. 多元函数的泰勒展开。

7•极值条件是指目标函数取得极小值时极值点应满足的条件。

某点取得极值,在此点函数的一阶导数为零,极值 点的必要条件:极值点必在驻点处取得。

用函数的一阶倒数来检验驻点是否为极值点。

二阶倒数人于零,取得 极小值。

二阶导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点,奇次则为拐点。

二元函数 在某点取得极值的充分条件是在该点出的海赛矩阵正定。

机械优化设计总复习201012

机械优化设计总复习201012


:最优值
*
约束最优解
18
无约束优化设计问题最优解: 不受约束条件限制,使目标函数达到最小值的一组设 计变量,即最优点 x*=[x1*,x2*,…,x n*] 和最优值 f(x*)构 成无约束问题最优解。
约束优化设计问题最优解:
满足约束条件,使 目标函数达到最小值的 一组设计变量,即最优 点 x*=[x1*,x2*,…,x n*] 和最优值 f(x*)构成约
23
2、函数梯度的模 f ( X (k ) ) 是在点 X (k )处函数变化率的最大值。 3、函数的梯度 f ( X (k ) )与在点 X (k )的函数等值面正交(函数
在任意点处的梯度向量与过该点的等值线的切线正交。即,任
意点的梯度方向是等值线在该点的法线方向)。与点 X (k ) 的函 数等值面相切方向的函数变化率为零。 4、当梯度 f X 与方向 S 之间的 夹角介于0°~90°之间时,该 区域内的任意方向都是使函数值 增大的方向,即函数上升方向; k 当梯度f X 与方向 S 之间的夹 角介于90°~180°之间时,该 区域内的任意方向都是使函数值 减小的方向,即函数下降方向。
点,设计变量可分为连续变量(例如轴径、 轮廓尺寸等)和离散变量(例如各种标准规 格等)。
• 小型设计问题:一般含有2—10个设计变量; • 中型设计问题:10—50个设计变量; • 大型设计问题:50个以上的设计变量。
3
二 设计空间 在一个优化设计问题中,所有可能的设计方案 构成了一个向量集合。可以证明,这个向量集合是 一个向量空间,并且是一个欧氏空间。 一个优化设计问题中,设计变量的个数,就是 它的设计空间的维数。 三 目标函数 优化设计中要优化的某个或某几个设计指标, 这些指标是设计变量的函数,称为目标函数。在构 造目标函数时,应注意目标函数必须包含全部设计 变量,所有的设计变量必须包含在约束函数中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.黄金分割法
要求插入点 1,2的位置相对于区间 a , b
两端点具有对称性。
x1=a+(1-λ)(b-a)
x22a(ba)
在[a,x1, x2, b ] 如何消去子区间?
f (x1) < f (x2) ,消去[x2, b],保留[a, x2]
f (x1) > f (x2) ,消去[a, x1],保留[x1, b]
x1x
2
2 f
x1
x
2
x22 x0
x 1 x 1 x 1 0 , x 2 x 2 x 2 0
11
用泰勒展开将函数 f( x ) x 1 3 x 2 3 3 x 1 2 3 x 2 2 9 x 1 在点 x(1) [1,1]T展开为二次函数。
解:函数在点 x (1 ) 的函数值、梯度和二阶导数
则称此问题为凸规划。
16
六、不等式约束优化问题的极值条件
对于多元函数不等式的约束优化取得极值的条 件:
库恩—塔克条件
f x m xi j 1
gj x j xi
0(i1 ,2,,n)
jg j x 0 (j 1 ,2 ,,m )
j 0(j1,2,m)
17
K-T条件是多元函数取得约束极值的必要条件,以 用来作为约束极值的判断条件,又可以来直接求 解较简单的约束优化问题。
可行域 :在设计空间中满足所有约束条件的设计点 的集合
5
六 优化设计的数学模型 (一)优化设计的标准数学模型
min f X
XRn
s.t. guX0 ,u1,2, ,m hvX0 ,v1,2, , pn
必要时对数学模型进行规范化,
6
7
1. 等值线(面):是表征目标函数的特性,在每一 条曲线(面)的各点上,目标函数值相等。 2. 优化设计问题的基本解法包括:
20
例 用黄金分割法求函数f(x)=3x3-4x+2的极小点,设初始区间为 (0,2),计算精度为0.8
解: 第一轮计算:区间(a,b)=(0,2) x1=0+0.382X(2-0)=0.764, f1=0.282 x2=0+0.618 X(2-0)=1.236, f2=2.72 f1<f2, 新区间[a,b]=[a,x2]=[0, 1.236], b-a>0.8
矩阵:
f(x(1))3
f(x(1))3 x1 3 2x2 26x6 1 x29x(1)
0 3
2f(x (1 )) 6 x 1 0 6 6 x 0 2 6 x (1 ) 1 0 20 0
12
xx(1) xx1 21 1xx1 2 1 1
f ( x ) f ( x ( 1 ) ) f ( x ( 1 ) ) T [ x x ( 1 ) ] 1 [ x x ( 1 ) ] T 2 f ( x ( 1 ) ) [ x x ( 1 ) ] 2
机械优化设计总复习
1
第一章 机械优化设计的基本概念和理论
机械优化设计过程包括: (1) 将实际问题加以数学描述,形成数学模型; (2) 选用适当的一种最优化数值方法和计算程序运
算求解。
2
• 建立最优化问题数学模型的三要素:
• (1)设计变量和参数。

设计变量是由数学模型的解确定的未知数。
• (2)约束或限制条件。

由于现实系统的客观物质条件限制,模型必须包括把
决策变量限制在它们可行值之内的约束条件,而这通常是
用约束的数学函数形式来表示的。
• (3)目标函数。
• 这是作为系统决策变量的一个数学函数来衡量系统的效率, 即系统追求的目标。
3
1、设计变量
设计变量的数目确定了优化设计的维数,如n个设计 变量,则称为n维设计问题
2 约束条件的分类 (1)根据约束的性质分 边界约束 直接限定设计变量的取值范围的约束条 件,即
ai xi bi i = 1,2, ···,n
性能约束 由结构的某种性能或设计要求,推导出 来的约束条件。
4
(2)根据约束条件的形式分
不等式约束
guX0
等式约束
u=1,2, ···,m
hv X 0 v = 1,2, ···,p < n
对于目标函数和约束函数都是凸函数 的情况, 符合K-T条件的点一定是全局最 优点。这种情况K-T条件即为多元函数取
得约束极值的充分必要条件。
18
优化问题的几何描述
起作用约束。
19
第三章 一维搜索
1、确定搜索区间的外推法/进退法
在给定区间内仅有一个谷值(或有唯一的极小点) 的函数称为单谷函数,其区间称为单谷区间。
2x1
2x2
4
x2
在点 3,2T 处的梯度为:
f(x1)2x21x2442
10
2、二元函数
二元函数 f ( x) 在 x0(x10,x20)点处的泰勒展开式为:
f (x)
f
(
x0
)
f x1
f x2
x0
x1 x2
1 2
x1
2 f
x2
x12 2 f
x1x2
2 f
2 f
xn
x1
2 f
x1x2 2 f x22
2 f
xnx2
2 f
x1xn
2 f
x2xn
2 f
xn2
x
海色(Hessian)矩阵 H ( x ) 正定,即各阶主 子式均大于零,则X*为极小点。
15
4、凸规划
对于约束优化问题
min f X
s .t . gj X 0 (j1,2,3,,m) 若 f X g j X 都为凸函数,
解析解法 图解法 数值解法
8
第二章 优化设计的数学基础
多元函数的梯度
f
x1
f
X
f
x2 f
f X
x1
xn
f X
x2
f X
xn
T
9
例1:求二次函数 fx 1 , x 2 x 1 2 x 2 2 4 x 1 4 在点 3,2T
处的梯度。
解:
f
f
(
x)
x1 f
3x2 66(x1 1)2 6x12 12x1 3x2
13
3、无约束优化问题取得极值的条件 1).F(x)在 x * 处取得极值,其必要条件是:
T
f(x) xf1
f x2
xfnx 0
即在极值点处函数的梯度为n维零向量。
14
2. x * 处取得极值充分条件
2 f
x12
2 f
G(
x
)

x2x1
21
第二轮计算:
• 令 x2=x1=0.764,
f2=f1=0.282
• x1=0+0.382X(1.236-0)=0.472, f1=0.317
• f1>f2, 故新区间[a,b]=[x1,b]=[0.472, 1.236]
相关文档
最新文档