最新上海初中八年级数学试卷压轴题

合集下载

2021-2022学年沪科版八年级数学第一学期期末复习压轴题专题训练(附答案)

2021-2022学年沪科版八年级数学第一学期期末复习压轴题专题训练(附答案)

2021-2022学年沪科版八年级数学第一学期期末复习压轴题专题训练(附答案)1.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE=.2.某经销商从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)700100售价(元/台)900160他计划用4万元资金一次性购进这两种品牌计算器共100台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?3.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y (千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?4.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;(4)在(3)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.5.如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问(1)在刚出发时我公安快艇距走私船多少海里?(2)计算走私船与公安快艇的速度分别是多少?(3)写出L1,L2的解析式(4)问6分钟时两艇相距几海里.(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?6.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟从出发到追上兔子用了多少分钟?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?7.如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交于点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)8.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.9.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).10.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC中,∠BAC=50°,点I是两角B、C平分线的交点.问题(1):填空:∠BIC=°.问题(2):若点D是两条外角平分线的交点;填空:∠BDC=°.问题(3):若点E是内角∠ABC、外角∠ACG的平分线的交点,试探索:∠BEC与∠BAC 的数量关系,并说明理由.问题(4):在问题(3)的条件下,当∠ACB等于多少度时,CE∥AB.11.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.12.在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C 作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.13.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.14.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.15.已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.16.Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.17.如图(1),在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发分别以每分钟1个单位的速度由B向C和由C向A爬行,其中一只蜗牛爬到终点s时,另一只也停止运动,经过t分钟后,它们分别爬行到D,P处,请问:(1)在爬行过程中,BD和AP始终相等吗?为什么?(2)问蜗牛在爬行过程中BD与AP所成的∠DQA大小有无变化?请证明你的结论.(3)若蜗牛沿着BC和CA的延长线爬行,BD与AP交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中的∠DQA大小变化了吗?若无变化,请证明.若有变化,请直接写出∠DQA的度数.18.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF 在数量和位置上有什么关系?并说明理由.19.如图,已知点O是∠APB内的一点,M,N分别是点O关于P A、PB的对称点,连接MN,与P A、PB分别相交于点E、F,已知MN=6cm.(1)求△OEF的周长;(2)连接PM、PN,若∠APB=a,求∠MPN(用含a的代数式表示);(3)当∠a=30°,判定△PMN的形状,并说明理由.20.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.21.(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.(2)图(1)所示的图形中,有像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由.(3)请你直接利用以上结论,解决以下三个问题:①如图(3),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°.②如图(4)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数.22.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于点O.(1)若∠A=50°,求∠BOC的度数;(2)设∠A的度数为n°(n为已知数),求∠BOC的度数;(3)当∠A为多少度时,∠BOC=3∠A?参考答案1.解:连接BD、AE,∵DA⊥AB,FC⊥AB,∴∠DAB=∠BCF=90°,在△DAB和△BCF中,,∴△DAB≌△BCF(SAS),∴BD=BF,∠ADB=∠ABF,∴∠BDF=∠BFD,∵∠DAB=90°,∴∠ADB+∠DBA=90°,∴∠DBF=∠ABD+∠ABF=90°,∴∠BFD=∠BDF=45°,同理∠AFE=45°,∴∠DFE=45°+45°﹣51°=39°,故答案为:39°.2.解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000,其中700x+100(100﹣x)≤40000,得x≤50,即y=140x+6000,(0<x≤50);(2)令y≥12600,则140x+6000≥12600,∴x≥47,又∵x≤50,∴47≤x≤50∴经销商有以下三种进货方案:方案A品牌(台)B品牌(台)①4852②4951③5050(3)∵y=140x+6000,140>0,∴y随x的增大而增大,∴x=50时,y取得最大值,又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.3.解:(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b得:,解得:,∴直线AB所对应的函数关系式为:y=﹣100x+320;(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:,解得:,∴直线CD所对应的函数关系式为y=﹣80x+320,当y=0时,x=4,∴小颖一家当天12点到达姥姥家.4.解:(1)∵A(2,4)、B(﹣3,﹣8),∴AB==13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,∴AB=|4﹣(﹣1)|=5;(3)△DEF为等腰三角形,理由为:∵D(1,6)、E(﹣2,2)、F(4,2),∴DE==5,DF==5,EF==6,即DE=DF,则△DEF为等腰三角形;(4)做出F关于x轴的对称点F′,连接DF′,与x轴交于点P,此时DP+PF最短,设直线DF′解析式为y=kx+b,将D(1,6),F′(4,﹣2)代入得:,解得:,∴直线DF′解析式为y=﹣x+,令y=0,得:x=,即P(,0),∵PF=PF′,∴PD+PF=DP+PF′=DF′==,则PD+PF的长度最短时点P的坐标为(,0),此时PD+PF的最短长度为.5.解:(1)在刚出发时我公安快艇距走私船5海里.(2)公安快艇是4分钟6海里,走私船是每分钟=1海里;公安快艇的速度是=海里.(3)设L1:y1=k1x+b过(0,5)和(4,9)点解得∴y1=x+5设L2:y2=k2x过(4,6)点∴y2=x(4)当x=6时,y1=11,y2=9;11﹣9=26分钟时相距2海里.(5)y1=y2x+5=xx=1010分钟时相遇.6.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC表示赛跑过程中兔子的路程与时间的关系;线段OD表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;故答案为:兔子、乌龟、1500;(2)结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米)乌龟每分钟爬50米.(3)700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)∵48千米=48000米∴48000÷60=800(米/分)(1500﹣700)÷800=1(分钟)30+0.5﹣1×2=28.5(分钟)兔子中间停下睡觉用了28.5分钟.7.解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.8.(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.9.解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B,故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个,故答案为:6;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠P AB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠P AB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠P AB+∠P,即2∠P=∠D+∠B,又∵∠D=50度,∠B=40度,∴2∠P=50°+40°,∴∠P=45°;(4)关系:2∠P=∠D+∠B.∠D+∠1=∠P+∠3①∠B+∠4=∠P+∠2②①+②得:∠D+∠1+∠4+∠B=∠P+∠3+∠2+∠P,∵∠DAB和∠DCB的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4∴2∠P=∠D+∠B.10.解:(1)∵点I是两角B、C平分线的交点,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90+∠BAC=115°;(2)∵BE、BD分别为∠ABC的内角、外角平分线,∴∠DBI=90°,同理∠DCI=90°,在四边形CDBI中,∠BDC=180°﹣∠BIC=90°﹣∠BAC=65°;(3)∠BEC=∠BAC.证明:在△BDE中,∠DBI=90°,∴∠BEC=90°﹣∠BDC=90°﹣(90°﹣∠BAC)=∠BAC;(4)当∠ACB等于80°时,CE∥AB.理由如下:∵CE∥AB,∴∠ACE=∠A=50°,∵CE是∠ACG的平分线,∴∠ACG=2∠ACE=100°,∴∠ABC=∠ACG﹣∠BAC=100°﹣50°=50°,∴∠ACB=180°﹣∠BAC﹣∠ABC=80°.11.解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)存在,理由:①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.12.解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.13.解:(1)证明:∵BG∥AC,∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.14.(1)证明:∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.15.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE;(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF.16.解:(1)连接EM.∵AE⊥AB,∴∠EAM=∠B=90°.在△AEM与△BMC中,,∴△AEM≌△BMC(SAS).∴∠AEM=∠BMC,EM=MC.∵∠AEM+∠AME=90°,∴∠BMC+∠AME=90.∴∠EMC=90°.∴△EMC是等腰直角三角形.∴∠MCE=45°∵AN∥CE,∴∠AFM=∠MCE=45°;解:(2)如图2,连接ME.同(1)△AEM≌△BMC(SAS),则EM=MC,∠MEA=∠CMB=15°.又∵∠MEA+∠EMA=90°,∴∠EMC=60°,∴△EMC是等边三角形,∴∠ECM=60°,∵AN∥CE∴∠AFM+∠ECM=180°,∴∠AFM=120°.17.解:(1)在爬行过程中,BD和AP始终相等,理由是:∵△ABC是等边三角形,∴∠CAB=∠C=∠ABP=60°,AB=BC,在△BDC和△APB中,,∴△BDC≌△APB(SAS),∴BD=AP.(2)蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,理由:∵△BDC≌△APB,∴∠CBD=∠BAP,∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,即蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,始终是60°.(3)蜗牛爬行过程中的∠DQA大小无变化,理由是:根据题意得:BP=CD,∵BC=AC,∴CP=AD,∵△ABC是等边三角形,∴AC=AB,∠CAB=∠ACB=60°,∵∠ACP+∠ACB=180°,∠DAB+∠CAB=180°,∴∠ACP=∠BAD,在△ABD和△ACP中,,∴△ABD≌△ACP(SAS),∴∠CAP=∠ABD,∴∠AQD=∠ABD+∠BAQ=∠CAP+∠QAB=180°﹣∠CAB=180°﹣60°=120°,即蜗牛爬行过程中的∠DQA无变化,等于120°.18.解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.19.解:(1)∵M,N分别是点O关于P A、PB的对称点,∴EM=EO,FN=FO,∴△OEF的周长=OE+OF+EF=ME+EF+FN=MN=6cm;(2)连接OP,∵M,N分别是点O关于P A、PB的对称点,∴∠MP A=∠OP A,∠NPB=∠OPB,∴∠MPN=2∠APB=2a;(3)∵∠a=30°,∴∠MPN=60°,∵M,N分别是点O关于P A、PB的对称点,∴PM=PO,PN=PO,∴PM=PN,∴△PMN是等边三角形.20.解:(1)∠AEB的大小不变.如图1,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴△ABE中,∠AEB=180°﹣45°=135°;(2)∠CED的大小不变.如图2,延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠P AB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠P AB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴△CDE中,∠E=180°﹣112.5°=67.5°.21.解:(1)在△ABC中,∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣62°=118°,∵∠ABD=20°,∠ACD=35°,∴∠DBC+∠DCB=118°﹣20°﹣35°=63°∴∠BDC=180°﹣(∠DBC+∠DCB)=117°;(2)∠BDC=∠A+∠B+∠C.理由:连接BC在△ABC中,∵∠A+∠ABD+∠DBC+∠ACD+∠BCD=180°,∴∠A+∠ABD+∠ACD=180°﹣∠DBC﹣∠BCD,在△DBC中,∵∠BDC+∠DBC+∠BCD=180°,∴∠BDC=180°﹣∠DBC﹣∠BCD,∴∠BDC=∠A+∠B+∠C;(3)①∵△XBC中,∠X=90°,∴∠XBC+∠XCB=90°,∵△ABC中,∠A=50°,∴∠ABC+∠ACB=130°,∴∠ABX+∠ACX=130°﹣90°=40°.故答案为:40;②∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC=(∠ADB+∠AEB)=40°,∴∠DCE=∠A+∠ADC+∠AEC=50°+40°=90°.22.解:(1)∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵∠ABC,∠ACB的角平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°;(2)∵∠A=n°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣n°,∵∠ABC,∠ACB的角平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣n°)=90°+n°;(3)∵∠BOC=3∠A,∴90°+∠A=3∠A,∴∠A=36°.。

初中数学中考压轴题及答案详解(上海篇)

初中数学中考压轴题及答案详解(上海篇)

专题训练125.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用)参考答案:(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE ∴∠AED=60°=∠CEP ∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31 ax=+∵在RT△ADQ中2222328111x x DQ AD AQx x+-⎛⎫=-=-=⎪++⎝⎭∵DQ AD BC AB=∴228111x x x x x +-+=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF=,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP ==(3)过D 点作DQ ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+ 即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0专题训练21.如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.参考答案:解:(1)二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),∴,解得。

【压轴题】初二数学上期末试卷(含答案)

【压轴题】初二数学上期末试卷(含答案)

【压轴题】初二数学上期末试卷(含答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 3.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 4.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .135.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()A .2-B .1-C .2D .3 6.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 7.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A.4B.3C.2D.18.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.69.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠110.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°12.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.A B.B C.C D.D二、填空题13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△AEH≌△CEB.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 16.若x 2+kx+25是一个完全平方式,则k 的值是____________. 17.已知m n t y z x z x y x y z==+-+-+-,则()()()y z m z x n x y t -+-+-的值为________.18.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN 周长的最小值为________.19.因式分解:328x x -=______.20.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题21.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.22.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;23.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -24.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。

上海市八初级中学八年级上册压轴题数学模拟试卷含详细答案

上海市八初级中学八年级上册压轴题数学模拟试卷含详细答案

上海市八初级中学八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.已知ABC ,P 是平面内任意一点(A 、B 、C 、P 中任意三点都不在同一直线上).连接 PB 、PC ,设∠PBA =s°,∠PCA =t°,∠BPC =x°,∠BAC =y°.(1)如图,当点 P 在ABC 内时,①若 y =70,s =10,t =20,则 x = ;②探究 s 、t 、x 、y 之间的数量关系,并证明你得到的结论.(2)当点 P 在ABC 外时,直接写出 s 、t 、x 、y 之间所有可能的数量关系,并画出相应的图形.2.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.(1)求点C 的坐标;(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;(3)在(2)的条件下,当点P 到AC 的距离PD 为33AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.3.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接 BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.4.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.5.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.6.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.7.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.8.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).9.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.11.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式. 12.探索发现: 111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 13.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 为ABC ∆内一点,且BD AD =.(1)求证:CD AB ⊥;(2)若15CAD ∠=︒,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由. ③若点N 为直线AE 上一点,且CEN ∆为等腰∆,直接写出CNE ∠的度数.14.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =40°,则∠ACE = ,∠DCE = ,BC 、DC 、CE 之间的数量关系为 ;(2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由; ②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE ∥AB 时,若△ABD 中最小角为15°,试探究∠ACB 的度数(直接写出结果,无需写出求解过程).15.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠= (2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.16.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.17.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.18.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .19.如图1,直角三角形DEF 与直角三角形ABC 的斜边在同一直线上,∠EDF =30°,∠ABC =40°,CD 平分∠ACB ,将△DEF 绕点D 按逆时针方向旋转,记∠ADF 为α(0°<α<180°),在旋转过程中;(1)如图2,当∠α= 时,//DE BC ,当∠α= 时,DE ⊥BC ;(2)如图3,当顶点C 在△DEF 内部时,边DF 、DE 分别交BC 、AC 的延长线于点M 、N , ①此时∠α的度数范围是 ;②∠1与∠2度数的和是否变化?若不变求出∠1与∠2度数和;若变化,请说明理由; ③若使得∠2≥2∠1,求∠α的度数范围.20.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①100;②x=y+s+t ;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t .利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t .理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y ;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.2.(1)C (4,0);(2)433d t =;(3)103MN =【解析】【分析】(1)根据对称的性质知ABC ∆为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得AC PD PC OA ⋅=⋅,再利用坐标系中点的特征即可求得答案; (3)利用(2)的结论求得2BP =,利用角平分线的性质证得ABO CBQ ∆∆≌,求得43CQ AO ==437QN =,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点B 、C 关于y 轴对称, ∴12OB OC BC ==, ∴AB AC =,∵60BAC ∠=︒,∴ABC ∆为等边三角形,∴8AB BC AC ===,∴142OC BC ==, ∴点C 的坐标为:()4,0C ;(2)连接AP ,∵1122APC S AC PD PC OA ∆=⋅=⋅, ∴AC PD PC OA ⋅=⋅,∵(0,43A ,∴43OA =∵2BP t =,∴82PC t =-,∵8AC =, ∴433PC OA PD t AC⋅==, 即:433d t =;(3)∵点P 到AC 的距离为33∴43333d t ==∴1t =,∴2BP =,延长CN 交AB 于点Q ,过点N 作NE x ⊥轴于点E ,连接PQ 、BN ,∵CQ 为ACB ∠的角平分线,ABC ∆为等边三角形, ∴1302BCQ ACB ∠=∠=︒,CQ AB ⊥, ∵1302BAO BAC ∠=∠=︒,AB BC =, ∴ABO CBQ ∆∆≌, ∴43CQ AO ==设2QN a =,在Rt CNE ∆中,30QCB ∠=︒, ∴11(432)2322NE CN a a ===, ∵ABP ABN BPN S S S ∆∆∆=+, ∴111222BP OA AB QN BP NE ⋅=⋅+⋅, ∴111243822(23)222a a ⨯⨯=⨯⨯+⨯⨯, ∴23a = ∴43QN =, ∵60ACB ∠=︒,90PDC ∠=︒,∴30DPC ∠=︒,∵30BCQ ∠=︒,∴PM CM =,在Rt CDM ∆中,90MDC ∠=︒,30MCD ∠=︒, ∴12MD MC =, ∴12MD PM =,PD =∴PM CM ==∴MN CQ QN CM =--== 【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.3.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中, ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.4.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.5.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF .证明如下:同(1)可设∠BAD =∠CAD =α,∠ACE =∠AEC =β,∴∠CAE =180°-2β,∴∠BAE =2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD =∠BEF ,在AF 上截取AG =EF ,连接BG ,BF ,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.6.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=,112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,∴-=.aγβ2【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.7.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.8.(1)(1)①125°;②1902α︒+,(2)1BFC2α∠=;(3)1BMC904α︒∠=+【解析】【分析】(1)①由三角形内角和定理易得∠ABC+∠ACB=110°,然后根据角平分线的定义,结合三角形内角和定理可求∠BDC;②由三角形内角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推导方法即可求解;(2)由三角形外角性质得BFC FCE FBC∠=∠-∠,然后结合角平分线的定义求解;(3)由折叠的对称性得BGC BFC∠=∠,结合(1)②的结论可得答案.【详解】解:(1)①∵12DBC∠=∠ABC,∠DCB=12∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣70°)=125°②∵12DBC ∠=∠ABC ,∠DCB =12∠ACB , ∴∠BDC =180°﹣∠DBC ﹣∠DCB=180°﹣12(∠ABC +∠ACB ) =180°﹣12(180°﹣∠A ) =90°+12∠A =90°+12α. 故答案分别为125°,90°+12α. (2)∵BF 和CF 分别平分∠ABC 和∠ACE ∴1FBC ABC 2∠=∠,1FCE ACE 2∠=∠, ∴BFC FCE FBC ∠=∠-∠=11(ACE ABC)A 22∠-∠=∠ 即1BFC 2α∠=. (3)由轴对称性质知:1BGC BFC 2α∠=∠=, 由(1)②可得1BMC 90BGC 2∠=︒+∠, ∴1BMC 904α∠=︒+. 【点睛】 本题考查三角形中与角平分线有关的角度计算,熟练掌握三角形内角和定理,以及三角形的外角性质是解题的关键.9.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.10.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.11.(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M ∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.12.(1)1111,451n n--+;(2)nn1+;(3)见解析.【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到145⨯和1(1)n n ⨯+ (2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1)1114545=-⨯, 111(1)1n n n n =-++ ; 故答案为1111,451n n --+ (2)原式=111111111+122334111n n n n n --+-++-=-=+++ ; (3)已知等式整理得: 1111112111245(5)x x x x x x x x x --+-++-=++++++ 所以,原方程即: 11215(5)x x x x x --=++ , 方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.13.(1)证明见解析;(2)①120BDC ∠=︒;②ME BD =,理由见解析;③ 7.5°或15°或82.5°或150°【解析】【分析】(1)利用线段的垂直平分线的性质即可证明;(2)①利用SSS 证得△ADC ≌△BDC ,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解题;②连接MC ,易证△MCD 为等边三角形,即可证明△BDC ≌△EMC 即可解题;③分EN=EC 、EN=CN 、CE=CN 三种情形讨论,画出图形,利用等腰三角形的性质即可求解.【详解】(1)∵CB=CA ,DB=DA ,∴CD 垂直平分线段AB ,(2)①在△ADC 和△BDC 中,BC AC CD CD BD AD =⎧⎪=⎨⎪=⎩,∴△ADC ≌△BDC (SSS ),∴∠ACD=∠BCD=12∠BCA=45°,∠CAD=∠CBD=15°, ∴∠BDC=180︒-45°-15°=120°;②结论:ME=BD ,理由:连接MC ,∵AC BC =,90ACB ∠=︒,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM ,∠CDE=60°,∴△MCD 为等边三角形,∴CM=CD ,∵EC=CA=CB ,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC 和△EMC 中,15120CBD E BDC EMC CD CM ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EMC (AAS ),∴ME=BD ;③当EN=EC 时,∠1152EN C ︒==7.5°或∠2EN C =180152︒-︒=82.5°; 当EN=CN 时,∠3EN C =180215︒-⨯︒=150°;当CE=CN 时,点N 与点A 重合,∠CNE=15°,所以∠CNE的度数为7.5°或15°或82.5°或150°.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.14.(1)70°,40°,BC+DC=CE;(2)①α=β;②当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°.【解析】【分析】(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质和全等三角形的性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)当点D在线段BC的延长线上时,由①得α=β;(3)当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°;当D在线段BC上时,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°.【详解】(1)如图1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴∠ACE=∠B12=(180°﹣40°)=70°,BD=CE,∴BC+DC=CE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=40°,∴∠DCE=40°.故答案为:70°,40°,BC+DC=CE;(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE.∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°.∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;综上所述:当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°.理由如下:∵当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,即∠BAC=∠DCE.∵CE∥AB,∴∠ABC=∠DCE,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等边三角形,∴∠ACB=60°;∵当D在线段BC上时,α+β=180°,即∠BAC+∠DCE=180°.∵CE∥AB,∴∠ABC+∠DCE=180°,∴∠ABC=∠BAC.∵AB =AC ,∴∠ABC =∠ACB =∠BAC ,∴△ABC 是等边三角形,∴∠ACB =60°;综上所述:当CE ∥AB 时,若△ABD 中最小角为15°,∠ACB 的度数为60°.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质和多边形内角和等知识.本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.15.(1)30,100;(2)3DC =,见解析;(3)可以,115或100【解析】【分析】(1)根据平角的定义,可求出 ∠EDC 的度数,根据三角形内和定理,即可求出 ∠DEC ;(2)当 AB=DC 时,利用 AAS 可证明 ΔABD ≅ΔDCE ,即可得出 AB=DC=3 ; (3)假设 ΔADE 是等腰三角形,分为三种情况讨论:①当 DA=DE 时,求出∠DAE=∠DEA=70° ,求出 ∠BAC ,根据三角形的内角和定理求出 ∠BAD ,根据三角形的内角和定理求出 ∠BDA 即可;②当 AD=AE 时, ∠ADE=∠AED=40° ,根据 ∠AED>∠C ,得出此时不符合;③当 EA=ED 时,求出 ∠DAC ,求出 ∠BAD ,根据三角形的内角和定理求出 ∠ADB .【详解】(1)在 △BAD 中,∵∠B=50°,∠BDA=100° ,∴1801805010030EDC ADE ADB ∠=︒-∠-∠=︒-︒-︒=︒,1801803050100DEC EDC C ∠=︒-∠-∠=︒-︒-︒=︒.故答案为30EDC ∠=︒,100DEC ∠=︒.(2)当3DC =时,ABD DCE ∆≅∆,理由如下:∵3AB =,3DC =∴AB DC =∵50B ∠=,50ADE ∠=∴B ADE ∠=∠∵180ADB ADE EDC ∠+∠+∠=180DEC C EDC ∠+∠+∠=∴ADB DEC ∠=∠在ABD ∆和DCE ∆中AB DC B CADB DEC =⎧⎪∠=∠⎨⎪∠=∠⎩∴ABD ∆≅DCE ∆(3)可以,理由如下:∵50B C ︒∠=∠=,180B C BAC ︒∠+∠+∠=∴180180505080BAC B C ︒︒︒︒︒∠=-∠-∠=--=分三种情况讨论:①当DA DE =时,DAE DEA ∠=∠∵50ADE ︒∠=,180ADE DAE DEA ︒∠+∠+∠=∴()18050265DAE ︒︒︒∠=-÷= ∴BAD BAC DAE ∠=∠-∠8065︒︒=-15︒=∵180B BAD BDA ︒∠+∠+∠=∴180BDA B BAD ︒∠=-∠-∠1805015︒︒︒=--115︒=②当AD AE =时,50AED ADE ︒∠=∠=∵180ADE AED DAE ︒∠+∠+∠=∴180DAE AED ADE ︒∠=-∠-∠1805050︒︒︒=--80︒=又∵80BAC ︒∠=∴DAE BAE ∠=∠∴点D 与点B 重合,不合题意.③当EA ED =时,50DAE ADE ︒∠=∠=∴BAD BAC DAE ∠=∠-∠8050︒︒=-30︒=∵180B BAD BDA ︒∠+∠+∠=∴180BDA B BAD ︒∠=-∠-∠1805030100︒︒︒︒=--=综上所述,当BDA ∠的度数为115或100时,ADE ∆是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.16.(1)详见解析;(2)①详见解析;②PB PC PD BE ++=,理由详见解析【解析】【分析】。

完整)上海八年级数学压轴题

完整)上海八年级数学压轴题

完整)上海八年级数学压轴题1.在三角形ABC中,AD和BE是高,F是AB的中点,FG垂直于DE,G是垂足。

证明:G是DE的中点。

2.在三角形OBC中,点O为坐标原点,点C坐标为(4,0),点B坐标为(2,23),AB垂直于y轴,点A为垂足,OH垂直于BC,点H为垂足。

动点P、Q分别从点O、A同时出发,点P沿线段OH向点H运动,点Q沿线段AO向点O运动,速度都是每秒1个单位长度。

设点P的运动时间为t 秒。

1)证明:OB=CB;2)若△OPQ的面积为S,求S与t之间的函数关系式及定义域;3)当PQ垂直于OB(垂足为点M)时,求五边形ABHPQ的面积的值。

3.在三角形ABC中,AB=AC,点P是BC边上的一点,PD垂直于AB于点D,PE垂直于AC于点E,CM垂直于AB于点M。

探究线段PD、PE、CM的数量关系,并说明理由。

4.在直角三角形ABC中,AB=AC,∠A=90°,O为BC中点。

1)写出点O到△ABC三个顶点的距离之间的关系;2)如果点M、N分别在边AB、AC上移动,且保持AN=BM。

请判断△XXX的形状,并证明你的结论。

5.点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数y=k/x的图像过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13.1)求反比例函数y=k/x和直线OE的函数解析式;2)求四边形OAFC的面积。

6.已知:正比例函数的图象与反比例函数的图象交于点(1)。

试确定上述正比例函数和反比例函数的表达式;2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?3)在直线y=x上取一点P,它是反比例函数图象上的一动点,其中OP=3.过点P作直线与x轴交于点Q,与y轴交于点R。

过点Q作直线与y轴交于点S。

当四边形PQRS的面积为6时,请判断线段PS和线段QR的大小关系,并说明理由。

7.在直角三角形ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF垂直于AB,垂足为F。

上海初中八年级数学试卷压轴题

上海初中八年级数学试卷压轴题

图④图③图②图①P NMAC BBCAACBBCA上海初中八年级数学试卷压轴题28.已知一直角三角形纸片ABC (如图①),∠ACB =90°,AC =2,BC =4。

折叠该纸片,使点B 落在边AC上,折痕与边BC 交于点M ,与边AB 交于点N 。

(1)若折叠后,点B 与点C 重合,试在图②中画出大致图形,并求点C 与点N 的距离; (2)若折叠后,点B 与点A 重合,试在图③中画出大致图形,并求CM 的长;(3)若折叠后点B 落在边AC 上的点P 处(如图④),设CP =x ,CM =y ,求出y 关于x 的函数关系式,并写出定义域。

26.已知:如图,正比例函数ax y =的图像与反比例函数xky =的图像交于点A (3,2). (1)试确定上述正比例函数和反比例函数的解析式;(2)根据图像回答:在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3))(n m M ,是反比例函数图像上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.AM BC OD xy26、小刘同学在一次课外活动中,用硬纸片做了两个直角三角形,见图1、图2.图1中,90,30,5cm B A BC ∠=︒∠=︒=;图2中,90,45,3cm D E DE ∠=︒∠=︒=.图3是小刘同学所做的一个实验:他将DEF ∆的直角边DE 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF ∆沿AC 方向移动的过程中,小刘同学发现:F 、C 两点间的距离逐渐_______; (填“不变”、“变大”或“变小”)(2)小刘同学经过进一步研究,编制了如下问题:问题①:当DEF ∆移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当D E F ∆移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?请你分别完成上述两个问题的解答过程.ABC图1图2 FDEAB CFDE图3第26题图27、如图:在直角坐标平面内,正比例函数直线x y 3=与一反比例函数图像交于第一象限内A 点,x AB ⊥轴于B ,6=AB①求反比例函数的解析式。

上海(沪)八年级第二学期期末数学压轴题及答案(可转为word)

上海(沪)八年级第二学期期末数学压轴题及答案(可转为word)

0 8k b, ∴ „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) 4 5k b,
4 k , 3 „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) ∴ 32 b . 3
4 32 .„„„„„„„„„„„„(1 分) x 3 3 26.解: (1)BF +AG= AE.„„„„„„„„„„„„„„„„„„„„„„(1 分) 证明如下:过点 F 作 FH⊥DA,垂足为 H, ∵在正方形 ABCD 中,∠DAE=∠B=90°,∴四边形 ABFH 是矩形.„(1 分) ∴FH=AB=DA.∵BD⊥FG,∴∠G=90°–∠ADE=∠DEA. 又∴∠DAE=∠FHG=90°,∴△FHG≌△DAE. „„„„„„„„„„(1 分) ∴GH=AE,即 HA+AG=AE.∵BF=HA,∴BF+AG=AE.„„„„„„(1 分)
本题满分12分其中第1小题5分第2小题3分第3小题4bcaebcdfdfaeefad四边形aefd是平行四边形efad5aedf?????????????????????????1abcd5rtabertdcfbecfefbccfbecf3在rtabeabaeaebqapaepdcqqcdpabqp当四边形abqp与四边形qcdp的面积相等时3当四边形abqp是平行四边形时pqab当四边形qcdp是平行四边形时可得pqcdcdabpqab此时cqpd11时pqab
FB 3 ,且 AC 10 ,求 FC 的值. BD 5
A
D
F
E
B
C
26. 在梯形 ABCD 中, ∠ABC= 90 , AD∥BC, BC>AD, AB=8cm, BC=18cm, CD=10 cm,点 P 从点 B 开始沿 BC 边向终点 C 以每秒 3cm 的速度移动,点 Q 从点 D 开始沿 DA 边向终点 A 以每秒 2cm 的速度移动,设运动时间为 t 秒. (1)求四边形 ABPQ 为矩形时 t 的值; (2)若题设中的“BC=18cm”改变为“BC= k cm” ,其它条件都不变,要 使四边形 PCDQ 是等腰梯形,求 t 与 k 的函数关系式,并写出 k 的取值范围; (3)在移动的过程中,是否存在 t 使 P、Q 两点 的距离为 10cm ,若存在求 t 的值. 若不存在请说明 理由?

数学八年级上册 压轴题 期末复习试卷(Word版 含解析)

数学八年级上册 压轴题 期末复习试卷(Word版 含解析)

数学八年级上册压轴题期末复习试卷(Word版含解析)一、压轴题1.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平-+-=.面直角坐标系,点A(0,a),C(b,0)满足a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).2.如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标3.如图,在平面直角坐标系中,直线y=﹣34x+m分别与x轴、y轴交于点B、A.其中B点坐标为(12,0),直线y=38x与直线AB相交于点C.(1)求点A的坐标.(2)求△BOC的面积.(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.①求d与t的函数解析式(写出自变量的取值范围).②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t的取值范围.4.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.5.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)6.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .7.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.8.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.9.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.10.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.11.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.12.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论. 【详解】 解:(1) 解:(1)∵a 6b 80--=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=-由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.2.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.(1)点A 坐标为(0,9);(2)△BOC 的面积=18;(3)①当t <8时,d =﹣98t+9,当t >8时,d =98t ﹣9;②12≤t≤1或7617≤t≤8017. 【解析】【分析】(1)将点B坐标代入解析式可求直线AB解析式,即可求点A坐标;(2)联立方程组可求点C坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y=﹣34x+m与y轴交于点B(12,0),∴0=﹣34×12+m,∴m=9,∴直线AB的解析式为:y=﹣34x+9,当x=0时,y=9,∴点A坐标为(0,9);(2)由题意可得:38394y xy x⎧=⎪⎪⎨⎪=+⎪⎩,解得:83 xy=⎧⎨=⎩,∴点C(8,3),∴△BOC的面积=12×12×3=18;(3)①如图,∵点D的横坐标为t,∴点D(t,﹣34t+9),点E(t,38t),当t<8时,d=﹣34t+9﹣38t=﹣98t+9,当t>8时,d=38t+34t﹣9=98t﹣9;②∵以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,∴12≤t≤1或919829918t tt t⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩,∴12≤t≤1或7617≤t≤8017.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.4.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN =CN−BC =8t−10;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得:t =2,∴当t 为2秒时,点M 与点N 重合;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,∴CM =CN ,∴3t =10−8t ,解得:t =1011; 当点N 在线段CA 上时,△PCM ≌△QCN ,点M 与N 重合,CM =CN ,则3t =8t−10,解得:t =2;综上所述,当△PCM 与△QCN 全等时,则t 等于1011s 或2s , 故答案为:1011s 或2s . 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.5.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.6.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D (0,﹣4),M (4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG =∠ACH,∠DEC =∠HCE,∴∠DEC+∠AOG =∠ACB =90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.7.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.8.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.9.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EHEF ,CH=CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,2AF)2+2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.10.(1)5;(2)221;(3)221【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,===AMB CNAMAB NCAAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC , 在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b , ∴2221=4a a +,2222=4b b +,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=43, ∴AB=22AP BP +=()22AM PM BP ++=221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ), ∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=23, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=433, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=2213.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.11.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.12.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH∴∠+∠=︒,90FAC∠=︒,90FAH CAD∴∠+∠=︒,AFH CAD∴∠=∠,在AFH∆和CAD∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.。

2020上海市八年级数学第二学期期末压轴题三(教师版)

2020上海市八年级数学第二学期期末压轴题三(教师版)

如图1,正方形ABCD 的边长为1,点E 、F 、G 分别在边AD 、AB 、CD 上(点E 、F 、G 与顶点不重合),FG ⊥BE ,垂足为H .(1)求证:FG =BE ;(2)联结FE 、EG 、GB ,设AE =x ,S 四边形BFEG =y ,求y 与x 之间的函数解析式,并写出定义域.图1动感体验打开几何画板文件名“20静安25”,拖动点E 在AD 上运动,观察函数图像,可以体验到,y 随x 的增大而增大.拖动点E 在AD 上运动,拖动点F 在AB 上运动,可以体验到,△ABE 与△MFG 始终保持全等.满分解答(1)如图2,作FM ⊥CD 于M ,得矩形AFMD .所以FM =AD =AB .因为FG ⊥BE ,所以∠1+∠BFH =90°.又因为∠2+∠BFH =90°,根据同角的余角相等,得∠1=∠2.所以△ABE ≌△MFG .所以FG =BE .(2)如图2,在Rt △ABE 中,AE =x ,AB =1,所以222=+BE AE AB =21+x .如图3,y =S 四边形BFEG =12⋅BE FG =212BE =212+x . 定义域是0<x <1.图2 图3如图1,在平面直角坐标系xOy 中,直线483y x =-+与x 、y 轴分别交于点A 、B ,此直线向下平移后与y 轴相交于点C 、与x 轴相交于点D ,四边形ABCD 的面积为18.(1)求直线CD 的表达式;(2)如果点E 在直线CD 上,四边形ABED 是等腰梯形,求点E 的坐标.图1动感体验打开几何画板文件名“20静安26”, 可以体验到,四边形ABED 有一组对边平行,当另一组对边EB 与DA 相等时,四边形ABED 是等腰梯形或平行四边形.满分解答(1)如图2,由483y x =-+,得A (6, 0),B (0, 8). 所以S △OAB =12⋅OA OB =1682⨯⨯=24. 设直线CD 的表达式为43=-+y x b ,则C (0, b ),D (34b , 0). 因为S 四边形ABCD =18,所以S △COD =24-18=6.所以13624⨯⨯=b b .解得b =±4(舍去负值). 所以直线CD 的表达式为443=-+y x . (2)【方法一】如图3,已知A (6, 0),B (0, 8),D (3, 0),设E (x ,443-+x ). 因为ED //AB ,所以四边形ABED 是梯形.若四边形ABED 是等腰梯形,那么EB =DA .根据EB 2=DA 2列方程,得2224(48)(63)3+-+-=-x x . 整理,得22596630++=x x .解得x1=2125-,x2=-3(此时四边形ABED是平行四边形,舍去).所以E(2125-,12825).【方法二】如图4,在x轴上取点M,使MA=MB,那么MB与CD的交点就是点E.设M(x, 0).根据MA2=MB2列方程,得x2+82=(6-x)2.解得x=73-.所以M(73-, 0).由B(0, 8)、M(73-, 0),得直线BM的解析式为y=2487+x.联立2487443⎧=+⎪⎪⎨⎪=-+⎪⎩y xy x,.解得212512825⎧=-⎪⎪⎨⎪=⎪⎩xy,.所以E(2125-,12825).【方法三】如图3,已知A(6, 0),B(0, 8),D(3, 0),设E(x,443-+x).因为等腰梯形的对角线相等,根据CA2=DB2列方程.【方法四】设AB的中点为M(3, 4),根据MD2=MC2列方程.图2 图3 图4 例2020年上海市闵行区初二下学期期末第25题如图1,在梯形ABCD中,AD∥BC,AD=12BC,点E为BC中点,联结ED,BD.(1)求证:四边形ABED是平行四边形;(2)如果∠ADB+∠DCB=90°,求证:四边形ABED是菱形.图1打开几何画板文件名“20闵行25”,拖动点D在平面上运动,可以体验到,四边形ABED 始终保持平行四边形的形状不变,当点D落在半圆上时,四边形ABED是菱形.满分解答(1)如图2,因为点E为BC中点,所以BE=EC=12 BC.已知AD=12BC,等量代换,得AD=BE.又因为AD∥BC,所以四边形ABED是平行四边形.(2)如图3,因为AD∥BC,所以∠ADB=∠DBC.已知∠ADB+∠DCB=90°,等量代换,得∠DBC+∠DCB=90°.所以∠BDC=90°,△BCD是直角三角形.又因为DE是斜边BC的中线,所以DE=BE.所以四边形ABED是菱形.图2 图3例2020年上海市闵行区初二下学期期末第26题如图1,在正方形ABCD中,AB=4.点M是边AB上的任意一点,点N在边BC的延长线上,且∠MDN=90°.联结MN,与正方形ABCD的对角线AC交于点E.设AM=x,AE=y.(1)求证:DM=DN;(2)求y关于x的函数解析式,并写出函数定义域;(3)联结BE,当△MBE是以BM为腰的等腰三角形时,求AM的长.图1打开几何画板文件名“20闵行26”,拖动点M在AB上运动,可以体验到,△MAD与△NCD 始终保持全等,△MEF与△NEC始终保持全等.观察函数图像可以体验到,y随x的增大而增大.点击屏幕左下方的按钮“第(2)题”,拖动点M在AB上运动,可以体验到,△MBE 始终保持等腰三角形的形状不变,当点M落在圆上时,△MBE是等边三角形.满分解答(1)如图2,由∠ADC=∠MDN=90°,得∠ADM=∠CDN.又因为∠DAM=∠DCN=90°,DA=DC,所以△DAM≌△DCN.所以DM=DN.(2)如图3,在Rt△ABC中,AB=BC=4,所以AC=42.作MF⊥AB,交AC于点F,得等腰直角三角形AMF.所以FM=AM=CN=x.所以AF=2x.由MF//BC,得∠FME=∠CNE.又因为∠MEF=∠NEC,所以△MEF≌△NEC.所以FE=CE=12CF=422-x.所以y=AE=AC-CE=422422--x=4222+x.定义域是0<x≤4.图2 图3(3)如图3,因为△MEF≌△NEC,所以ME=NE.所以BE是Rt△MBN斜边上的中线.所以BE=ME,△MBE是等腰三角形(如图4所示).如图5,若△MBE是以BM为腰的等腰三角形,那么BM=BE=ME.所以△MBE是等边三角形.在Rt△BMN中,BM=4-x,BN=4+x,∠BMN=60°,所以MN=2BM=8-2x.由勾股定理,得BM2+BN2=MN2.所以(4-x)2+(4+x)2=(8-2x)2.整理,得x2-16x+16=0.解得x1=843-,或x2=843+(舍).所以AM=843-.图4 图5例2020年上海市浦东区初二下学期期末第26题如图1,等腰三角形ABC中,AB=AC,点E、F分别是AB、AC的中点,CE⊥BF于点O.(1)求证:四边形EBCF是等腰梯形;(2)若EF=1,求四边形EBCF的面积.图1动感体验打开几何画板文件名“20浦东26”,可以体验到,△EFB与△CGF是等底等高的两个三角形,四边形EBCF的面积可以转化为△BFG的面积.满分解答(1)如图2,因为EF是△ABC的中位线,所以EF//BC,.所以四边形EBCF是梯形.又因为BE=12AB,CF=12AC,AB=AC,所以BE=CF.所以四边形EBCF是等腰梯形.(2)如图3,作FG//EC交BC的延长线于点G,得平行四边形CEFG.因为四边形EBCF是等腰梯形,所以BF=CE=GF.又因为CE⊥BF,所以GF⊥BF.所以△BFG是等腰直角三角形.因为EF是△ABC的中位线,所以BC=2EF=2.所以BG=BC+CG=BC+EF=2+1=3.所以BF=FG=2BG.所以S△BFG=12BF FG=214BG=94.如图4,因为△EFB与△CGF是等底等高的两个三角形,所以S△EFB=S△CGF.所以S四边形EBCF=S△EFB+S△CFB=S△CGF+S△CFB=S△BFG.所以S四边形EBCF=94.图2 图3 图4例2020年上海市浦东区初二下学期期末第27题在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.如图1为P,Q的“相关矩形”的示意图.已知点A的坐标为(1, 2).(1)如图2,点B的坐标为(b, 0).①若b=-2,则点A,B的“相关矩形”的面积是______;②若点A,B的“相关矩形”的面积是8,则b的值为_______;(2)如图3,点C在直线y=-1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边三角形DEF的边DE在x轴,顶点F在y轴的正半轴上,点D的坐标为(1, 0),点M的坐标为(m, 2).若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.图1 图2 图3 图4动感体验打开几何画板文件名“20浦东27”,拖动点M在直线y=2上运动,可以体验到,正方形MKNL是否存在,取决于点N是否在边FE、FD上.满分解答(1)①如图5,矩形AGBH为点A,B的“相关矩形”.由A(1, 2),B(-2, 0),得BG=3,AG=2.所以S矩形AGBH=3×2=6.②如图6,若S矩形AGBH=8,那么BG=4.当点B在点G左侧时,1-b=4.所以b=-3.当点B在点G右侧时,b-1=4.所以b=5.(2)如图7,矩形APCQ为点A,C的“相关矩形”.若矩形APCQ为正方形,那么CQ=AQ=3.当点C在点Q左侧时,C(-2,-1).由A(1, 2)、C(-2,-1),得直线AC的表达式为y=x+1.当点C在点Q右侧时,C(4,-1).由A(1, 2)、C(4,-1),得直线AC的表达式为y=-x+3.图5 图6 图7 (3)如图8,矩形MKNL为点M,N的“相关矩形”.若矩形MKNL为正方形,那么ML=NL,△MNL为等腰直角三角形.因为△DEF是等边三角形,FO⊥DE,所以OD=OE.在Rt△ODF中,因为OD=1,DF=DE=2,所以OF=3.图8 图9 图10 以点M的位置为分类标准,分两种情况讨论m的取值范围.①点M在y轴左侧.如图9,当点N与点E重合时,ML=NL=2,此时m=-3.如图10,当点N与点F重合时,ML=NL=23m32.②点M在y轴右侧.如图11,当点N与点F重合时,ML=NL=23m=23如图12,当点N 与点D 重合时,ML =NL =2,此时m =3.所以m 的取值范围为-3≤m ≤3-2或2-3≤m ≤3.图11 图12例 2020年上海市普陀区初二下学期期末第24题如图1,在平面直角坐标系中,已知一次函数的图像经过点A (0, 4)和B (2, 0).(1)求直线AB 的表达式;(2)把直线AB 向下平移,平移后的直线与x 轴、y 轴分别交于点C 、D ,点D 的坐标为(0,-6),点E 是直线CD 上的一点,如果四边形ABDE 是等腰梯形,求点E 的坐标.图1动感体验打开几何画板文件名“20普陀24”,可以体验到,四边形ABDE 有一组对边平行,当另一组对边EA 与DB 相等时,四边形ABDE 是等腰梯形或平行四边形.满分解答(1)设直线AB 的表达式为y =kx +4(k ≠0).代入点B (2, 0),得2k +4=0.解得k =-2.所以直线AB 的表达式为y =-2x +4.(2)如图2,因为AB //CD ,D (0,-6),所以直线CD 的表达式为y =-2x -6. 设E (x ,-2x -6).因为ED //AB ,所以四边形ABDE 是梯形.若四边形ABDE 是等腰梯形,那么EA =DB .根据EA 2=DB 2列方程,得2222(264)26+---=+x x .整理,得28120++=x x .解得x 1=-6,或x 2=-2.如图3,当x =-2时,四边形ABDE 是平行四边形,舍去.所以E(-6, 6).图2 图3例2020年上海市普陀区初二下学期期末第25题如图1,在正方形ABCD中,AB=4,P是射线AC上的一点,联结BP,过点P作BP 的垂线交射线DC于点F.(1)求证:PB=PF;(2)当点F在边DC上时,四边形PBCF的面积为y,设AP=x,求y关于x的函数解析式和定义域;(3)当以P、B、C、F为顶点的四边形的面积为12时,求AP的长.图1 备用图动感体验打开几何画板文件名“20普陀25”,拖动点P在AC上运动,观察函数图像,可以体验到,y随x的增大而减小.观察左图,可以体验到,△BPM和△FPN始终保持全等,四边形PBCF的面积可以转化为正方形PMCN的面积.观察右图,可以体验到,四边形PBFC的面积可以看成是两个同底三角形的面积和.满分解答(1)如图2,作PM⊥BC于M,PN⊥DC于N,得正方形PMCN.又因为BP⊥PF,根据同角的余角相等,得∠1=∠2.又因为PM=PN,所以△BPM≌△FPN(ASA).所以PB =PF .(2)由(1),得S 四边形PBCF =S △PBM +S 四边形PMCF =S △FPN +S 四边形PMCF =S 正方形PMCN =PN 2. 如图3,在等腰直角三角形ADC 中,AD =4,所以AC =42. 在等腰直角三角形PCN 中,PC =AC -AP =42-x ,所以PN =22PC =2(42)2-x . 所以y =22[(42)]2-x =2142162-+x x .定义域是0≤x <22.图2 图3(3)以点F 的位置为分类标准,分两种情况讨论.①如图2,当点F 在线段DC 上时,由(2),得S 四边形PBCF =PN 2=12. 所以PN =23.所以PC =2PN =26.所以AP =AC -PC =4226-.②如图4,当点F 在线段DC 的延长线上时,同理可得△BPM ≌△FPN .由S 四边形PBFC =12⋅BC NF =12,得14122⨯=NF .所以NF =6. 如图5,在等腰直角三角形AM ′P 中,M ′P =BM =NF =6,所以AP =2M ′P =62.图4 图5。

最新沪教版八年级数学期末难题压轴题

最新沪教版八年级数学期末难题压轴题

四边形综合题1、已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积; (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积.(用含a 的代数式)2、已知点E 是正方形ABCD 外的一点,EA=ED ,线段BE 与对角线AC 相交于点F , (1)如图1,当BF=EF 时,线段AF 与DE 之间有怎样的数量关系?并证明;(2)如图2,当△EAD 为等边三角形时,写出线段AF 、BF 、EF 之间的一个数量关系,并证明.D(图1)FD CA BE(图2)FHG图1图23、如图,直线y =+与x 轴相交于点A,与直线y =相交于点P . (1) 求点P 的坐标.(2) 请判断△OPA 的形状并说明理由.(3) 动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求S 与t 之间的函数关系式.4、如图,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OC=AB=4,BC=6,∠COA=45°,动点P 从点O 出发,在梯形OABC 的边上运动,路径为O →A →B →C ,到达点C 时停止.作直线CP. (1)求梯形OABC 的面积;(2)当直线CP 把梯形OABC 的面积分成相等的两部分时,求直线CP 的解析式; (3)当∆OCP 是等腰三角形时,请写出点P 的坐标(不要求过程,只需写出结果)O ABC Pxy五、27.如图,已知在梯形ABCD 中,AD // BC ,AB = CD ,BC = 8,60B ∠=︒,点M 是边BC 的中点,点E 、F 分别是边AB 、CD 上的两个动点(点E 与点A 、B 不重合,点F 与点C 、D 不重合),且120EMF ∠=︒. (1)求证:ME = MF ;(2)试判断当点E 、F 分别在边AB 、CD 上移动时,五边形AEMFD 的面积的大小是否会改变,请证明你的结论;(3)如果点E 、F 恰好是边AB 、CD 的中点,求边AD的长.A B C DM E F (第27题图) A BCD ME F (备用图)3(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O ﹣C ﹣A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒)0( t .①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是QA=QP 的等腰三角形?若存在,求t 的值;若不存在,请说明理由.3∴y =-x +7,0=x +7,∴x =7,∴B 点坐标为:(7,0),----------------------------1分 ∵y =-x +7=x 34,解得x =3,∴y =4,∴A 点坐标为:(3,4);-------------------1分 (2)①当0<t <4时,PO =t ,PC =4-t ,BR =t ,OR =7-t ,--------------1分 过点A 作AM ⊥x 轴于点M∵当以A 、P 、R 为顶点的三角形的面积为8,∴S 梯形ACOB -S △ACP -S △POR -S △ARB =8, ∴21(AC +BO )×CO -21AC ×CP -21PO ×RO -21AM ×BR =8, ∴(AC +BO )×CO -AC ×CP -PO ×RO -AM ×BR =16,∴(3+7)×4-3×(4-t )-t ×(7-t )-4t =16,∴t 2-8t +12=0. -----------------1分 解得t 1=2,t 2=6(舍去). --------------------------------------------------------------------1分 当4≤t ≤7时,S △APR =21AP ×OC =2(7-t )=8,t=3(舍去);--------------1分 ∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8; ②存在.当0<t ≤4时,直线l 与AB 相交于Q ,∵一次函数y =-x +7与x 轴交于B (7,0)点,与y 轴交于N (0,7)点,∴NO =OB ,∴∠OBN =∠ONB =45°.∵直线l ∥y 轴,∴RQ =RB=t ,AM=BM=4∴QB=t 2,AQ=t 224-----------------1分 ∵RB =OP =QR =t ,∴PQ//OR,PQ=OR=7-t --------------------------------------1分 ∵以A 、P 、Q 为顶点的三角形是等腰三角形,且QP =QA ,∴7-t=t 224-,t=1-32(舍去)--------------------------------------------1分 当4<t ≤7时,直线l 与O A 相交于Q ,若QP =QA ,则t -4+2(t -4)=3,解得t =5;---------------------------------------1分 ∴当t =5,存在以A 、P 、Q 为顶点的三角形是PQ =AQ 的等腰三角形.已知边长为1的正方形ABCD 中, P 是对角线AC 上的一个动点(与点A 、C 不重合), 过点P 作 PE ⊥PB ,PE 交射线DC 于点E ,过点E 作EF ⊥AC ,垂足为点F . (1)当点E 落在线段CD 上时(如图10),① 求证:PB=PE ;② 在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值, 若变化,试说明理由;(2)当点E 落在线段DC 的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);(3)在点P 的运动过程中,⊿PEC 能否为等腰三角形?如果能,试求出AP 的长,如果不能,试说明理由. D CBAE P 。

上海八年级数学压轴题带答案1

上海八年级数学压轴题带答案1

上海八年级第二学期期末数学压轴题靜安理 LL 知一次两數尸*"询用滋与貯铀7轧分别桁交F 点儿 乩 梯形VAOBC 的边丿0=5.CD 求点C 的坐标:门)如果点丄c 在一次两数尸行越""肯常瓶 且* 0)的ffiifth,我这牛一次阴建的解折式.26如関.住止ABCD 4].点忑总边肿 卜(点E 与点」、丹不重合), 过点E 作FG 丄DEFG 与iiJCffi 交于点 耳与边IU 的基长线相交干点G.(1) 由几个小同的忡置「分别测^BF.AG. AE 的艮’从中你能发砚E 氏貝GH 的螯皐之闾具有r H 的关系?井证网你衔袒嗣的結论:(2) 联结DF,如采正方能的边长为乙谁AEf .ADFG 的面积为八............ * ....................................................................... < 1 分、二这个…次函^解析式为"中子(1分)0 = 8Jt+&} 4=5fr+fr,设ACJifi 线DE 的距离为八S iC ^=-D£-A=2to化点C*到宜线的距离为二26.解:(1)月/>/*•<£. ...................证明如下:过点F 作FHVDA.垂足为H ・ ;在正方形MCD 中* ZDAE=ZB=9C b.代四边形ARFH^VW^…1分) :・FH 二AB=DA. 丁加丄FG AZG=90° ・ ZADEMDEA. X»ZDJ£=ZF2/G=90n * :*“FHG 哲£\DA£. ......... 仁 GE=AE 、即 H.i+AG=AE. 7BF=HA. :,BF+AG=AE. (1分) 门分)(I(2) TAFHGmbDAE* :.FG=DE= J A D'+AE' = V4 + x^ .(1分}4 + r"S^r ^-FG DE ■二 y = _定义城为OGd ................................<3) il 结 CE S ACDE =^CD AD = 2.(i 分) (1分〉(1分〉<15>)SF气:.訂=:.h£1分〉求F 与工之冋的祇数幅析式.并气出甌数的定义域:⑶毎汇如已知点E是矩形期a的边a延长线上一点'^CE=CA T 联皓H£,过点C作CF丄盘,垂足为点F・联络EF、FIX «门求证;甘3匚^AFADt(2)联结皿儿若—--.且AC-1C■求FC的值ED 5E B C2007^ 汇25. (D 证明:*: CE = AC.CF LAE,:. AF = EF........................................ 1分T四边形aCD是矩形,:.AD^BC. ZABC= ^BAD二90°二在殆A4SE中* BF = AF......................................................................... 1 分:、—14 = —FABA ZE4D-ZFBC ............................................................................................... 1 分A ^FBC^&FAD................................................................................................ 1 分(2) *.* AFBC FC^FD. ZBFC £AFD ............................................ 1 分A ^BFD^ ^BFC-^CFD= ^AFD+^CFD=9().......................... 1 分匸四边形dffCD是矩形.:.BD^ACFB 3V ——=-* \\.BD=AC^1O,8D 5:.FD=3........................................................................................................... I 分/.FC = 8 ................................................................................................... 1 分在梯們.迪 CD V.i :ABC=W .AD /BC, BC -ID, -4J=8aD > 5C-18cm,410 firn 白P 从点月幵始汇』C 边向终点C 议毎秒童in 的迪煦曲动・A 0从点D 开贻沿D4边向终点」且部砂2cm 的違度懿劫.违运动时间为$秒一M)求四迪农」也P0为琏形时f 的fin(2)舞題设中的"迟01如1"改雯为"蛊e#cnT.其它条件都不变・娶慢四边形胆DQ 是黑腰樣咼「求『与it 的函数关系式,并耳出Jt 的电值范TH :(3)在移动的过世中"是否存在刑P 、。

八年级上册上海数学压轴题 期末复习试卷测试卷(解析版)

八年级上册上海数学压轴题 期末复习试卷测试卷(解析版)

八年级上册上海数学压轴题 期末复习试卷测试卷(解析版)一、压轴题1.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.2.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标3.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值; ②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.4.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上; ②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ; (3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值. 5.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由. 6.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.7.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ; (2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.8.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PFAF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )9.如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=﹣x ﹣2与坐标轴交于B 、D 两点,两直线的交点为P 点. (1)求P 点的坐标; (2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.10.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠; (2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.11.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.12.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.2.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠=【解析】 【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标. 【详解】解:(1)作CH ⊥y 轴于H , 则∠BCH+∠CBH=90°, 因为AB BC ⊥, 所以.∠ABO+∠CBH=90°, 所以∠ABO=∠BCH , 在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1, :OH=OB+BH=4,所以C 点的坐标为(1,-4); (2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠=BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.4.(1)①详见解析;②12α;(2)详见解析;(3)当B、O、F三点共线时BF最长,a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A为圆心,AB为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC,可求∠BDC的度数;(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F三点共线时,BF最长,根据等腰直角三角形的性质和勾股定理可求BO=,OF OC==,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF ,,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥BF ,当B 、O 、F 三点共线时BF 最长; 如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a ,∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a ,∴2OC a =, ∴OH HC a ==,∴BH=3a ,∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==,∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.5.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,7+2)或(6,10-27).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA '-=8,∴B′C=10-8=2,∵PC=6-m ,∴m 2=22+(6-m )2,解得m=103 则此时点P 的坐标是(103,10); (3)存在,理由为:若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD=BP 1=OB-OD=10-2=8,在Rt △BCP 1中,BP 1=8,BC=6,根据勾股定理得:CP1=∴AP 1P 1(6,);②当BP 2=DP 2时,此时P 2(6,6);③当DB=DP 3=8时,在Rt △DEP 3中,DE=6,根据勾股定理得:P3∴AP 3=AE+EP 3,即P 3(6,+2),综上,满足题意的P 坐标为(6,6)或(6,+2)或(6,).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.6.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠,()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.7.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2, 整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2), 则点T 的坐标为(33a +,23a +), 当∠THD =90°时,点E 与点T 的横坐标相同, ∴33a +=a , 解得,a =32, 此时点E 的坐标为(32,72), 当∠TDH =90°时,点T 与点D 的横坐标相同, ∴33a +=3, 解得,a =6, 此时点E 的坐标为(6,8),当∠DTH =90°时,该情况不存在,综上所述,当△DTH 为直角三角形时,点E 的坐标为(32,72)或(6,8) 【点睛】 本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.8.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH +DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=-⎩,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=12×(1+2)×1=32;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣12,∴C(﹣12,0),设T(x,0),∴CT=|x+12 |,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=12•|x+12|•(1+1)=|x+12|,∴|x+12|=32,解得x=1或﹣2,∴T(1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.10.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF 和△CBF 中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.11.(1522213221【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,===AMB CNAMAB NCAAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,===AMB CNAABM NACAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM,NQ=12NC,∵PB=1,CQ=2,设PM=a,NQ=b,∴2221=4a a+,2222=4b b+,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=43, ∴AB=22AP BP +=()22AM PM BP ++=221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=33, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=43, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=2213.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.12.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒BD是ABC∠的角平分线,DE AB⊥CD ED∴=在BCD∆和BED∆中,CD EDBD BD=⎧⎨=⎩()BCD BED HL∴∆≅∆BC BE∴=EBC∴∆是等边三角形;(2)如图,延长ED使得DF MD=,连接MF3,090AACB∠=︒∠=︒,BD是ABC∠的角平分线,DE AB⊥60,ADE BDE AD BD∴∠=∠=︒=60,18060 MDF ADE MDB ADE BDE∴∠=∠=︒∠=︒-∠-∠=︒MDF∴∆是等边三角形,60MF DM F DMF∴=∠=∠=︒60BMG∠=︒DMF DM B MGG DM G∴∠+∠=+∠∠,即FMG DMB∠=∠在FMG∆和DMB∆中,60F MDBMF MDFMG DMB∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA∴∆≅∆GF BD∴=,即DF DG BD+=AD DF DG MD DG∴=+=+即AD DG MD=+;(3)结论:AD DG ND=-,证明过程如下:如图,延长BD使得DH ND=,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD∠=︒∠=︒-∠-∠=︒= HDN∴∆是等边三角形,60NH ND H HND∴=∠=∠=︒60BNG∠=︒HND BND BNDBNG∠+∠=+∠∴∠,即NHNB D G∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.。

2021年上海市八年级数学第二学期期末压轴题二24,25题解析7

2021年上海市八年级数学第二学期期末压轴题二24,25题解析7

2021年上海市各区初二期末压轴题图文解析各区24,25压轴题例2021年上海市宝山区初二下学期期末第24题如图1,反比例函数4yx=的图像与过原点的直线y=kx(k≠0)相交于点A、B,点A的横坐标是-4.点P是第一象限内反比例函数图像上的动点,且在直线AB的上方.(1)求k的值和点B的坐标;(2)若点P的坐标是(1, 4),且以点P、A、B、C为顶点的四边形为矩形时,写出点C 的坐标以及此时的矩形面积;(3)设点Q是动点P关于x轴的对称点,直线P A、PB与x轴分别交于点M、N,试用数学方法判断四边形PMQN是怎样的特殊四边形.图1满分解答(1)将x=-4代入4yx=,得y=-1.所以A(-4,-1).将A(-4,-1)代入y=kx,得-1=-4k.解得k=14.因为点B与点A关于原点对称,所以B(4, 1).(2)如图2,已知A(-4,-1)、B(4, 1)、P(1, 4),所以AP2=52+52=50,BP2=32+32=18,AB2=82+22=68.所以AP2+BP2=AB2.所以△ABP是直角三角形,∠APB=90°.因此以点P、A、B、C为顶点的矩形,只存在一种情况,点C与点P关于原点对称,所以C(-1,-4).所以S矩形P ACB=AP∙PB==30.图2(3)如图3,设P(m,4m),那么Q(m,4-m).设MN与PQ交于点G.由P(m,4m)、A(-4,-1),得直线AP的解析式为141=+-y xm m.所以M(m-4, 0).由P(m,4m)、B(4, 1),得直线AP的解析式为141=-++y xm m.所以N(m+4, 0).所以MG=NG=4.所以PQ垂直平分MN.又因为P、Q两点关于x轴对称,所以MN垂直平分PQ.所以四边形PMQN是菱形.图3例2021年上海市宝山区初二下学期期末第25题如图1,在梯形ABCD中,AD∥BC,∠B=90°,如果AD=4,BC=10,点E在线段AB上,将△BCE沿CE翻折,线段CB恰好和线段CD重合.(1)求梯形ABCD的高以及点E与点B之间的距离;(2)如图2,EF⊥CE交CD的延长线于点F,过点F作FG⊥BA于点G,求梯形ADFG 的中位线的长度;(3)动点M在线段CE上,当△DEM为等腰三角形时,求线段CM的长.图1 图2满分解答(1)如图3,过点D作DH⊥BC于H.在Rt△DHC中,DC=BC=10,CH=BC-AD=10-4=6,所以DH=8.如图4,在Rt△AED中,AD=4,设AE=x,那么ED=EB=AB-AE=8-x.由勾股定理,得AE2+AD2=ED2.所以x2+42=(8-x)2.解得x=3.所以EB=8-x=5.图3 图4(2)如图5,因为EF⊥CE,所以∠2+∠3=90°.所以∠1+∠4=90°.又因为∠1=∠2,根据等角的余角相等,得∠3=∠4.又因为∠FGE =∠FDE =90°,EF =EF ,所以△GEF ≌△DEF .所以EG =ED =5.所以GA =GE -AE =5-3=2.如图6,过点F 作FN ⊥BC 于N .在Rt △FNC 中,FN =GA +AB =2+8=10,设FD =FG =m ,那么FC =FD +DC =m +10,NC =BC -FG =10-m .由勾股定理,得FN 2+NC 2=FC 2.所以102+(10-m )2=(10+m )2.解得m =52. 所以梯形ADFG 的中位线=1()2FG AD +=15(4)22⨯+=134.图5 图6(3)如图7,在Rt △BCE 中,BE =5,BC =10,所以CE =分三种情况讨论等腰三角形DEM .①如图7,当EM =ED =5时,CM =CE -EM =5.②如图8,当MD =ME 时,可证得DM 是Rt △DEC 斜边上的中线.所以CM =EM =12CE . ③如图9,当DE =DM 时,可证得DN //AN ,CM 是Rt △MNC 的斜边.在Rt △MNC 中,MN =DN -DM =8-5=3,NC =BC -AD =10-4=6,所以CM =图7 图8 图9上面第②、③两种情况的解题过程如下:如图8,当MD =ME 时,∠MDE =∠MED .根据等角的余角相等,得∠MDC =∠MCD .所以DM =CM .所以CM =EM =12CE .如图9,当DE=DM时,∠2=∠5.又因为∠1=∠2,所以∠1=∠5.所以DM//AB.所以∠MNC=∠B=90°.在Rt△MNC中,MN=DN-DM=8-5=3,NC=BC-AD=10-4=6,所以CM=35.例2021年上海市崇明区初二下学期期末第24题如图1,在平面直角坐标系中,已知点A(2, 0)、B(0, 4),点C为线段AB的中点,点D为x轴上的动点.(1)求直线AB的函数表达式;(2)当直线CD与直线AB互相垂直时,求点D的坐标;(3)以A、C、D三点为顶点的三角形能否成为等腰三角形?若能,请直接写出D点的坐标;若不能,请说明理由.图1满分解答(1)设直线AB的函数表达式为y=kx+4(k≠0).将A(2, 0)代入,得2k+4=0.解得k=-2.所以直线AB的函数表达式为y=-2x+4.(2)如图2,因为CD垂直平分AB,所以DA=DB.设点D(x, 0),根据DA2=DB2列方程,得(x-2)2=x2+42.解得x=-3.所以D(-3, 0).(3)如图3,在Rt△AOB中,OA=2,OB=4,所以AB=25.图2因为点C为线段AB的中点,所以AC=5,C(1, 2).分三种情况讨论等腰三角形ACD.①如图3,当AD=AC=5时,点D坐标为(2+5, 0)或(2-5, 0).②如图4,当DA=DC时,根据DA2=DC2列方程,得(x-2)2=(x-1)2+22.解得x=12-,所以D(12-, 0).③如图5,当CA=CD时,点C在AD的垂直平分线上,所以D(0, 0),此时点D与点O重合.图3 图4 图5例2021年上海崇明区初二下学期期末第25题如图1,在矩形ABCD中,AB=6,BC=8,点P为边AD上一动点,把△ABP沿BP翻折后得到△EBP.(1)当点E恰好落在矩形对角线BD上时,求线段AP的长;(2)当直线PE与边BC相交于点F时,△FBP是否一定是等腰三角形?请给出你的结论,并证明你的结论;(3)当直线PE与边BC相交于点F,且点E在线段PF上时,设AP=x,BF=y,求y 关于x的函数解析式,并写出函数定义域.图1 备用图满分解答(1)如图2,在Rt△ABD中,AB=6,AD=8,所以BD=10.在Rt△DPE中,DE=BD-BE=10-6=4,设AP=EP=x,那么PD=8-x.由勾股定理,得EP2+DE2=PD2.所以x2+42=(8-x)2.解得x=3.所以AP=3.(2)△FBP一定是等腰三角形.理由如下:如图3,因为AD//BC,所以∠1=∠3.又因为∠1=∠2,所以∠2=∠3.所以PF=BF,△FBP是等腰三角形.(3)如图4,在Rt△BEF中,BE=AE=6,BF=y,EF=PF-PE=y-x,由勾股定理,得BE2+EF2=BF2.所以62+(y-x)2=y2.整理,得y=2362+xx.定义域是827-≤x≤6.当F、C两点重合,y=8,解得x=827-;当E、F两点重合时,x=6.图2 图3 图4例2021年上海市奉贤区初二下学期期末第25题如图1,在平面直角坐标系xOy中,直线y=-3x+15交x轴于点A,交y轴于点B,点C在直线AB上,点D与点C关于原点对称,联结AD,过点C作CE∥AD交x轴于点E.(1)求点A、B坐标;(2)当点C的横坐标为2时,求点E坐标;(3)过点B作BF∥AD交直线DE于点F,如果四边形ABFD是矩形,求点C的坐标.图1满分解答(1)由y=-3x+15,当x=0时,y=15;当y=0时,x=5.所以A(5, 0),B(0, 15).(2)如图2,因为点D与点C关于原点对称,所以OC=OD.因为CE∥AD,所以∠OCE=∠ODA.又因为∠COE=∠DOA,所以△COE≌△DOA.所以OE=OA=5.所以E(-5, 0).也就是说,不论点C在直线AB上什么位置,点E 的位置都是确定的.(3)如图2,因为OC=OD,OE=OA,所以四边形ACED是平行四边形.所以AC//ED.如图3,又因为BF∥AD,所以四边形ABFD是平行四边形.如果四边形ABFD是矩形,那么∠CAD=90°.所以AO是Rt△ACD斜边上的中线,所以OA=OC=OD=5.设C(m,-3m+15),那么OC2=m2+(-3m+15)2=52.整理,得m2-9m+20=0.解得m1=4,或m2=5(此时点C与点A重合,舍去).所以点C的坐标为(4, 3).图2 图3例2021年上海市奉贤区初二下学期期末第26题如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=4,DC=5,过点C作CE∥BD 交AD延长线于点E,联结BE交CD于点F.(1)当AB=AD时,求BC的长;(2)设BC=x,四边形BCED的面积为y,求y关于x的函数关系式,并写出定义域;(3)当△BDF为直角三角形时,求BC的长.图1满分解答(1)如图2,作DH⊥BC于H,得到矩形ABHC和直角三角形DHC.在Rt△DHC中,DH=AB=AD=4,DC=5,所以HC=3.所以BC=BH+HC=AD+HC=4+3=7.(2)如图2,在Rt△DHC中,DC=5,HC=BC-BH=x-4.由勾股定理,得DH2=DC2-HC2=52-(x-4)2.整理,得DH如图3,因为AE∥BC,CE∥BD,所以四边形BCED是平行四边形.所以y=S四边形BCED=BC∙DH=定义域是0<x<9.当点C落在AD的延长线上时,A、B两点重合,此时x=BC=AD+DC=4+5=9.图2 图3(3)分两种情况讨论直角三角形BDF .①如图4,当∠BFD =90°时,BE 垂直DC .所以四边形BCED 是菱形.所以BD =BC =x .在Rt △DBH 中,DH 2=DB 2-BH 2=x 2-42.在Rt △DCH 中,DH 2=DC 2-CH 2=52-(x -4)2.所以x 2-42=52-(x -4)2.整理,得2x 2-8x -25=0.解得1=x ,或2=x (舍去).所以BC . ②如图5,当∠BDC =90°时,△BDC 也是直角三角形.在Rt △DBH 中,DB 2=DH 2+BH 2=52-(x -4)2+42.在Rt △BDC 中,由勾股定理,得BC 2=DB 2+DC 2.所以x 2=52-(x -4)2+42+52.整理,得x 2-4x -25=0.解得12=x 22=x .所以BC =2图4 图5例 2021年上海市虹口区初二下学期期末第24题如图1,一次函数y =2x +4的图像与x 、y 轴分别相交于点A 、B ,以AB 为边作正方形ABCD ,点C 、D 在直线AB 的下方.(1)求点A 、B 、C 的坐标;(2)求直线CD 的表达式;(3)设直线CD与x轴交于点E,点F为直角坐标平面xOy内一点,当四边形AECF 为等腰梯形时,请直接写出所有符合条件的点F的坐标.图1满分解答(1)由y=2x+4,得A(-2, 0),B(0, 4).如图2,构造正方形ABCD的外接正方形MNPQ.因为∠1+∠2=90°,∠2+∠3=90°,所以∠1=∠3.又因为∠M=∠N=90°,AB=BC,所以△ABM≌△BCN.所以CN=BM=OA=2,BN=AM=OB=4.所以C(4, 2).(2)因为CD//AB,设直线CD的表达式为y=2x+b.代入点C(4, 2),得8+b=2.解得b=-6.图2所以直线CD的表达式为y=2x-6.(3)由y=2x-6,得E(3, 0).分两种情况讨论四边形AECF为等腰梯形.①如图3,当FC//AE时,设等腰梯形的对称轴与x轴交于点H,与FC交于点G.由A(-2, 0)、E(3, 0),得对称轴GH为直线x=12.所以点C(4, 2)关于直线x=12的对称点F的坐标为(-3, 2).②如图4,当AF//CE时,点F在直线AB上.设F(m, 2m+4 ).根据FC2=AE2列方程,得(m-4)2+(2m+4-2)2=52.解得m1=1,或m2=-1(此时四边形AECF为平行四边形,舍去).所以F(1, 6).图3 图4 图5拓展延伸第(3)题,问题若改为以A、E、C、F为顶点的四边形为等腰梯形,则还有一种情况.如图5,EF//AC.由A(-2, 0)、C(4, 2),得直线AC的表达式为1233=+y x.设直线EF的解析式为13=+y x b,代入E(3, 0),得1+b=0.解得b=-1.所以直线EF的解析式为113=-y x.设F(n,113-n).根据AF2=CE2列方程,得(n+2)2+(113-n)2=12+22.整理,得2101093+=n n.解得n1=0,或n2=-3(此时四边形AECF为平行四边形,舍去).所以F(0,-1).例2021年上海市虹口区初二下学期期末第25题如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=4,点D是射线CB上一点(点D与点C不重合),以AD为边作等边△ADE,且点E与点C在直线AD的异侧,过点E作EF⊥AB于点F.(1)求证:△ACD≌△AFE;(2)联结BE,设CD=x,BE=y,当点D在线段CB上时,求y关于x的函数关系式,并写出定义域;(3)当△ADB为等腰三角形时,求△ADB的面积.图1 备用图满分解答(1)如图2,在Rt△ABC中,∠ABC=30°,AB=4,所以AC=2,∠BAC=60°.因为△ADE是等边三角形,所以AD=AE,∠DAE=60°.所以∠BAC=∠DAE.所以∠BAC-∠DAF=∠DAE-∠DAF,即∠1=∠2.又因为EF⊥AB,所以∠AFE=∠C=90°.所以△ACD≌△AFE(AAS).图2(2)如图2,由△ACD≌△AFE,得AF=AC=2,FE=CD=x.所以FB=AB-AF=4-2=2.在Rt△BEF中,由勾股定理,得BE2=FE2+FB2.所以y2=x2+22.整理,得24=+y x.定义域是0<x≤23.(3)分两种情况讨论等腰三角形ADB.①如图3,当点D在线段CB上时,∠ADB是钝角,只存在DA=DB的情况,所以∠3=∠B=30°.因此∠1=30°.在Rt△ACD中,AC=2,设CD=m,那么AD=2m.由勾股定理,得m2+22=(2m)2.解得m=23±(舍去负值).所以BD=CB-CD=2323-=43.此时S△ADB=12⋅BD AC=43.②如图4,当点D在线段CB的延长线上时,∠ABD是钝角,只存在BA=BD=4的情况.此时S△ADB=12⋅BD AC=4.图3 图4。

上海初二上数学压轴题整理

上海初二上数学压轴题整理

八年级上学期压轴题专项练习(动点存在性)如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=23,∠BCO= 60°。

(1)求证:∆OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为1/秒。

设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围; (3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。

图(1)60︒B CA o图(2)60︒M PQHB C A o(备用图)H60︒BCA o(与面积相关)如图,直线l经过原点和点(3,6)A,点B坐标为(4,0)(1)求直线l所对应的函数解析式;(2)若P为射线OA上的一点,①设P点横坐标为x,△OPB的面积为S,写出S关于x的函数解析式,指出自变量x 的取值范围.②当△POB是直角三角形时,求P点坐标.(第26题图)QRPCBA(与解析式相关).已知:如图,在Rt △ABC 中,∠A =90°,AB =AC =1,P 是AB 边上不与A 点、B 点重合的任意一个动点,PQ ⊥BC 于点Q ,QR ⊥AC 于点R 。

(1)求证:PQ =BQ ;(2)设BP =x ,CR =y ,求y 关于x 的函数解析式,并写出定义域; (3)当x 为何值时,PR//BC已知:如图,在⊿ABC 中,∠C=90°,∠B=30°,AC =6,点D 在边BC 上,AD 平分∠CAB ,E 为AC 上的一个动点(不与A 、C 重合),EF ⊥AB ,垂足为F . (1)求证:AD=DB ;(2)设CE=x ,BF=y ,求y 关于x 的函数解析式; (3)当∠DEF =90°时,求BF 的长.第26题图FE D CBA如图,在△ABC 中,∠ACB =90°,∠A =30°,D 是边AC 上不与点A 、C 重合的任意一点,DE ⊥AB ,垂足为点E ,M 是BD 的中点. (1)求证:CM =EM ;(2)如果BC =3,设AD =x ,CM =y ,求y 与x 的函数解析式,并写出函数的定义域; (3)当点D 在线段AC 上移动时,∠MCE 的大小是否发生变化?如果不变,求出∠MCE 的大小;如果发生变化,说明如何变化.M ADECB第26题图已知:如图,在Rt△ABC中,∠BAC=90°,BC的垂直平分线DE分别交BC、AC于点D、E,BE和AD相交于点F,设∠AFB=y, ∠C=x(1)求证:∠CBE=∠CAD;B(2)求y关于x的函数关系式;D(3)写出函数的定义域。

2021年上海市八年级数学第二学期期末压轴题二24,25题解析5

2021年上海市八年级数学第二学期期末压轴题二24,25题解析5

2021年上海市各区初二期末压轴题图文解析各区24,25压轴题例 2021年上海市青浦区初二下学期期末第24题如图1,在平面直角坐标系xOy 中,已知直线y =x -4分别与x 轴、y 轴交于点A 、B ,直线BC 与x 轴交于点C (-1, 0).点D 在第四象限,BD ⊥BA .(1)求直线BC 的解析式;(2)当S △ABD =4S △BOC 时,求点D 的坐标;(3)在(2)的条件下,已知点E 在x 轴上,点F 在直线BC 上.如果以C 、D 、F 、E 为顶点的四边形是平行四边形,请直接写出线段OE 的长.图1满分解答(1)由y =x -4,得A (4, 0),B (0,-4).设直线BC 的解析式为y =kx -4(k ≠0).代入点C (-1, 0),得-k -4=0.解得k =-4.所以直线BC 的解析式为y =-4x -4.(2)如图2,在Rt △AOB 中,AO =BO =4,所以AB =ABO =45°. 作DH ⊥y 轴于点H .因为BD ⊥BA ,所以△BDH 为等腰直角三角形.又因为S △ABD =4S △BOC ,所以11422⋅=⨯⋅AB BD OB OC .所以1144122⨯=⨯⨯⨯BD .解得BD =在等腰直角三角形△BDH 中,BH =DH =2.所以D (2,-6).图2(3)线段OE的长为12或52.思路如下:以CE为分类标准,分两种情况讨论.①如图3,当CE为平行四边形的边时,DF//CE//x轴.所以y F=y D=-6.将y=-6代入y=-4x-4,得x=12.所以F(12,-6).所以CE=DF=2-12=32.当点E在点C右侧时,OE=CE-OC=12.当点E在点C左侧时,OE=CE+OC=52.②如图4,当CE为平行四边形的对角线时,D、F两点在x轴的两侧,到x轴的距离相等.所以y F=-y D=6.将y=6代入y=-4x-4,得x=52-.所以F(52-,-6).作DM⊥x轴于M,作FN⊥x轴于N.由ME=CN,得2-x E=(-1)-5 ()2 -.解得x E=12.所以OE=12.图3 图4如图1,在等腰梯形ABCD中,AD∥BC,AD=AB=23,BD⊥DC.M、N分别是AD、CD的中点,联结MN交BD于点Q,点P在线段BQ上.(1)求∠C的度数;(2)求线段DQ的长;(3)联结PM、PN.设PB=x,△PMN的面积为y,求y关于x的函数关系式.图1满分解答(1)如图2,因为AD=AB,所以∠1=∠2.因为AD∥BC,所以∠2=∠3.所以∠1=∠2=∠3.设∠1=∠2=∠3=α.因为四边形ABCD是等腰梯形,所以∠C=∠ABC=2α.在Rt△DBC中,3α=90°.解得α=30°.所以∠C=2α=60°.(2)如图3,因为M、N分别是AD、CD的中点,AD=AB=DC=23,所以DM=DN=3.因为∠MDN=30°+90°=120°,所以∠DMN=∠DNM=30°.在Rt△QDN中,DN=3,设DQ=m,那么QN=2m.由勾股定理,得DN2+DQ2=QN2.所以3+m2=(2m)2.解得m=±1(舍去负值).所以DQ=1.(3)如图2,在Rt△BCD中,∠3=30°,DC=23,所以BC=43,BD=6.如图4,作MH⊥BD于H.在Rt△MHD中,∠MDH=30°,DM=3,所以MH=12DM=32.当点P在线段BQ上时,PQ=BD-PB-DQ=6-x-1=5-x.所以y=S△PMN=S△MPQ+S△NPQ=1()2PQ MH DN⋅+=13(5)(3)22x-⨯+=33(5)4-x.图2 图3 图4如图1,平行四边形ABCD的顶点A、B的坐标分别是A(-1, 0)、B(0,-2),顶点C、D 在反比例函数第一象限的图像上,边AD与y轴交于点E.(1)过点D作y轴的平行线交BC于点F,过点C作CH⊥DF,垂足为H,若点D的坐标为(a, b),求点C点坐标(用a、b表示).(2)若四边形BCDE的面积是△ABE的面积的5倍,求反比例函数的解析式.图1满分解答(1)如图2,因为DC//AB,DC=AB,所以点D按照由A到B的方向平移,就可以得到点C.因为点A(-1, 0)向右平移1个单位,向下平移2个单位得到点B(0,-2),所以点D(a, b)平移后得到点C的坐标为(a+1, b-2).(2)如图2,因为四边形ABCD是平行四边形,所以AB=DC,AD=BC,AD//BC.又因为DF//EB,所以四边形BEDF是平行四边形.所以EB=DF,ED=BF.所以AE=CF.所以△AEB≌△CFD(SSS).所以S△AEB=S△CFD.若S四边形BCDE=5S△ABE,那么S平行四边形BEDF=4S△ABE.所以1=42⋅⨯⋅DBE x BE OA.所以x D=2OA=2,即a=2.所以D(2, b),C(3, b-2).设反比例函数的解析式为=kyx(k≠0).将点D(2, b)、C(3, b-2)代入,得23(2)=⎧⎨-=⎩b kb k,.解得612=⎧⎨=⎩bk,.所以反比例函数的解析式为12=yx.图2例2021年上海市世外初二下学期期末第25题如图1,在矩形ABCD中,AB=2,BC=5.点P是边AD上一点,联结CP,将四边形ABCP沿CP所在直线翻折,落在四边形EFCP的位置,点A、B的对应点分别为点E、F,边CF与边AD的交点为点G.(1)当AP=2时,求PG的值;(2)如果AP=x,FG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结BP并延长与线段CF交于点M,当△PGM是以MG为腰的等腰三角形,求AP的长.图1 备用图满分解答(1)如图2,因为AD//BC,所以∠1=∠3.又因为∠1=∠2,所以∠2=∠3.所以GP=GC.在Rt△DCG中,DC=2,设GC=GP=m,那么GD=AD-AP-PG=5-2-m=3-m.由勾股定理,得DC2+GD2=GC2.所以22+(3-m)2=m2.解得m=136.所以PG=136.(2)如图2,在Rt△DCG中,DC=2,PG=CG=5-y,所以GD=AD-AP-GP=5-x-(5-y)=y-x.由勾股定理,得DC2+GD2=GC2.所以22+(y-x)2=(5-y)2.整理,得y=221 210--xx.定义域是0<x≤3.当x=3时,G、D两点重合.(3)分两种情况讨论以MG为腰的等腰三角形PGM.①如图3,当MG=MP时,梯形PBCG是等腰梯形,此时AP=GD.所以x=y-x,即2x=y.所以2212210xxx-=-.解得1=x ,2=x =AP . ②如图4,当GM =GP 时,CM =CB =5,此时F 、M 两点重合.又因为CP 平分∠BCF ,根据等腰三角形的“三线合一”,可知CP ⊥BF .于是可证PG 是Rt △MPC 斜边上的中线.所以GM =12MC =52. 即y =221210--x x =52.解得x 1=4(舍),x 2=1.所以AP =1.图2 图3 图4例2021年上海市松江区初二下学期期末第25题如图1,已知在梯形ABCD中,AD∥BC,AD=AB,BC=2AD,点E是BC边的中点,AE、BD相交于点F.(1)求证:四边形AECD是平行四边形;(2)设边CD的中点为G,联结EG,求证:四边形FEGD是矩形.图1满分解答(1)如图2,因为点E是BC边中点,所以BC=2EC=2BE.因为BC=2AD,所以AD=EC=BE.又因为AD∥BC,所以四边形ABED和四边形AECD是都平行四边形.(2)如图2,因为AD=AB,所以平行四边形ABED是菱形.所以BD⊥AE,BD=2DF.如图3,因为EG是△BCD的中位线,所以EG//BD,BD=2EG.所以EG=DF,四边形FEGD是平行四边形.已知BD⊥AE,所以平行四边形FEGD是矩形.图2 图3例2021年上海市松江区初二下学期期末第26题如图1,已知在正方形ABCD中,AB=2,点E为线段AC上一点(点E不与A、C重合),联结DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG.(1)求证:DE=EF;(2)联结CG、EG,设AE=x,△ECG的面积为y,求y关于x的函数关系式,并写出定义域;(3)设EG、CD相交于点H,如果△EDH是等腰三角形,求线段AE的长.图1 备用图.满分解答(1)如图2,构造矩形DEFG 的外接矩形MNPQ ,MN ⊥AD .所以四边形MNCD 和四边形PQDC 是矩形.因为∠3和∠1都与∠2互余,根据同角的余角相等,得∠3=∠1.又因为MD =NC =NE ,所以△DME ≌△ENF (AAS ).所以DE =EF .图2 图3(2)如图2,因为AD =MQ ,所以AM =DQ =CP .又因为PG =ME ,AM =ME ,等量代换,得CP =PG .所以△CPG 是等腰直角三角形,CG =AE .所以∠ECG =90°.在正方形ABCD 中,AB =2,所以AC =已知AE =x ,所以EC =AC -AE =x ,CG =AE =x .如图3,y =S △ECG =12⋅EC CG =1)2⋅x x 212-x .定义域是0<x <(3)在正方形DEFG 中,∠DEH =45°,分三种情况讨论等腰三角形EDH . ①如图4,当DE =DH 时,点A 与点E 重合,舍去.②如图5,当HD =HE 时,△DEH 是等腰直角三角形,点E 是AC 的中点.所以AE =12AC ③如图6,当ED =EH 时,∠EDH =∠EHD =67.5°.在△CDE 中,∠DCE =45°,∠EDC =67.5°,所以∠CED =67.5°.所以CE=CD=2.所以AE=AC-CE=222-.图4 图5 图6例2021年上海市杨浦区初二下学期期末第25题如图1,已知在平面直角坐标系中,直线y=2x与反比例函数kyx=(k≠0)在第一象限内的图像交于点A(m, 2),将直线y=2x平移后与kyx=在第一象限内的图像交于点B,且△AOB的面积为2.(1)求k的值;(2)求平移后的直线表达式.图1满分解答(1)将A(m, 2)代入y=2x,得2m=2.解得m=1.所以A(1, 2).将A(1, 2)代入kyx=,得k=2.(2)如图2,设平移后的直线与y轴交于点P,联结AP.因为△AOP与△AOB是同底等高的两个三角形,所以S△AOP=S△AOB=2.所以122⋅=AOP x.已知A(1, 2),所以OP=4.①如图2,当点P在x轴上方时,P(0, 4).所以平移后的直线表达式为y=2x+4.②如图3,当点P在x轴下方时,P(0,-4).所以平移后的直线表达式为y=2x-4.图2 图3考点延伸第(2)题△AOB的面积,还可以这样转化:如图4,如图5,作AG ⊥x 轴于点G ,作BH ⊥x 轴于点H .因为A 、B 两点在反比例函数2=y x上,所以S △BOH =S △AOG . 所以S △AOB =S △BOH +S 梯形AGHB -S △AOG =S 梯形AGHB =2.图4 图5例 2021年上海市杨浦区初二下学期期末第26题已知在平行四边形ABCD 中,AB ≠BC ,将△ABC 沿直线AC 翻折,点B 落在点E 处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证:AC //DE ;(2)如图2,如果∠B =90°,AB BC ,求△OAC 的面积;(3)如果∠B =30°,AB =,当△AED 是直角三角形时,求BC 的长.图1 图2 备用图满分解答(1)如图3,因为△ABC ≌△AEC ,△ABC ≌△CDA ,所以△AEC ≌△CDA . 根据全等三角形对应边上的高相等,可知E 、D 两点到AC 边的距离相等. 所以AC //DE .(2)如图4,因为AD //BC ,所以∠1=∠2.又因为∠2=∠3,所以∠1=∠3.所以OA =OC .在Rt △ODC 中,DC OA =OC =x ,那么OD =BC -OA x .由勾股定理,得DC 2+OD 2=OC 2.所以3+x )2=x 2.解得x .所以OA =OC .所以S △OAC =1122⋅==OA DC .图3 图4(3)分两种情况讨论直角三角形AED.①如图5,当∠EAD=90°时,延长EA交BC于点G.因为AD//BC,所以∠EGC=∠EAD=90°.在Rt△AGB中,∠B=30°,AB=,所以AG在Rt△EGC中,∠AEC=30°,EG=AE+AG=设GC=m,那么EC=2m.由勾股定理,得EG2+GC2=EC2.所以27+m2=(2m)2.解得m=±3(舍去负值).所以BC=EC=2m=6.②如图6,当∠AED=90°时,由ED//AC,得∠BAC=∠AED=90°.在Rt△BAC中,∠B=30°,AB=,设AC=n,那么BC=2n.由勾股定理,得AB2+AC2=BC2.所以12+n2=(2n)2.解得m=±2(舍去负值).所以BC=2n=4.图5 图6第(3)题如果没有题干“AD与CE交于点O”的条件限制,还存在如图7、图8两种情况.如图7,四边形ACED是矩形,在Rt△ABC中,AB=,AC BC=3.如图8,在Rt△ADE中,AE=,AD=2.所以BC=2.图7 图8例2021年上海市长宁区初二下学期期末第24题如图1,△ABC和△ADE都是等边三角形,点D在BC边上,EF//BC交AC于点F,联结BE.求证:四边形BEFC为平行四边形.图1满分解答如图2,因为△ABC和△ADE都是等边三角形,所以AB=AC,AE=AD,∠EAD=∠BAC=∠C=∠ABC=60°.所以∠EAD-∠BAD=∠BAC-∠BAD,即∠1=∠2.所以△AEB≌△ADC(SAS).所以∠ABE=∠C=60°.所以∠EBC+∠C=120°+60°=180°.所以EB//FC.又因为EF//BC,所以四边形BEFC为平行四边形.图2例2021年上海市长宁区初二下学期期末第25题如图1,在正方形ABCD中,AB=1,E为边AB上的一点(点E不与端点A、B重合),F为BC延长线上的一点,且AE=CF,联结EF交对角线AC于点G.(1)求证:DE=DF;(2)联结DG,求证:DG⊥EF;(3)设AE=x,AG=y,求y关于x的函数解析式及定义域.满分解答(1)如图2,由DA =DC ,∠DAE =∠DCF ,AE =CF ,得△EAD ≌△FCD . 所以DE =DF .图2 图3(2)如图3,作EH ⊥AB 交AC 于点H ,得等腰三角形AEH .所以EH =AE =CF .因为BC ⊥AB ,所以EH //BC .所以∠HEG =∠CFG .又因为∠EGH =∠FGC ,所以△EGH ≌△FGC .所以HG =CG ,EG =FG .在△DEF 中,DE =DF ,EG =FG ,由等腰三角形的“三线合一”,得DG ⊥EF .(3)如图3,在Rt △ABC 中,AB =BC =1,所以AC在Rt △AEH 中,AE =HE =x ,所以AH .所以HG =CG =12CH所以y =AG =AC -CG 定义域是0<x <1.。

上海上海中学八年级上册压轴题数学模拟试卷含详细答案

上海上海中学八年级上册压轴题数学模拟试卷含详细答案

上海上海中学八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.如图1,我们定义:在四边形ABCD 中,若AD=BC ,且∠ADB+∠BCA=180°,则把四边形ABCD 叫做互补等对边四边形.(1)如图2,在等腰ABE △中,AE=BE ,四边形ABCD 是互补等对边四边形,求证:∠ABD=∠BAC=12∠AEB . (2)如图3,在非等腰ABE △中,若四边形ABCD 仍是互补等对边四边形,试问∠ABD=∠BAC=12∠AEB 是否仍然成立?若成立,请加以证明;若不成立,请说明理由.2.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 3.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.4.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.5.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).6.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.7.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.8.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=20°,∠ADC=26°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE , 若∠ABC=36°,∠ADC=16°,猜想∠P 的度数为 ; (拓展延伸)(4)在图4中,若设∠C=x ,∠B=y ,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P ) ;(5)在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、D 的关系,直接写出结论 .9.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 为ABC ∆内一点,且BD AD =.(1)求证:CD AB ⊥;(2)若15CAD ∠=︒,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由. ③若点N 为直线AE 上一点,且CEN ∆为等腰∆,直接写出CNE ∠的度数.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.12.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.13.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).14.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.15.如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.16.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.17.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.18.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.19.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0a 6b 80--=.(1)a = ;b = ;直角三角形AOC 的面积为 .(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).20.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2= ;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见解析;(2)仍然成立,见解析【解析】【分析】(1)根据等腰三角形的性质和互补等对边四边形的定义可利用SAS证明△ABD≌△BAC,可得∠ADB=∠BCA,从而可推出∠ADB=∠BCA=90°,然后在△ABE中,根据三角形的内角和定理和直角三角形的性质可得∠ABD=12∠AEB,进一步可得结论;(2)如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,根据互补等对边四边形的定义可利用AAS证明△AGD≌△BFC,可得AG=BF,进一步即可根据HL证明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互补等对边四边形的定义、平角的定义和四边形的内角和可得∠AEB+∠DHC=180°,进而可得∠AEB=∠BHC,再根据三角形的外角性质即可推出结论.【详解】(1)证明:∵ AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA=12(180°−∠AEB)=90°−12∠AEB,∴∠ABD=90°−∠EAB=90°−(90°−12∠AEB)=12∠AEB,同理:∠BAC=12∠AEB,∴∠ABD=∠BAC=12∠AEB;(2)∠ABD=∠BAC=12∠AEB仍然成立;理由如下:如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+∠ADG=180°,∴∠BCA=∠ADG,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD 和△BFC 中,∠AGD=∠BFC ,∠ADG=∠BCA ,AD=BC∴△AGD ≌△BFC (AAS ),∴AG=BF ,在Rt △ABG 和Rt △BAF 中,AB BA AG BF =⎧⎨=⎩∴Rt △ABG ≌Rt △BAF (HL ),∴∠ABD=∠BAC ,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC .∵∠BHC=∠BAC+∠ABD ,∠ABD=∠BAC ,∴∠ABD=∠BAC=12∠AEB . 【点睛】本题以新定义互补等对边四边形为载体,主要考查了全等三角形的判定与性质、等腰三角形的性质、三角形的内角和定理与三角形的外角性质以及四边形的内角和等知识,正确添加辅助线、熟练掌握上述知识是解题的关键.2.(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG=GD ,AD=CE=7,∴CG=DG=1.5, ∴4 1.5111.53AG CG +==, 同理,当点E 在线段BC 上时,4 1.551.53AG CG -==,故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF 和△CBF 中,AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩, △ABF ≌△CBF (SAS ),∴AF=CF ,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH ⊥CD ,∴AH=12AF=12CF=3, ∵∠DEC=∠ABC+∠BDE ,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.4.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK .∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK , ∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠== ∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB 于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC BDF BCA ∠∠∠∠=,=∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴BF =BD∴AF =DC∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠== ∵∠ADC 是ABD ∆的外角∴60ADC B FAD FAD ∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD =∠CDE在AFD ∆与DCE ∆中AFD DCE AF CDFAD EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()AFD DCE ASA ∆∆≌∴AD =DE ;(3)如下图,ADE ∆是等边三角形.证明:∵BC CD =∴AC CD =∵CE 平分ACD ∠∴CE 垂直平分AD∴AE =DE∵60ADE ∠=︒∴ADE ∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.6.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC ,∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.7.(1)内错角相等,两直线平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,结合三角形内角和定理,即可得到答案;(3)分两种情况:①当B 1在B 的左侧时,如图2,当B 1在B 的右侧时,如图3,分别求出1AC 的长,即可得到答案.【详解】(1)∵12∠=∠,∴a ∥b (内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a ∥b ,则1∠与2∠应该满足的关系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①当B 1在B 的左侧时,如图2,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC- AA 1=7-3=4;②当B 1在B 的右侧时,如图3,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC+AA 1=7+3=10.综上所述:1AC =4或10.【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键.8.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=23x y+;(5)∠P=1802B D︒+∠+∠.【解析】【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=13∠CAB,∠CDP=13∠CDB,得到y+(∠CAB-13∠CAB)=∠P+(∠BDC-13∠CDB),从而可得∠P=y+∠CAB-13∠CAB-∠CDB+13∠CDB=23x y+;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到12∠BAD+∠P=[∠BCD+12(180°-∠BCD)]+∠D,所以∠P=90°+12∠BCD-12∠BAD +∠D=1802B D︒+∠+∠.【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:3124P BP D∠+∠=∠+∠⎧⎨∠+∠=∠+∠⎩①②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=12(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;故答案为:26°;(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-13∠CAB)=∠P+(∠BDC-13∠CDB),∴∠P=y+∠CAB-13∠CAB-∠CDB+13∠CDB= y+23(∠CAB-∠CDB)=y+23(x-y)=21 33 x y+故答案为:∠P=2133x y+;(5)由题意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴12∠BAD+∠P=(∠BCD+12∠BCE)+∠D,∴12∠BAD+∠P=[∠BCD+12(180°-∠BCD)]+∠D,∴∠P=90°+12∠BCD-12∠BAD +∠D=90°+12(∠BCD-∠BAD)+∠D=90°+12(∠B-∠D)+∠D=1802B D︒+∠+∠,故答案为:∠P=1802B D︒+∠+∠.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.9.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.10.(1)证明见解析;(2)①120BDC ∠=︒;②ME BD =,理由见解析;③ 7.5°或15°或82.5°或150°【解析】【分析】(1)利用线段的垂直平分线的性质即可证明;(2)①利用SSS 证得△ADC ≌△BDC ,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解题;②连接MC ,易证△MCD 为等边三角形,即可证明△BDC ≌△EMC 即可解题;③分EN=EC 、EN=CN 、CE=CN 三种情形讨论,画出图形,利用等腰三角形的性质即可求解.【详解】(1)∵CB=CA ,DB=DA ,∴CD 垂直平分线段AB ,∴CD ⊥AB ;(2)①在△ADC 和△BDC 中,BC AC CD CD BD AD =⎧⎪=⎨⎪=⎩, ∴△ADC ≌△BDC (SSS ),∴∠ACD=∠BCD=12∠BCA=45°,∠CAD=∠CBD=15°, ∴∠BDC=180︒-45°-15°=120°;②结论:ME=BD ,理由:连接MC ,∵AC BC =,90ACB ∠=︒,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM ,∠CDE=60°,∴△MCD 为等边三角形,∴CM=CD ,∵EC=CA=CB ,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC 和△EMC 中,15120CBD E BDC EMC CD CM ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EMC (AAS ),∴ME=BD ;③当EN=EC 时,∠1152EN C ︒==7.5°或∠2EN C =180152︒-︒=82.5°; 当EN=CN 时,∠3EN C =180215︒-⨯︒=150°;当CE=CN 时,点N 与点A 重合,∠CNE=15°,所以∠CNE 的度数为7.5°或15°或82.5°或150°.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.11.(1)①11m n =⎧⎨=⎩;②42≤a <54;(2)m=2n 【解析】【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.【详解】解:(1)①由题意得()088m n n ⎧--=⎨=⎩,解得11m n =⎧⎨=⎩, ②由题意得()()()()222424432464p p p p p p p p a ⎧+-+->⎪⎨+-+-≤⎪⎩, 解不等式①得p >-1.解不等式②得p≤1812a -, ∴-1<p≤1812a -, ∵恰好有3个整数解,∴2≤1812a -<3. ∴42≤a <54;(2)由题意:(mx+ny )(x+2y )=(my+nx )(y+2x ),∴mx 2+(2m+n )xy+2ny 2=2nx 2+(2m+n )xy+my 2,∵对任意有理数x ,y 都成立,∴m=2n .【点睛】本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.12.(1)AE//BF;QE=QF ;(2)QE=QF ,证明见解析;(3)结论成立,证明见解析.【解析】【分析】(1)根据AAS 得到AEQ BFQ ∆≅∆,得到AEQ BFQ ∠=∠、QE=QF ,根据内错角相等两直线平行,得到AE//BF ;(2)延长EQ 交BF 于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明;(3)延长EQ 交FB 的延长于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明.【详解】(1)AE//BF ;QE=QF(2)QE=QF证明:延长EQ 交BF 于D ,,AE CP BF CP ⊥⊥//AE BF ∴AEQ BDQ ∴∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEQ BDQ ∴∆≅∆EQ DQ ∴=90BFE ︒∠=QE QF ∴=(3)当点P 在线段BA 延长线上时,此时(2)中结论成立证明:延长EQ 交FB 的延长于D因为AE//BF所以AEQ BDQ ∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AEQ BDQ ∴∆≅∆EQ=QF90BFE ︒∠=QE QF ∴=【点睛】本题考查了三角形全等的判定方法:AAS ,平行线的性质,根据P 点位置不同,画出正确的图形,找到AAS 的条件是解决本题的关键.13.(1)AE DB =,理由详见解析;(2)AE DB =,理由详见解析;(3)3或1【解析】【分析】(1)根据等边三角形的性质、三线合一的性质证明即可;(2)根据等边三角形的性质,证明△EFC ≌△DBE 即可;(3)注意区分当点E 在AB 的延长线上时和当点E 在BA 的延长线上时两种情况,不要遗漏.【详解】解:(1)AE DB =,理由如下:ED EC =,EDC ECD ∴∠=∠∵△ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,点E 为AB 的中点, 1302ECD ACB ∴︒∠=∠=,30EDC ∠=︒∴,30D DEB ∠=∠=︒∴, DB BE ∴=,AE BE =,AE DB ∴=;故答案为:=;(2)AE DB =,理由如下:如图3:∵△ABC 为等边三角形,且EF ∥BC ,60AEF ABC ∠=∠=︒∴,60AFE ACB ∠=∠=︒,FEC ECB ∠=∠;120EFC DBE ∠=∠=︒∴;ED EC =,D ECB ∴∠=∠,D FEC ∠=∠,在△EFC 与△DBE 中,FEC D EFC DBE EC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFC ≌△DBE (AAS ),EF DB ∴=60AEF AFE ∠=∠=︒,∴△AEF 为等边三角形,AE EF ∴=,AE BD ∴=.(3)①如图4,当点E 在AB 的延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F :则DCE CEF ∠=∠,DBE AEF ∠=∠;ABC AEF ∠=∠,ACB AFE ∠=∠;∵△ACB 为等边三角形,60ABC ACB ∴∠=∠=︒,60AEF AFE ∴∠=∠=︒,60DBE ABC ∠=∠=︒, DBE EFC ∴∠=∠;而ED EC =,D DCE ∴∠=∠,D CEF ∠=∠;在△FEC 和△BDE 中,FEC D EFC DBE EC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FEC ≌△BDE (AAS ),EF BD ∴=;∵△AEF 为等边三角形,2AE EF ∴==,2BD EF ==,123CD ∴=+=;②如图5,当点E 在BA 的延长线上时,过点E 作EF ∥BC ,交CA 的延长线于点F :类似上述解法,同理可证:2DB EF ==,1BC =,211CD =-=∴.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质.熟练掌握等边三角形的性质,构造合适的全等三角形是解题的关键.14.(1)EM ⊥CF ,理由见解析;(2)证明见解析;(3)不变,且∠NEM=45°,理由见解析.【解析】【分析】(1)EM ⊥CF ,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进行求证即可;(2)根据垂直定义和三角形的内角和定理证得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和对顶角相等即可证得结论;(3)不变,且∠NEM=45°,先利用平行线的性质得到∠AEC=∠ECO=2∠ECP ,进而有∠AEP=∠CEP+∠AEC=90°+2∠ECP ,再由角平分线的定义∠NEP=∠AEN=45°+∠ECP ,再根据同角的余角相等得到∠ECP=∠MEP ,然后等量代换证得∠NEM=45°,是定值.【详解】解:(1)EM ⊥CF ,理由如下:∵CF 平分∠ECO ,EM 平分∠FEC ,∴∠ECF=∠FCO=12ECO ∠,∠FEM=∠CEM=12CEF ∠∵AB ∥x 轴 1111()180902222ECF CEM ECO CEF ECO CEF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒ ∴∠ECO+∠CEF=180° ∴∠EMC=180°-(∠CEM+∠ECF )=180°-90°=90°∴EM ⊥CF(2)由题得,∠EOC=90°∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90°∵PE ⊥CE∴∠CEP=90°∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90°∵∠DCO=∠ECP∴∠CDO=∠EPC又∵∠CDO=∠EDP∴∠EPC=∠EDP(3)不变,且∠NEM=45°,理由如下:∵AB ∥x 轴∴∠AEC=∠ECO=2∠ECP∴∠AEP=∠CEP+∠AEC=90°+2∠ECP∵EN 平分∠AEP∴∠NEP=∠AEN=12AEP ∠=1(902)2ECP ︒+∠=45°+∠ECP ∵∠CEP=90°∴∠ECP+∠EPC=90°又∵∠EMC=90°∴∠MEP+∠EPC=90°∴∠ECP=∠MEP∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP又∵∠NEP=45°+∠ECP∴∠NEM=45°.【点睛】本题是一道综合探究题,涉及有平行线的性质、角平分线的定义、三角形的内角和定理、同(等)角的余角相等、对顶角相等、垂线性质等知识,解答的关键是认真审题,结合图形,寻找相关联信息,确定解题思路,进而探究、推理、论证.15.(1)43t =时,点C 位于线段PQ 的垂直平分线上;(2)1t =;(3)不存在,理由见解析.【解析】【分析】(1)根据题意求出BP ,CQ ,结合图形用含t 的代数式表示CP 的长度,根据线段垂直平分线的性质得到CP =CQ ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可.【详解】解:(1)由题意得3BP CQ t ==,则83CP t -=,当点C 位于线段PQ 的垂直平分线上时,CP CQ =,∴833t t -=, 解得,43t =, 则当43t =时,点C 位于线段PQ 的垂直平分线上; (2)∵D 为AB 的中点,10AB AC ==, ∴5BD =,∵BPD CQP ≌,∴BD CP =,∴835t -=,解得,1t =, 则当BPD CQP ≌时,1t =; (3)不存在,∵BPD CPQ △≌△,∴BD CQ BP CP =,=,则35383t t t -=,=。

上海 华东师范大学第一附属初级中学八年级上册压轴题数学模拟试卷及答案

上海 华东师范大学第一附属初级中学八年级上册压轴题数学模拟试卷及答案

上海 华东师范大学第一附属初级中学八年级上册压轴题数学模拟试卷及答案一、压轴题1.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.解析:(1)135°;(2)①45°;②不变;45°;(3)45°或36°【解析】【分析】灵活运用三角形的一个外角等于与其不相邻的两个内角和;(1)求出IBA ∠,IAB ∠,根据180()AIB IBA IAB ∠=-∠+∠,即可解决问题; (2)①求出CBA ∠,BAI ∠,根据CBA ADB BAD ∠=∠+∠,即可求出ADB ∠的值; ②根据D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠12AOB =∠即可得出结论; (3)首先证明90DAF ∠=,2ABO D ∠=∠,再分四种情况讨论①当4DAF D ∠=∠时,②4DAF F ∠=∠时, ③4F D ∠=∠时,④4D F ∠=∠时, 分别计算,符合题意得保留即可.【详解】解:(1)如图1中,MN PQ ⊥,90AOB ∴∠=,40BAO ∠=︒,∴905040ABO ∠=-=︒, 又AI 平分BAO ∠,BI 平分ABO ∠,∴1252IBA ABO ∠==,1202IAB OAB ∠==, ∴180()135AIB IBA IAB ∠=-∠+∠=,(2)如图2中:①MBA AOB BAD ∠=∠+∠(三角形的一个外角等于与其不相邻的两个内角和), 9040=+130=AI 平分BAO ∠,BC 平分ABM ∠,∴1652CBA MBA ∠=∠=,1202BAI BAO ∠=∠=, CBA ADB BAD ∠=∠+∠,∴45ADB ∠=;②结论:点A 、B 在运动过程中,45ADB ∠=, 理由:D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠ 1()2MBA BAO =∠-∠ 12AOB =∠ 1902=⨯ 45=∴点A 、B 在运动过程中,ADB ∠的角度不变,45ADB ∠=;(3)如图3中,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F , ∴12DAO BAO ∠=∠,12FAO EAP ∠=∠, 又BAO EAP ∠+∠为平角,∴11118090222DAF BAO EAP ∠=∠+∠=⨯=, ∴111222D POD DAO POB BAO ABO ∠=∠-∠=∠-∠=∠, ∴2ABO D ∠=∠, 又在AOB 中:AOB 90∠=,∴ABO ∠﹤90,在ADF 中,如果有一个角的度数是另一个角的4倍,则:①当4DAF D ∠=∠时,22.5D ∠=,此时245ABO D ∠=∠=,②4DAF F ∠=∠时,22.5F ∠=,67.5D ∠=,此时2135ABO D ∠=∠=(不符合题意舍去),③4F D ∠=∠时,18D ∠=,此时236ABO D ∠=∠=,④4D F ∠=∠时,72D ∠=,此时2144ABO D ∠=∠=(不符合题意舍去),综上所述,当45ABO ∠=或36时,在ADF 中,有一个角的度数是另一个角的4倍.【点睛】本题主要考查角平分线的定义,三角形内角和定理,以及分类讨论的数学思想的理解及应用,分类讨论时,没有讨论完全是本题的易错点.2.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的. 例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.解析:(1)5;(2)95; (3)78【解析】【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k ,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0),化简得:b c k y z +=①,c a k z x +=②,a b k x y +=③,相加变形可得x 、y 、z 的代入222222x y z a b c ++++=1k中,可得k 的值,从而得结论; 解法二:取倒数得:bz cy yz +=cx az zx +=ay bx xy +,拆项得b c c a a b y z z x x y +=+=+,从而得x =ay b ,z =cy b,代入已知可得结论. 【详解】解:(1)∵21x x x -+=14, ∴21x x x-+=4, ∴x ﹣1+1x =4, ∴x +1x=5; (2)∵设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k , ∴342b c a +=61210k k k +=1810=95; (3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0), ∴b c k y z +=①,c a k z x+=②,a b k x y +=③,①+②+③得:2(b c a y z x++)=3k , b c a y z x ++=32k ④, ④﹣①得:a x =12k , ④﹣②得:12b k y =, ④﹣③得:12c z =k , ∴x =2a k ,y =2b k ,z =2c k 代入222222x y z a b c ++++=1k 中,得: ()22222224a b c k a b c ++++=1k , 241k k =, k =4,∴x =24a ,y =24b ,z =24c , ∴xyz =864abc =8764⨯=78; 解法二:∵yz zx xy bz cy cx az ay bx==+++, ∴bz cy cx az ay bx yz zx xy+++==, ∴b c c a a b y z z x x y+=+=+, ∴,b a c b y x z y==, ∴,ay cy x z b b==, 将其代入222222zx x y z cx az a b c ++=+++中得: cy ay b b acy acy b b⋅+=2222222222a y c y yb b a bc ++++ 2y b =22y b ,y =2b ,∴x =22ab a b =,z =cy 2y =2c , ∴xyz =222a b c ⋅⋅=78. 【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.3.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.解析:(1)EM ⊥CF ,理由见解析;(2)证明见解析;(3)不变,且∠NEM=45°,理由见解析.【解析】【分析】(1)EM ⊥CF ,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进行求证即可;(2)根据垂直定义和三角形的内角和定理证得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和对顶角相等即可证得结论;(3)不变,且∠NEM=45°,先利用平行线的性质得到∠AEC=∠ECO=2∠ECP ,进而有∠AEP=∠CEP+∠AEC=90°+2∠ECP ,再由角平分线的定义∠NEP=∠AEN=45°+∠ECP ,再根据同角的余角相等得到∠ECP=∠MEP ,然后等量代换证得∠NEM=45°,是定值.【详解】解:(1)EM ⊥CF ,理由如下:∵CF 平分∠ECO ,EM 平分∠FEC ,∴∠ECF=∠FCO=12ECO ∠,∠FEM=∠CEM=12CEF ∠ ∵AB ∥x 轴 1111()180902222ECF CEM ECO CEF ECO CEF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒ ∴∠ECO+∠CEF=180° ∴∠EMC=180°-(∠CEM+∠ECF )=180°-90°=90°∴EM ⊥CF(2)由题得,∠EOC=90°∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90°∵PE ⊥CE∴∠CEP=90°∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90°∵∠DCO=∠ECP∴∠CDO=∠EPC又∵∠CDO=∠EDP∴∠EPC=∠EDP(3)不变,且∠NEM=45°,理由如下:∵AB ∥x 轴∴∠AEC=∠ECO=2∠ECP∴∠AEP=∠CEP+∠AEC=90°+2∠ECP∵EN 平分∠AEP∴∠NEP=∠AEN=12AEP ∠=1(902)2ECP ︒+∠=45°+∠ECP ∵∠CEP=90°∴∠ECP+∠EPC=90°又∵∠EMC=90°∴∠MEP+∠EPC=90°∴∠ECP=∠MEP∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP又∵∠NEP=45°+∠ECP∴∠NEM=45°.【点睛】本题是一道综合探究题,涉及有平行线的性质、角平分线的定义、三角形的内角和定理、同(等)角的余角相等、对顶角相等、垂线性质等知识,解答的关键是认真审题,结合图形,寻找相关联信息,确定解题思路,进而探究、推理、论证.4.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).解析:(1)70°,40°,BC+DC=CE;(2)①α=β;②当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°.【解析】【分析】(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质和全等三角形的性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)当点D在线段BC的延长线上时,由①得α=β;(3)当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°;当D在线段BC上时,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°.【详解】(1)如图1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴∠ACE=∠B12=(180°﹣40°)=70°,BD=CE,∴BC+DC=CE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=40°,∴∠DCE=40°.故答案为:70°,40°,BC+DC=CE;(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE.∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°.∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;综上所述:当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°.理由如下:∵当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,即∠BAC=∠DCE.∵CE∥AB,∴∠ABC=∠DCE,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等边三角形,∴∠ACB=60°;∵当D在线段BC上时,α+β=180°,即∠BAC+∠DCE=180°.∵CE∥AB,∴∠ABC+∠DCE=180°,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等边三角形,∴∠ACB=60°;综上所述:当CE∥AB时,若△ABD中最小角为15°,∠ACB的度数为60°.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质和多边形内角和等知识.本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.5.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC= °;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;(延伸推广)(3)在△ABC 中,∠ACD 是△ABC 的外角,∠B 的三分线所在的直线与∠ACD 的三分线所在的直线交于点P .若∠A =m°,∠B =n°,直接写出∠BPC 的度数.(用含 m 、n 的代数式表示)解析:(1)85或100;(2)45°;(3)23m 或13m 或23m +13n 或13m -13n 或13n -13m 【解析】【分析】(1)根据题意可得B 的三分线BD 有两种情况,画图根据三角形的外角性质即可得BDC ∠的度数; (2)根据BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线,且BP CP ⊥可得135ABC ACB ,进而可求A ∠的度数;(3)根据B 的三分线所在的直线与ACD ∠的三分线所在的直线交于点P .分四种情况画图:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时;情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时;情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时;情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,再根据A m ∠=︒,B n ∠=︒,即可求出BPC ∠的度数.【详解】解:(1)如图,当BD 是“邻AB 三分线”时,701585BD C; 当BD 是“邻BC 三分线”时,7030100BD C; 故答案为:85或100;(2)BP CP , 90BPC ∴∠=︒,90PBC PCB , 又BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线,23PBC ABC ,23PCB ACB ∠=∠, ∴229033ABC ACB ,135ABC ACB ,在ABC ∆中,180A ABC ACB ∠+∠+∠=︒ 180()45A ABC ACB . (3)分4种情况进行画图计算:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时, 2233BPC A m ; 情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,1133BPC A m ; 情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,21213333BPC A ABC m n ; 情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,①当m n >时,11113333BPC A ABC m n ∠=∠-∠=-; ②当m n <时,11113333P ABC A n m ∠=∠-∠=-. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质.注意要分情况讨论.6.已知ABC ,P 是平面内任意一点(A 、B 、C 、P 中任意三点都不在同一直线上).连接 PB 、PC ,设∠PBA =s°,∠PCA =t°,∠BPC =x°,∠BAC =y°.(1)如图,当点 P 在ABC 内时,①若 y =70,s =10,t =20,则 x = ;②探究 s 、t 、x 、y 之间的数量关系,并证明你得到的结论.(2)当点 P 在ABC 外时,直接写出 s 、t 、x 、y 之间所有可能的数量关系,并画出相应的图形.解析:(1)①100;②x=y+s+t ;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t .利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.7.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E 在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.解析:(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.8.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.解析:(1)详见解析;(2)①详见解析;②详见解析.【解析】【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD,AE⊥CD∴PC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求.②证明:连接DE ,DF .如图3所示∵△ABC ,△ADC 是等边三角形∴AC =AD ,∠ACB =∠CAD =60°∵AE ⊥CD∴∠CAE =12∠CAD =30° ∴∠CEA =∠ACB ﹣∠CAE =30°∴∠CAE =∠CEA∴CA =CE∴CD 垂直平分AE∴DA =DE∴∠DAE =∠DEA∵EF ⊥AF ,∠EAF =45°∴∠FEA =45°∴∠FEA =∠EAF∴FA =FE ,∠FAD =∠FED∴△FAD ≌△FED (SAS )∴∠AFD =∠EFD∴点D 到AF ,EF 的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.9.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.解析:(1)4;(2)DEF ∆的最小内角为15°或9°或180()11︒;(3)30°<x <45°. 【解析】【分析】(1)根据三角形内角和定理求出∠C 的度数,再根据n 倍角三角形的定义判断即可得到答案;(2) 根据△DEF 是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答即可得到答案;(3) 可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.【详解】解:(1)∵在ABC ∆中,55A ∠=︒,25B ∠=︒,∴∠C=180°-55°-25°=100°,∴∠C=4∠B,故ABC ∆为4倍角三角形;(2) 设其中一个内角为x °,3倍角为3x °,则另外一个内角为:1804x ︒-①当小的内角的度数是3倍内角的余角的度数的13时, 即:x=13(90°-3x ), 解得:x=15°,②3倍内角的度数是小内角的余角的度数的13时, 即:3x=13(90°-x ),解得:x=9°, ③当()11804903x x ︒-=︒-时, 解得:45011x ⎛⎫=︒ ⎪⎝⎭, 此时:4501804180411x ⎛⎫︒-=︒-⨯︒ ⎪⎝⎭=180()11︒,因此为最小内角, 因此,△DEF 的最小内角是9°或15°或180()11︒. (3) 设最小内角为x ,则2倍内角为2x ,第三个内角为(180°-3x ),由题意得: 2x <90°且180°-3x <90°,∴30°<x <45°,答:△MNP 的最小内角的取值范围是30°<x <45°.10.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.解析:(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可; (2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆, CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由. 解析:(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.12.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.解析:(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC ,∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.13.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.解析:(1522213221【解析】【分析】 (1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点, 由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°, ∴∠MAB=∠NCA ,在△ABM 和△CAN 中,===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点, 在l 1上取M ,N 使∠AMB=∠CNA=120°, ∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4a a +,2222=4b b +,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=433, ∴AB=22AP BP +=()22AM PM BP ++=2213;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°, 过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q , ∵△ABC 是等边三角形, ∴BC=AC ,∠ACB=60°, ∴∠BCN+∠ACM=120°, ∵∠BCN+∠NBC=120°, ∴∠NBC=∠ACM ,在△BCN 和△CAM 中, BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BCN ≌△CAM (AAS ), ∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2, ∴BN=2NP ,在△BPN 中,222BP NP BN +=, 即22224NP NP +=,解得:23 ∵∠AMC=60°,AQ=3, ∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=, 即22234QM QM +=,解得:QM=3, ∴AM=23=CN ,∴PC=CN-NP=AM-NP=433, 在△BPC 中,BP 2+CP 2=BC 2,即BC=222243221233BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=2213.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.14.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 解析:(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG=GD ,AD=CE=7,∴CG=DG=1.5, ∴4 1.5111.53AG CG +==, 同理,当点E 在线段BC 上时,4 1.551.53AG CG -==, 故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.15.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.(1)求点C 的坐标;(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;(3)在(2)的条件下,当点P 到AC 的距离PD 为33时,连接AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.解析:(1)C (4,0);(2)433d t =-;(3)1037MN =. 【解析】【分析】(1)根据对称的性质知ABC ∆为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得AC PD PC OA ⋅=⋅,再利用坐标系中点的特征即可求得答案; (3)利用(2)的结论求得2BP =,利用角平分线的性质证得ABO CBQ ∆∆≌,求得43CQ AO ==,利用面积法求得437QN =,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点B 、C 关于y 轴对称,∴12OB OC BC ==, ∴AB AC =,∵60BAC ∠=︒,∴ABC ∆为等边三角形,∴8AB BC AC ===,∴142OC BC ==, ∴点C 的坐标为:()4,0C ;(2)连接AP ,∵1122APC S AC PD PC OA ∆=⋅=⋅,∴AC PD PC OA ⋅=⋅, ∵()0,43A , ∴43OA =,∵2BP t =,∴82PC t =-,∵8AC =, ∴433PC OA PD t AC⋅==-, 即:433d t =-;(3)∵点P 到AC 的距离为33,∴43333d t =-=,∴1t =,∴2BP =,延长CN 交AB 于点Q ,过点N 作NE x ⊥轴于点E ,连接PQ 、BN ,∵CQ 为ACB ∠的角平分线,ABC ∆为等边三角形,∴1302BCQ ACB ∠=∠=︒,CQ AB ⊥, ∵1302BAO BAC ∠=∠=︒,AB BC =, ∴ABO CBQ ∆∆≌,∴43CQ AO ==设2QN a =,在Rt CNE ∆中,30QCB ∠=︒,∴112)22NE CN a a ===, ∵ABP ABN BPN S S S ∆∆∆=+, ∴111222BP OA AB QN BP NE ⋅=⋅+⋅,∴1112822)222a a ⨯⨯=⨯⨯+⨯⨯,∴a =∴QN =, ∵60ACB ∠=︒,90PDC ∠=︒,∴30DPC ∠=︒,∵30BCQ ∠=︒,∴PM CM =,在Rt CDM ∆中,90MDC ∠=︒,30MCD ∠=︒, ∴12MD MC =,∴12MD PM =,PD =∴PM CM ==∴77MN CQ QN CM =--=-=. 【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键. 二、选择题16.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元解析:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图④图③图②图①P NMAC BBCAACBBCA上海初中八年级数学试卷压轴题28.已知一直角三角形纸片ABC (如图①),∠ACB =90°,AC =2,BC =4。

折叠该纸片,使点B 落在边AC上,折痕与边BC 交于点M ,与边AB 交于点N 。

(1)若折叠后,点B 与点C 重合,试在图②中画出大致图形,并求点C 与点N 的距离; (2)若折叠后,点B 与点A 重合,试在图③中画出大致图形,并求CM 的长;(3)若折叠后点B 落在边AC 上的点P 处(如图④),设CP =x ,CM =y ,求出y 关于x 的函数关系式,并写出定义域。

26.已知:如图,正比例函数ax y =的图像与反比例函数xky =的图像交于点A (3,2). (1)试确定上述正比例函数和反比例函数的解析式;(2)根据图像回答:在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3))(n m M ,是反比例函数图像上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADMDM 的大小关系,并说明理由.26、小刘同学在一次课外活动中,用硬纸片做了两个直角三角形,见图1、图2.图1中,90,30,5cm B A BC ∠=︒∠=︒=;图2中,90,45,3cm D E DE ∠=︒∠=︒=.图3是小刘同学所做的一个实验:他将DEF ∆的直角边DE 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF ∆沿AC 方向移动的过程中,小刘同学发现:F 、C 两点间的距离逐渐_______; (填“不变”、“变大”或“变小”)(2)小刘同学经过进一步研究,编制了如下问题:问题①:当DEF ∆移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当DEF ∆移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?请你分别完成上述两个问题的解答过程.ABC图1图2DEAB图3第26题图27、如图:在直角坐标平面内,正比例函数直线x y 3=与一反比例函数图像交于第一象限内A 点,x AB ⊥轴于B ,6=AB①求反比例函数的解析式。

②在直线AB 上是存在点P ,使P 到正比例函数直线OA 的距离等于P 到点B 的距离?若存在,求点P 坐标;若不存在,请说明理由。

28、已知△ABC 中,D AC BC AB ,8,6,10===是AB 边中点,将一块直角三角板的直角顶点放在D 点旋转,直角的两边分别与边BC AC ,交于F E ,。

①取运动过程中的某一瞬间,如图,画出△ADE 关于D 点的中心对称图形,E 的对称点为E ',试判断BC 于E B '的位置关系,并说明理由。

②设y BF x AE ==,,求y 与x 的函数关系式,并写出定义域。

28.如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=23,∠BCO= 60°。

(1)求证:∆OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为1/秒。

设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围; (3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。

图(1)图(2)(备用图)25.(本题满分9分,第1题3分,第2题3分,第3题3分)如图,正比例函数图像直线l经过点A(3,5),点B在x轴的正半轴上,且∠ABO=45°。

AH⊥OB,垂足为点H。

(1)求直线l所对应的正比例函数解析式;(3)如果点P是线段OB上一点,设OP=x,△APB的面积为S,写出S与x的函数关系式,并指出自变量x的取值范围。

图2图1ABCDEFF EDCBA26.(本题满分12分,第1题4分,第2题6分,第3题2分)已知在△ABC 中,∠ACB =90°,AC =BC ,点D 是AB 上一点,AE ⊥AB ,且AE =BD ,DE 与AC 相交于点F 。

(1)若点D 是AB 的中点(如图1),那么△CDE 是___________三角形,并证明你的结论;(2)若点D 不是AB 的中点(如图2),那么(1)中的结论是否仍然成立,如果一定成立,请加以说明,如果不一定成立,请说明理由;(3)若AD =AC ,那么△AEF 是___________三角形。

(不需证明)26.如图,直线l经过原点和点(3,6)A,点B坐标为(4,0)(1)求直线l所对应的函数解析式;(2)若P为射线OA上的一点,①设P点横坐标为x,△OPB的面积为S,写出S关于x的函数解析式,指出自变量x的取值范围.②当△POB是直角三角形时,求P点坐标.(第26题图)24、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)如果该三角形中有一个内角为60°,求AM:AB。

Q R P C B A 18.已知:如图,在Rt △ABC 中,∠A =90°,AB =AC =1,P 是AB 边上不与A 点、B 点重合的任意一个动点,PQ ⊥BC 于点Q ,QR ⊥AC 于点R 。

(1)求证:PQ =BQ ;(2)设BP =x ,CR =y ,求y 关于x 的函数解析式,并写出定义域;(3)当x 为何值时,PR//BC 。

B 27.在直角三角形ABC 中,∠C =90○,已知AC =6cm ,BC =8cm 。

(1)求AB 边上中线CM 的长;(2) 点P 是线段CM 上一动点(点P 与点C 、点M 不重合),求出△APB 的面积y (平方厘米)与CP 的长x (厘米)之间的函数关系式并求出函数的定义域(3)是否存在这样的点P ,使得△ABP 的面积是凹四边形ACBP 面积的32,如果存在请求出CP 的长,如果不存在,请说明理由!备用图第28题图A B C D Q P FED CBA 26、如图,在长方形ABCD 中,AB=8,AD=6,点P 、Q 分别是AB 边和CD 边上的动点,点P 从点A 向点B运动,点Q 从点C 向点D 运动,且保持AP=CQ 。

设AP=x ,BE=y(1)线段PQ 的垂直平分线与BC 边相交,设交点为E 求y 与x 的函数关系式及x 取值范围;(2)在(1)的条件是否存在x 的值,使△PQE 为直角三角形?若存在,请求出x 的值,若不存在请说明理由。

27.在△ABC 中,∠ACB =90°,D 是AB 的中点,过点B 作∠CBE =∠A ,BE 与射线CA 相交于点E ,与射线CD 相交于点F .(1)如图, 当点E 在线段CA 上时, 求证:BE ⊥CD ; (2)若BE =CD ,那么线段AC 与BC 之间具有怎样的数量关系?并证明你所得到的结论; (3)若△BDF 是等腰三角形,求∠A 的度数. FDE C BA27.已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.26.已知:如图,在⊿ABC 中,∠C=90°,∠B=30°,AC =6,点D 在边BC 上,AD 平分∠CAB ,E 为AC 上的一个动点(不与A 、C 重合),EF ⊥AB ,垂足为F . (1)求证:AD=DB ;(2)设CE=x ,BF=y ,求y 关于x 的函数解析式; (3)当∠DEF =90°时,求BF 的长.第26题图F ED CB A26.如图,在△ABC 中,∠ACB =90°,∠A =30°,D 是边AC 上不与点A 、C 重合的任意一点,DE ⊥AB ,垂足为点E ,M 是BD 的中点.(1)求证:CM =EM ;(2)如果BC =3,设AD =x ,CM =y ,求y 与x 的函数解析式,并写出函数的定义域;(3)当点D 在线段AC 上移动时,∠MCE 的大小是否发生变化?如果不变,求出∠MCE 的大小;如果发生变化,说明如何变化.MAD E C B第26题图27、如图,已知长方形纸片ABCD的边AB=2,BC=3,点M是边CD上的一个动点(不与点C重合),把这张长方形纸片折叠,使点B落在M上,折痕交边AD与点E,交边BC于点F.(1)、写出图中全等三角形;(2)、设CM=x,AE=y,求y与x之间的函数解析式,写出定义域;(3)、试判断BEM能否可能等于90度?如可能,请求出此时CM的长;如不能,请说明理由.D ABM28、已知:如图,在Rt△ABC中,∠BAC=90°,BC的垂直平分线DE分别交(1)求证:∠CBE=∠CAD;(2)求y关于x的函数关系式;(3)写出函数的定义域。

27.如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=23,∠BCO= 60°。

(1)求证:∆OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为1/秒。

设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围;(3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。

图(1) 60︒B C A o 图(2) (备用图) H 60︒B C A o29、已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D、E、F分别在边BC、AC、AB上(点E、F与△ABC顶点不重合),AD平分∠CAB,EF⊥AD,垂足为H.(1)求证:AE=AF:(2)设CE=x,BF=y,求x与y之间的函数解析式,并写出定义域;(3)当△DEF是直角三角形时,求出BF的长.26.已知ABC ∆中,AC =BC , =120C ∠,点D 为AB 边的中点,60EDF ∠=,DE 、DF 分别交AC 、BC 于E 、F 点.(1)如图(第26题图1),若EF ∥AB .求证:DE =DF .(2)如图(第26题图2),若EF 与AB 不平行. 则问题(1)的结论是否成立?说明理由.(第26题图1)ABEC DF(第26题图1)ABECDF27.如图(第27题图1),已知ABC ∆中, BC =3, AC =4, AB =5,直线MD 是AB 的垂直平分线,分别交AB 、AC 于M 、D 点.(1)求线段DC 的长度;(2)如图(第27题图2),联接CM ,作ACB ∠的平分线交DM 于N .求证:CM =MN .(第27题图ABMC DD(第27题图2)ABMNC24.如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n,那么(1)以x、m、n为边长的三角形是什么三角形?请证明;(2)如果以x、m、n为边长的三角形中有一个内角为60°,求AM:AB的值。

相关文档
最新文档