比表面和孔径分布-2
比表面积及孔径分析简介
Ⅱ型和Ⅲ型等温线的特点
B
II型等温线一般由非孔或大孔固体产生。B点通常被作为单层吸附容 量结束的标志。 III型等温线以向相对压力轴凸出为特征。这种等温线在非孔或大孔 固体上发生弱的气-固相互作用时出现,而且不常见。
Ⅳ型等温线的特点
IV型等温线由介孔固体产生。典型特征是等温线的吸附曲线与脱附曲
描述吸附现象比较重要的数学方程有:
单分子层吸附理论•Langmuir方程(Ⅰ型等温线) 多分子层吸附理论•BET方程(Ⅱ型和Ⅲ型等温线) 毛细孔凝聚理论•Kelvin方程(Ⅳ和Ⅴ型等温线) 微孔填充理论•DR方程(Ⅰ型等温线) Ⅵ类等温线
单分子层吸附等温方程 ——朗格谬尔(Langmuir)等温方程 Irving Langmuir (1881-1957)
1.5 孔径的分类 (IUPAC Standard)
IUPAC 定义的孔大小分为: 微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) > 50nm
微孔
中孔(介孔)
大孔
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
2.1 吸附现象:
比表面积及孔 径分 析 简 介
培训人: 张 曼 培训日期:2017-04-26
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
1.1 比表面积的定义
比表面积S(specific surface area):单位质量的粉体所具有的表面积总 和。分外表面积、内表面积两类。
公式:S=A/W
吸附平衡(adsorption equilibrium):吸附速率与脱附速率相等时,
表面上吸附的气体量维持不变。
BET比表面及孔隙度解析
(2)BET比表面积:
实验测定固体的吸附等温线,可得到一系 列不同压力p下的吸附量值V,将p/V(p0-p)对p/p0 作图,为一直线,截距为1/VmC,斜率为(C1)/VmC。 Vm=1/(截距+斜率)
吸附剂的比表面积:SBET=Vm· L· σm
此公式目前测比表面应用最多;
以77K,氮气吸附为准,此时σm=16.2 Å2
微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) 50~7500nm 巨孔(megapore) > 7500nm(大气压下水银可进入)
孔容积或孔隙率:单位质量的孔容积, m3/g
测定比表面的方法很多,其中氮吸附法是最常用、 最可靠的方法,已列入国际标准和我国国家标准。氮吸 附法分为静态容量法、静态重量法和动态法(又称连续 流动色谱法)三种。 BET法是BET比表面积检测法的简称,该方法是依 据著名的BET理论为基础而得名。BET是三位科学家 (Brunauer、Emmett和Teller)的首字母缩写,三位科 学家从经典统计理论推导出的多分子层吸附公式基础上, 即著名的BET方程,成为了颗粒表面吸附科学的理论基 础,并被广泛应用于颗粒表面吸附性能研究及相关检测 仪器的数据处理中。
基本原理
在等温条件下,通过测定不同压力下材料对气体 的吸附量, 获得等温吸附线,应用适当的数学模型推 算材料的比表面积, 多孔材料的孔容积及孔径分布, 多组分或载体催化剂的活性组分分散度。
150
Sachtopore 60 Sachtopore 100 Sachtopore 300 Sachtopore 1000 Sachtopore 2000
BET二常数公式适合的p/p0范围:0.05~0.25 用BET法测定固体比表面,最常用的吸附质是 氮气,吸附温度在其液化点77.2K附近。 低温可以避免化学吸附的发生。将相对压力控 制在0.05~0.25之间,是因为当相对压力低于0.05时, 不易建立多层吸附平衡;高于0.25时,容易发生毛 细管凝聚作用。
氮气吸附法在测定材料比表面积和孔径分布方面的应用原理
Science and Technology & Innovation┃科技与创新
氮气吸附法在测定材料比表面积和孔径分布 方面的应用原理
谢潇
(陕西省土地工程建设集团责任有限公司,陕西 西安 710075; 陕西省地建土地工程技术研究院有限责任公司,陕西 西安 710075; 自然资源部退化及未利用土地整治工程重点实验室,陕西 西安 710075;
将 N 和σ的具体数据代入式(1),由此,通过氮气吸附法获
得测试结果,材料的比表面积为:
Sg
4.36Vm W
(2)
在式(2)中,比表面积 Sg 的单位为 cm2。
从上面的描述可以看出,如果需要计算某材料的比表面
积,须知道氮气在其孔隙内表面的单层吸附量 Vm。实际在
大多数情况下,氮气在材料的孔隙中并非是单层吸附,也就
孔隙体积随孔径的变化率。比表面积和孔径分布一定程度上 代表着材料的微观结构特征,并且对材料的许多宏观特性有 很大的影响[1-3]。因而,准确测定材料的比表面积和孔径分 布对于材料的宏观物理力学特性等具有十分重要的意义。
多孔材料的比表面积和孔隙形貌的测定方法主要有压 汞法、气体吸附法、流体通过法、X 射线层析摄像(照相) 法和显微观测统计法等[3]。后两者是先获得微结构照片,然 后再利用图像分析处理软件等对获得的图片进行处理和统 计,得到土体的比表面积和孔径分布特征,缺点是对图像处 理技术的要求比较高,过程复杂。气体吸附法、压汞法、流 体通过法可从实验测试结果中直接对数据进行处理,得到孔 径分布及比表面积等。而压汞法所产生的废汞若处理不当会 对环境造成一定的破坏;流体通过法受多种因素的影响,一 般测得的结果偏低;而氮气吸附法的应用范围广,是一种研 究固体材料结构特性的重要且有效手段[4]。该方法借助氮分 子作为一个标尺,来度量材料的表面积与孔容[5]。可用于测 量大约 0.1~2 000 m2/g 范围内的比表面积以及 3~200 nm 范 围内的孔径[5]。其测试原理科学,测试过程可靠,在多孔材 料的比表面积及孔径分布测定中发挥了重要的作用。 2 氮气吸附法测量比表面积原理
BET孔径分布
超细粉表面特性的表征通常用比表面和孔隙度(Porosity)两个指标,比表面指单位质量粉体的总表面积,孔隙度包括总孔体积、平均孔径、孔径分布等,对于多孔超细粉体而言,虽然还是这两个概念,但是其包含的内容及其分析方法要复杂得多。
多孔粉体颗粒的形状千变万化,只有分子筛类颗粒上的孔的形状和尺寸非常规律,是由物质的晶体结构决定的,对于其他多数无定形的粉体却十分复杂,典型的单个颗粒剖面如图1所示,颗粒中的孔分为闭孔(Closed)、通孔(Passing)、盲孔(Dead end)、内部连通的通孔(Inter-condected)等等,除了闭孔以外,都在要考察的范围;从孔形状看可分为缝隙形(Slits)、圆柱形(Cylindrical)、圆锥形(conical)、墨水瓶形(Ink Bottle)、内连通形(Iterstices)等,实际情况还要复杂得多,在孔径分布的分析中,通常取缝隙形和圆柱形两类;孔按尺寸分类(国际通用分类),可分为微孔(Micropores)孔径<2nm、中孔或介孔(Mesopores)孔径2~50nm、大孔(Macropores)孔径>50nm,微孔的下限是0.35nm,用气体吸附法可以分析的孔径范围的上限为500nm,再大需用压汞法。
图1 单粒多孔粉体的横截面示意多孔粉体尺寸小且孔的形状又十分复杂,其表面特征无法直接进行观察与测定,气体吸附法是一个非常科学而巧妙的方法,通俗的说,就是用气体分子作为度量的“标尺”,通过对物质的表面吸附进行严密的测定,实现对粉体表面特征的描述。
众所周知,气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称为吸附,吸附气体的固体物质称为吸附剂,被吸附的气体称为吸附质,吸附可分为物理吸附和化学吸附,用气体吸附法表征粉体表面特性需采用低温物理吸附,例如在液氮温度下氮气的吸附;固体表面的吸附是一个动态过程;在一定的外界条件下,当吸附速率与脱附速率相等时,固体表面上的气体量维持不变,称为吸附平衡;在恒定温度下,固体表面上的气体吸附量取决于压力,吸附量随压力而变的曲线称为等温吸附曲线,他是固体物质吸附特性的最重要表现。
比表面与孔径分析仪的应用与管理
摘 要 : 从分 析 比表 面与孔径 分析仪 的应 用与管理 入手 , 讨 专 业 实验 室 大型仪 器管理 问题 。 比表 面和 探
孔 径分 析仪是 进行粉 体 材料特 性研 究的重要仪 器之 一 , 院级专 业 实验 室仪 器设备 的 管理上 引入 归类 、 在 分档、 有偿 等 方式 , 重视 大型仪 器设 备 管理操 作人 员 的培 训 , 将有利 于充分发 挥 大型仪 器的作 用 , 之更 使 好 地服务 于本 科教 学 实验和科 研 。 关键 词 : 比表 面与 孔径 分析仪 ; A 10 S 3 0 ;大型 仪 器设 备
多 孔 性 质 , 握 多 孑 体 的 结 构 和 性 质 具 有 重 要 意 掌 L
义 。 。因此 , 比表 面 积 和孑 径 分 析 仪 已成 为许 多 研 L 究 单位 、 大专 院校 和工厂 不可缺 少 的重要设 备 。
面 饼 干 、 保存 的食 品等都 体 。工业 2比 面…~ 准 包曼 热 干燥 笺 是多孔 翌 . …表 测 标 , 定 一 一些 一一 ”
0 引 言
我 校 于 20 0 3年 7月 引进 美 国贝 克曼 库 尔 特 公 司
1 比 表 面 和 孔 径 分 布 是 粉 体 材 料 的 重 要 特 性
之 一
的 S 30 A 10比表 面和孔 径分 析仪 ( 括 气 瓶 总成 、 瓦 包 杜
瓶、 电脑 、 电子 天 平 等 ) 除 了为 材 料 无 机 非 专 业 开 设 ,
P r z ay e o e Sie An lz r
S HU a, Xi T AN G We m ig, CHENG 一 i n— n gu , XI o g- o g AYn hn
BET孔径分布
超细粉表面特性的表征通常用比表面和孔隙度(Porosity)两个指标,比表面指单位质量粉体的总表面积,孔隙度包括总孔体积、平均孔径、孔径分布等,对于多孔超细粉体而言,虽然还是这两个概念,但是其包含的内容及其分析方法要复杂得多。
多孔粉体颗粒的形状千变万化,只有分子筛类颗粒上的孔的形状和尺寸非常规律,是由物质的晶体结构决定的,对于其他多数无定形的粉体却十分复杂,典型的单个颗粒剖面如图1所示,颗粒中的孔分为闭孔(Closed)、通孔(Passing)、盲孔(Dead end)、内部连通的通孔(Inter-condected)等等,除了闭孔以外,都在要考察的范围;从孔形状看可分为缝隙形(Slits)、圆柱形(Cylindrical)、圆锥形(conical)、墨水瓶形(Ink Bottle)、内连通形(Iterstices)等,实际情况还要复杂得多,在孔径分布的分析中,通常取缝隙形和圆柱形两类;孔按尺寸分类(国际通用分类),可分为微孔(Micropores)孔径<2nm、中孔或介孔(Mesopores)孔径2~50nm、大孔(Macropores)孔径>50nm,微孔的下限是0.35nm,用气体吸附法可以分析的孔径范围的上限为500nm,再大需用压汞法。
图1 单粒多孔粉体的横截面示意多孔粉体尺寸小且孔的形状又十分复杂,其表面特征无法直接进行观察与测定,气体吸附法是一个非常科学而巧妙的方法,通俗的说,就是用气体分子作为度量的“标尺”,通过对物质的表面吸附进行严密的测定,实现对粉体表面特征的描述。
众所周知,气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称为吸附,吸附气体的固体物质称为吸附剂,被吸附的气体称为吸附质,吸附可分为物理吸附和化学吸附,用气体吸附法表征粉体表面特性需采用低温物理吸附,例如在液氮温度下氮气的吸附;固体表面的吸附是一个动态过程;在一定的外界条件下,当吸附速率与脱附速率相等时,固体表面上的气体量维持不变,称为吸附平衡;在恒定温度下,固体表面上的气体吸附量取决于压力,吸附量随压力而变的曲线称为等温吸附曲线,他是固体物质吸附特性的最重要表现。
【doc】用压汞法和氮吸附法测定孔径分布及比表面积
用压汞法和氮吸附法测定孔径分布及比表面积微孔测定?技术报告用压汞法和氮吸附法测定孔径分布及比表面积作者简介:田英姿女士,主要从事造纸与环境化工工业过程的污染分析与控制研究工作.田英姿陈克复(华南理工大学造纸与环境工程学院,广州,510641)摘要:压汞法和BET氮吸附法是目前测定孔径分布及比表面积最基本的两种方法.利用Poremas—ter33型压汞仪与Autosorb一3B型氮气吸附仪测定木材,原纸,活性炭纤维纸,纳米级SiO:粉末以及硅藻土,可以全面准确地了解其孔径分布状况及比表面积大小.关键词:压汞法;氮吸附法;孔径分布;比表面积中图分类号:1,s77文献标识码:B文章编号:0254—508X(2004)04-0021-03木材是一种天然高分子多孔材料.以木材为原料制成的原纸,同样具备了多孔的性质.纸浆与活性炭纤维混合处理后抄造出的活性炭纤维纸ACFP(Activated CarbonFiberPaper),孔隙率及比表面积比原纸都有非常大的提高.孑L隙率和比表面积的大小决定着纸的各项物理性能,这些指标的准确测定,为功能纸的开发应用创造了条件.SiO粉末是一种新型多孑L材料,具有密度低,比表面积大,孑L隙率大等特点,可应用于造纸涂料,橡胶等行业.样品比表面积,孔隙率等相关指标的测定技术发展很快,压汞法和氮吸附法是目前测定技术中最基本也是应用最广泛的方法.本文采用这两种方法测定了木材,原纸,活性碳纤维纸,纳米级SiO粉末及硅藻土的孑L隙率和比表面积的大小,测定结果表明,不同功用的不同材料,应采用不同的测定方法.1测定原理1.1压汞原理本实验采用美国Quantachrome生产的Poremas—ter33孔径测定仪,其基本原理是压汞法.在真空条件下将汞注入样品管中,然后将样品管放入高压站进行分析,最高压力为227.5MPa.汞是液态金属,它不仅具有导电性能,而且还具有液体的表面张力,正因为这些特性,在压汞过程中,随着压力的升高,汞被压至样品的孑L隙中,所产《中国造纸》2004年第23卷第4期生的电信号通过传感器输入计算机进行数据处理,模拟出相关图谱,从而计算出孔隙率及比表面积数据.在测定中假设孔为圆柱状,孔径为r,接触角为0,压力为P,汞的表面张力为,孔的长度为,J,注入汞的体积变化为A V,孔的表面积为Js.则压力与孑L面积的关系为:p1Tr2,J=21TrL/cos0=p?A V(1)由(1)可推出r:一2y/cosO一(2)P孑L的表面积与将汞注满相应孑L隙的所有空间所需压力的关系式为:Sy/cosO=pA V由上式推出:Js=l_(3)如果y/cosO不变(一般=0.48J/m2,0=140.)则有JsJ.pd(4)孑L隙率=lOO(+_V a-Vb)(5)式中,a——在任何压力下注入汞的体积%——汞注入后稳定状态下的体积c——测定中最大压力下的汞体积由(2)式可知孑L径r与压力P成反比.由(4)式, (5)式可知待测样品的比表面积和孔隙率的大小均与注入汞的体积有关.由孑L径即可推算出比表面积.收稿日期:2003—11-26(修改稿)2l?技术报告1.2氮吸附原理1-2.1多层吸附原理美国Quantachrome公司生产的Autosorb-3B自动氮吸附仪,采用容量法,以氮气为吸附介质,在液氮温度(77K)下,N分子进入待测样品中产生多层吸附.在样品内部多个点上的力能够达到平衡,而在样品的表面则不同,有剩余的表面自由能,因此当N分子与样品的表面接触时,便为其表面所吸附.吸附的机理为微孔填充,填充的过程为在孔壁上一层又一层地筑膜.1.2.2BET公式计算待测样品的比表面积采用BET公式.假设a为吸附量,为单分子层的饱和吸附量,p/p.为N的分压比,C为第一层吸附热与凝聚热有关常数,P.为饱和蒸气压,为样品质量.则BET公式为:=击+p/pV(popVV.(6)d)mC.mC”在(1)式中:p.一般选择相对压力在0.05-0.35范围内,仪器可以测得值,根据(6)式将p/V(p.-p)对p/p.作图,得一直线,此直线斜率口:,截距6=l一,从而可换算出:Vm=l/(a+b).最后根据N分子截面积0.162nm及阿伏加德罗常数(6.02x10∞),可推出样品的比表面积(mE/g)=4.36V.,/W.根据毛细凝聚模型BJH法,可推断出孔半径r=一2roVm/RTIno)+0.354(-5/1n/po))1.3两种测定原理的比较(1)孔的定义范围:半径大于50nnl为大孔;2~50nlIl为中孔,小于2nm为微孔.Poremaster33理论上测定的孔径为6.4nm~426Ixm,实际上,对纳米级孔的测定是不准确的,因为在高压下,许多都会变形甚至压塌,致使结果偏离理论值.与压汞法相反,氮吸附法可测中微孔,而对大孔的测定会产生较大的误差.(2)压汞法不仅可测得大孔的比表面积,而且还可测样品的孔隙率及孔径分布状况,操作简单,迅速.而氮吸附法能给出中22?微孔的比表面积及孔径分布,但仪器的平衡时间会较长,测试时间较长(>5h).2实验部分2.1实验仪器Poremaster33压汞仪(美国产);Autosorb一3B自动吸附仪(美国产).2.2实验材料木材马尾松木,烘干,称取1.5131g待用.原纸采用马尾松木浆在抄片器上抄片,烘干,称取0.0984g待用.活性炭纤维纸采用沥青基活性炭纤维,BET比表面积为1260mVg,通过聚丙烯酰胺分散后加入马尾松木浆(打浆度为23.SR),搅拌使其均匀混合后抄片,烘干,称取0.0526g待用.纳米级SiO:粉末平均粒径19.141m.烘干,称取0.2775g待用.硅藻土烘干,称取0.4981g待用.2.3实验结果与分析压汞法和氮吸附法测定结果分别见表1,表2.由表1分析得出,木材,原纸,硅藻土随压力的增加,注入汞量的变化越来越小,说明孔径越来越小,孔数量越来越少.中,微孔少,适合用压汞法测量.ACFP随着压力的增加,注入汞的体积增大,说明其中含有大表1压汞法测定结果注in为注人汞的质量(g,注汞后称量),注人汞的体积为单位质量的体积.ChinaPulp&PaperV o1.23,No.4.2004表2氮吸附法比表面积测定结果比表面积/m?g相对压力——一——木材原纸ACFPSiO粉末硅藻土0.05320.5275.6976.9708.21208.00.1322.1275.6975.570031208.00.15328.32779979.0712.21215.30.20328.32808980571801215.30.25328.5280.0980573011215.0O.30328-3280.9980.573011215.5O.35328.3281.O980.573011215.5量中,微孔,压汞法无法满足其微孔测定要求,只能用氮吸附法;SiO:粉体采用压汞法无法测定,因为其不含有大孔而含大量中,微孔,适合氮吸附法.由表2可以看出,氮吸附法能准确得出中,微孔的比表面积,同时也可根据相对压力及所对应的比表面积变化情况来定性地判断其孔径的分布状况:在相应压力的变化范围内,随着压力的不断升高,比表面积变化幅度不断增大,则表明存在大量微孔.所以对于样品的测定要根据需要选择测定方法,中,微孔样品选择氮吸附法进行测定,大孔样品的分布选择压汞仪来测定.3结语3.1对于木材,原纸,ACFP,纳米级SiO:粉末,硅藻土技术报告的测定结果表明,这类物质中存在大量孔隙,其本身具有收容同数量级结构单元的固有空间,因此为其改性及与无机纳米材料的复合研究指明了方向.3.2对于木材,原纸,ACFP,纳米级SiO:粉末,硅藻土的测定结果表明,其大孔隙和大比表面积可作为新型吸附分离功能性材料,对其结构与性能的测定为进一步研究其功能化和复合化打下了基础.3.3对于木材,原纸,ACFP,纳米级SiO:粉末,硅藻土的测定结果表明,要了解孔径分布及大孔的比表面积用压汞法较好,要了解样品(一般认为体积平均粒径在100m以下)中,微孔孔径,孔径分布及比表面积最好用氮吸附法.参考文献[1]PoremasterOperationManual—mercuryPorosimetryAnalyzer.Quan —tachromeInstruments,03—05—02RevD[2]Autosorb一3BSurfaceAreaandPoresizebyGasSorptionOperationManu—al,QuantachremeInstruments[3]马智勇,杨小平,等.活性炭纤维纸的制备及结构性能研究[J].北京化工大学,2000,4(27)[4]邱坚,李坚.纳米科技及其在木材中的应用前景(I)[J].东北林业大学,2003,1(31)[5]许珂敬,等.多孔纳米SiO微粉的制备与表现[J].硅酸盐通报, 2001.1 DeterminationofPoreSizeDistributionandSurfaceAreaofSeveralMaterial sUsingMercuryPorosimetryandGasAdsorptionTIANYing--ziCHENKe--fu (CollegeofPaperandEnviromemEngineering,SouthChinaUniversityofTe chnology,Guangzhou,GuangdongProvince,510641)Abstract:Poresizedistribution(PSD)andsurfacearea(SA)areimpo~antphy sicalcharacteristicsformaterialapplication.Severalanalytica1 methodscanbeusedtodeterminePSDandSAofmaterialsbygasadsorptionan dgaspermeametry.Inthispaper,twomethodswereused todeterminethePSDandSAofseveralkindsofmaterialssuchaswood,paper, aciivedcarbonfiberpaper,SiO2nano—particlesanddi.atomite.Theresultsindicatedthatmercuryporosimetrymethodisbetterforth ePSDandSAmeasurementofthematerialswiththeaDer_ tureslargerthan50nm,whilegasadsorptionissuitableforthematerialswithth eape~uressmallerthan50nmorthepowderwiththeparti—clesizesmallerthan100nm.Keywords:poresizedistribution;surfacearea;mercuryporosimetry;gasads orption圆(责任编辑:赵场宇)欢迎投稿欢迎订闻欢迎刊登《中国造纸》2004年第23卷第4期‘广告23?。
氮气等温线及算比表面和孔径分布
氮气等温吸脱附计算比表面积、孔径分布◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL3.STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。
影响动态 BET 比表面测试结果的几大因素
影响动态 BET 比表面测试结果的几大因素
第一,和样品预处理时间有关。
以氢氧化镍为例,它的处理时间至少需要8小时,由于其干燥过程容易板结,故处理温度不宜过高(一般90度),这样就导致处理温度不够,用加长时间来弥补。
第二,和样品的处理温度有关。
以氧化铝为例,它的处理温度一般是300℃。
若降低其处理温度,容易造成测试结果偏小,且BET 测试曲线线性很差。
第三,和处理时的真空度有关。
真空度偏低,使得真空室的蒸汽的饱和蒸汽压偏高,同时样品表面处理不干净,这样都造成测试结果偏小(个别样品除外)。
第四,和称样量多少有关。
样品量的多少和他自身的比表面的大小有关的,一般比表面越大,称样量越少,反之越多。
但是在样品管体积一定的情况下,量太多容易造成管路堵塞;太少容易出现脱附峰拖尾。
所以选择合适的称样量是很有必要的。
第五,和测试样品的自身吸附特性有关。
大部分样品处理后的比表面都是大于处理前的比表面,有的样品不处理的时候比表面很大,处理后反而变小,
第六,和仪器的类型有关,一般来说,静态容量法测得结果比动态色谱法测得的结果更加准确,这个是由于前者测得是吸附数据,后者得到的是脱附数据。
若样品中存在不规则的孔,氮分子进入孔内后,脱附时,由于出口很小,就有可能不出来,造成脱附的数据失真。
具体的动态法和静态法的区别,请参照以下对比:
静态容量法氮吸附仪与动态法氮吸附仪的比较。
比表面积和孔结构分析技术
电池和超级电容器
在电池和超级电容器中,电极材 料的比表面积和孔结构对电化学
性能有重要影响。
比表面积越大,电极材料与电解 液接触的表面积越大,反应活性 越高。孔结构则影响电解液的渗
透和离子的传输。
通过比表面积和孔结构分析技术, 可以优化电极材料的制备工艺, 提高电池和超级电容器的能量密 度、充放电性能和循环寿命。
比表面积和孔结构分析技 术
• 引言 • 比表面积分析技术 • 孔结构分析技术 • 比表面积和孔结构在材料科学中的应
用 • 结论
01
引言
目的和背景
目的
比表面积和孔结构分析技术是材料科学和工程领域中重要的研究手段,用于评 估材料的表面特性和孔隙结构,进而了解材料的物理、化学和机械性能。
背景
随着科技的发展,对材料性能的要求越来越高,材料的比表面积和孔结构对性 能的影响越来越受到关注。因此,发展高效的比表面积和孔结构分析技术对于 材料研究和应用具有重要意义。
THANKS
感谢观看
比表面积和孔结构的重要性
比表面积
材料的比表面积是指单位质量或单位 体积的表面积,它决定了材料与气体 的接触面积,影响材料的吸附、反应 和催化性能。
孔结构
重要性
通过对比表面积和孔结构的分析,可 以深入了解材料的表面性质和内部结 构,为优化材料性能、开发新材料提 供重要依据。
材料的孔结构包括孔径、孔容、孔分 布等参数,这些参数直接影响材料的 储气、吸水、吸油、过滤等性能。
Langmuir方法
01
Langmuir方法是另一种测量固体物质比表面积的方法。
02
低温氮吸附法测定多孔材料的比表面积及孔隙分布
低温氮吸附法测定多孔材料的比表面积及孔隙分布一、实验目的(1)了解低温氮吸附法测定多孔材料的比表面积及孔隙分布的原理。
(2)掌握低温氮吸附法测定比表面积及孔隙分布的方法。
(3)掌握仪器的实际操作过程、软件使用方法(4)学习分析实验结果和数据二、实验概述多孔材料的比表面积和孔隙分布测试在各行各业已逐步引起人们的普遍重视,是评价粉末及多孔材料的活性、吸附、催化等多种性能的一项重要参数。
广泛应用于药品、陶瓷、活性炭、碳黑、油漆和涂料、医学植入体、推进燃料、航天隔绝材料、MOF储氢材料、碳纳米管和燃料电池的研究。
比表面及孔隙分布测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积及孔隙分布测试方法有粒度估算法、显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高。
吸附法是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面及孔隙分布大小。
根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;以氮分子作为吸附质的氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面及孔隙分布测试吸附质。
三、实验原理1、比表面积测试原理比表面积是指1g固体物质的总表面积,即物质晶格内部的内表面积和晶格外部的外表面积之和。
低温吸附法测定固体比表面和孔径分布是依据气体在固体表面的吸附规律。
在恒定温度下,在平衡状态时,一定的气体压力,对应于固体表面一定的气体吸附量,改变压力可以改变吸附量。
平衡吸附量随压力而变化的曲线称为吸附等温线,对吸附等温线的研究与测定不仅可以获取有关吸附剂和吸附质性质的信息,还可以计算固体的比表面和孔径分布。
比表面和孔隙度分析(康塔)操作步骤
比表面及孔隙度分析操作步骤(康塔)一般情况下仪器处于待机状态,直接上样分析即可。
否则见“完全开关机”。
一、样品准备1.样品管的选择:粉末样品:有6mm、9mm、12mm口径,底部为大玻璃泡的样品管可供选择颗粒样品:6mm口径,底部为小玻璃泡的样品管。
颗粒样品对样品管的选择性不强,粉末状样品的样品管对其也适用2.二、脱气:1.把装有样品的样品管固定安装在仪器面板右侧的“Outgaser”栏中的Station1或Station2,用夹子把加热包固定在样品管上。
2.冷阱杜瓦瓶装上液氮后,固定在仪器中间挂钩上。
3.点击AS1win软件上的“operation” →“Outga ser control”里选择Station1或Station2﹙如果两个同时脱气,则全选﹚,摁右边的“Load”4.脱气温度设置:在仪器面板右下方设置脱气温度,温度可通过仪器面板读取。
一般先设为70℃,温度慢慢上升至70℃后保持30分钟。
接着把温度设为300℃﹙视样品耐受温度决定﹚,处理4小时或以上,即可认为脱气比较完全了。
5.气体回填:脱气完毕后,先把温度降至50℃左右,卸下加热包,用吸附质﹙N2﹚回填样品管。
具体操作点击AS1win软件上的“operation” →“Outga ser control”里选择“adsorbate”,然后摁右边的“Unload”控制键等待2-3分钟即可﹙此时仪器面板上“Outgaser”栏的状态显示灯将由绿色变红色﹚。
6.卸下样品管,用手指堵住样品管口,再一次称量样品和空管的总质量,此质量与空管质量相减,即得脱气后样品实际质量。
三、样品分析注意:脱气站和分析站的关系:样品在进行吸附分析试验时,无法开始新的样品脱气操作;但设置完样品脱气操作后可进行样品分析站试验。
1.将样品管安装在仪器面板左侧的样品位。
2.分析站杜瓦瓶充上液氮后,放置于仪器左侧的升降托上。
3.点击AS1win软件上的“operation” →“Start anaysis”进行参数设置。
BET比表面及孔隙度资料
Sachtopore 2000
90
Volume STP [cc/g]
60
30
0
0
0.2
0.4
0.6
0.8
1
P/P0
由国际纯粹与应用化学联合会〔IUPAC〕提出 的物理吸附等温线分类
I型等温线的特点
• 在低相对压力区域,气体吸附量有一个快速增长。 这归因于微孔填充。
• 随后的水平或近水平平台说明,微孔已经布满,没 有或几乎没有进一步的吸附发生。
式中,C为常数 此即一般形式的BET等温方程,由于试验的目的是 要求出C和Vm,故又称为BET二常数公式。
〔2〕BET比外表积:
试验测定固体的吸附等温线,可得到一系 列不同压力p下的吸附量值V,将p/V(p0-p)对 p/p0作图,为始终线,截距为1/VmC,斜率为 (C-1)/VmC。
Vm=1/(截距+斜率)
根本原理
在等温条件下,通过测定不同压力下材料对气体 的吸附量, 获得等温吸附线,应用适当的数学模型推 算材料的比外表积, 多孔材料的孔容积及孔径分布, 多组分或载体催化剂的活性组分分散度。
150
Sachtopore 60
Sachtopore 100
Sachtopore 300
120
Sachtopore 1000
0.010 0.008
Cu-HY HY
0.006
Dv(w)
0.004
0.002
0.000
0
50
100
150
200
250
300
Pore Width / A
图2 改性前后分子筛大孔孔径分布
Cu-HY SURFACE AREA DATA Multipoint BET.............................................. 5.838E+02 m2/g Langmuir Surface Area....................................... 8.662E+02 m2/g BJH Method Cumulative Desorption Surface Area 2.075E+02 m2/g DH Method Cumulative Desorption Surface Area.. 2.199E+02 m2/g t-Method External Surface Area.............................. 2.934E+02 m2/g tMethod Micro Pore Surface Area............................ 2.904E+02 m2/g
比表面积及孔径分析简介
在环境科学中的应用
空气净化材料
通过比表面积及孔径分析,了解 空气净化材料的表面性质和孔结 构,有助于优化空气净化材料的
性能和寿命。
水处理吸附剂
比表面积及孔径分析可以提供水 处理吸附剂的表面特性和孔结构 信息,有助于优化吸附剂的制备
方法和性能。
土壤修复材料
通过比表面积及孔径分析,了解 土壤修复材料的表面性质和孔结 构,有助于提高土壤修复的效果
在材料科学中的应用
催化剂研究
通过比表面积及孔径分析,了解 催化剂的表面性质和孔结构,从 而优化催化剂的制备方法和性能。
ቤተ መጻሕፍቲ ባይዱ
纳米材料表征
比表面积及孔径分析可以提供纳米 材料的表面特性和孔结构信息,有 助于研究纳米材料的物理和化学性 质。
复合材料界面研究
通过比表面积及孔径分析,了解复 合材料界面层的结构和性质,有助 于优化复合材料的性能。
和持久性。
05
实验操作流程及注意事项
实验操作流程
样品装填
将样品填充到比表面积及孔径 分析仪的测量腔内。
开始测量
启动仪器,进行吸附-脱附等 温线测量。
样品准备
选择合适的样品,进行研磨、 干燥等预处理。
实验设置
根据样品特性,设置仪器参数, 如吸附气体、温度、压力等。
数据处理
收集实验数据,进行数据分析, 计算比表面积、孔径分布等参 数。
在能源领域的应用
燃料电池
比表面积及孔径分析可用于研究燃料 电池电极材料的表面性质和孔结构, 以提高燃料电池的效率和稳定性。
储氢材料
太阳能电池
比表面积及孔径分析可以提供太阳能 电池材料的表面性质和孔结构信息, 有助于提高太阳能电池的光电转换效 率和长期稳定性。
氮吸附教程
P
1 C−1 P
=+ •
V ( P0 − P) CVm CVm P0
式中,C — 常数 此即一般形式的BET等温方程。因为实验的目的是要求出C和Vm,故 又称为BET二常数公式。 (2) BET 比表面积 实验测定固体的吸附等温线,可以得到一系列不同压力P下的吸附 量值V,将P/V(P0-P)对P/P0作图,为一直线,截距为 1/ VmC,斜率为
然在粒径小、填充密度大时形成小孔,但一般都是形成大孔。分子能从
外部进入的孔叫做开孔(open pore),分子不能从外部进入的孔叫做闭孔
(closed pore)。
单位质量的孔容积叫做物质的孔容积或孔隙率(porosity)
3. 吸附平衡 固体表面上的气体浓度由于吸附而增加时,称吸附过程
(adsorption);反之,当气体在固体表面上的浓度减少时,则为脱附 过程(desorption)。
吸附等温线有以下六种(图 1)。前五种已有指定的类型编号,而第 六种是近年补充的。吸附等温线的形状直接与孔的大小、多少有关。
2
北京大学化学学院中级仪器实验室
比表面孔分布仪操作手册
图 1 吸附等温线的基本类型
Ⅰ型等温线:Langmuir 等温线 相应于朗格缪单层可逆吸附过程,是窄孔进行吸附,而对于微孔来说,可以 说是体积充填的结果。样品的外表面积比孔内表面积小很多,吸附容量受孔 体积控制。平台转折点对应吸附剂的小孔完全被凝聚液充满。微孔硅胶、沸 石、炭分子筛等,出现这类等温线。 这类等温线在接近饱和蒸气压时,由于微粒之间存在缝隙,会发生类似于大 孔的吸附,等温线会迅速上升。
P/V = P/ Vm + 1/BVm
以P/V~P作图,为一直线,根据斜率和截距,可以求出B和Vm 值(斜
相对压力点的设定对比表面积和孔隙分布测量值的影响
相对压力点的设定对比表面积和孔隙分布测量值的影响林雄萍;袁嘉隆;梁杰;何泰愚;郑捷庆【摘要】利用美国康塔Autosorb-1MP分析仪,对果壳活性炭的比表面积和孔隙分布进行了表征.为简化等温吸附脱附线上的数据采集点、减少实验成本和缩短测试时间、提高实验效率,对单点BET法、多点BET法和BJH法的基本理论模型和测试结果两方面进行了对比分析,从测试方法的基理上探究数据采集点的分布和数量对实验结果的影响,得到了简化实验数据点前后最小相对误差下相对压力值的变化规律.结果表明:对于比表面积的测定,取5个分析点时BET直线拟合效果较好,相对压力p/p0为0.20附近时,单点和多点比表面积的相对误差在5%左右,且多点比表面积大于单点比表面积;而对于孔隙分布的分析,当以相对压力小于滞后环始点处p/p0的测试点为BJH脱附分析线的终止点时,对其孔比表面积、孔容和最优孔径的测试值无影响.【期刊名称】《实验技术与管理》【年(卷),期】2014(031)009【总页数】4页(P55-58)【关键词】活性炭;比表面积;孔隙分布;多点BET方法;BJH方法【作者】林雄萍;袁嘉隆;梁杰;何泰愚;郑捷庆【作者单位】集美大学诚毅学院,福建厦门 361021;集美大学福建省清洁燃烧与能源高效利用工程技术研究中心,福建厦门 361021;集美大学福建省清洁燃烧与能源高效利用工程技术研究中心,福建厦门 361021;集美大学福建省清洁燃烧与能源高效利用工程技术研究中心,福建厦门 361021;集美大学福建省清洁燃烧与能源高效利用工程技术研究中心,福建厦门 361021;集美大学福建省清洁燃烧与能源高效利用工程技术研究中心,福建厦门 361021【正文语种】中文【中图分类】TQ424.1活性炭的比表面积和孔隙分布直接影响其吸附效率、催化性能等,目前多点BET法和BJH法是公认的测试颗粒比表面积和孔隙分布的方法[1-4]。
随着我国经济的高速发展,对颗粒比表面积和空隙分布数据的需求日益增大,但一套完整的中孔颗粒孔径分布表征实验包含的数据采集点多达40个左右[5-7]。
比表面积及孔径分析简介
粉粒等;
有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)
棉、硅藻土等。
不同固体物质比表面积差别很大, 通常用作吸附剂、脱水剂和催化
剂的固体物质比表面积较大。
比如氧化铝比表面通常在100-400㎡/g,分子筛300-2000㎡/g, 活
性碳可达1000㎡/g以上。
精品文档
2
把边长为1cm的立方体逐渐分割成小立方体的情况:
精品文档
12
吸附平衡(adsorption equilibrium):吸附速率与脱附速率相等时,
表面上吸附的气体量维持不变。
吸附量(amount adsorbate):给定压力P下的吸附气体摩尔数。 单层吸附量(monolayer amount):在吸附剂表面形成单分子层的吸附质
摩尔数
单层吸附容量(monolayer capacity):单层吸附量的等效标准状态气
储能型电池 储能材料的比表面积影响电池的性能
白炭黑 比表面积衡量炭黑补强剂性能的好坏
精品文档
4
1.2 孔的定义
---- ISO15901
固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹 坑直径就成为孔。 不同的孔(微孔、介孔和大孔)可视作固体内的孔、通道或空腔, 或者是形成床层、压制体以及团聚体的固体颗粒间的空间(如裂 缝或空隙)。
σ: 每个氮分子的横截面积(0.162 nm2)关键是求出Vm
W: 样品的重量(g)
精品文档
29
3.2 吸附等温方程
吸附现象的描述除了用等温线表示之外,还可以用数学方 程来描述。
描述吸附现象比较重要的数学方程有:
➢ 单分子层吸附理论•Langmuir方程(Ⅰ型等温线) ➢ 多分子层吸附理论•BET方程(Ⅱ型和Ⅲ型等温线) ➢ 毛细孔凝聚理论•Kelvin方程(Ⅳ和Ⅴ型等温线) ➢ 微孔填充理论•DR方程(Ⅰ型等温线) ➢ Ⅵ类等温线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由模型基本假定:
q2=q3=···=qi···=q(吸附质的液化热) a2/d2=a3/d3= ···=g
V
V0 i
0
iSi
V0为单位催化剂面积吸附单层分子
气体的体积
2020/5/8
7
S
i
0
Si
V
V0 i
0
iSi
Vm=V0S Vm单层饱和吸附量
借助两个数学公式
xi
x
i 1
1 x
ixi i 1
2020/5/8
6
BET等温吸附方程推导
S0 S1 S0
S3 S2 S1
S0, S1,S2···Si ···分别为覆盖第0、1、
2、 ···、i ···层暴露的表面积。平
S0
S1 S2
S1 S0
衡时,各层面积的增加和减少相 等,各S均为定值。
对第0层,Rads=Rdes a1PS0=d1S1exp(-q1/RT)
x (1 x
)2
X<1
V Vm
i Si
i
0
Si
i 0
Si=CxiS0
CS0 ixi
V
i 1
Vm
S0(1 C xi )
i 1
V
Cx
Vm ( 1 x )( 1 x Cx )
X=1时,V=∞;而当P=P0时,将发生 凝聚,V=∞。因此,x=P/P0
P
1 C 1 P
V ( P0 P ) CVm CVm P0
➢按BET公式计算比表面时,C值 最好在50到300之间。
➢77K时大多数固体上N2的吸附就是如此。
不同C值时BET方程的曲线形状
2020/5/8
Si=xSi-1=xi-1yS0 令C=y/x
使S1增加
使S1减小
Si=CxiS0
联立以上两式 a2PS1=d2S2exp(-q2/RT)
若催化剂的总面积为S,则
同理,对i-1层, ··· ··· ···
S Si
aiPSi-1=diSiexp(-qi/RT) Si=aiP/diexp(qi/RT)Si-1若令吸附i气体的0总体积为V,则
BET模型假定: (1)吸附表面在能量上是均匀的,即各吸附位具有相同能量; (2)被吸附分子间的作用力可略去不计; (3)固体吸附剂对吸附质——气体的吸附可以是多层的,第一层未饱和吸附
时就可有第二层、第三层等开始吸附,因此各吸附层之间存在着动态平衡; (4)自第二层开始至第n层(n→∞),各层的吸附热都等于吸附质的液化热。
2020/5/8
9
C值对BET方程的影响
P
1 C 1 P
V ( P0 P ) CVm CVm P0
C y/x a1/d1exp(q 1/RT) a i /d i exp(q/RT)
➢随C值的增加,曲线在V/Vm=1处的弯 曲越来越接近直角。
➢但 另 一 方 面 , 使 得 第 一 层 吸 附 分 子 在 表面上的排列和正常液体中的情形偏离 甚远。
2020/5/8
8
三、比表面积的计算
每克固体吸附剂(包括催化剂)的总表面积为比表面(积),以符号Sg表尔。
P
1 C 1 P
V ( P0 P ) CVm CVm P0
180 B
160
Adsorption desorption
Volume adsorbed(cm3/g)
140
Vm单分子层饱和吸附量 NA =6.02 ×1023 Am吸附分子在吸附剂上占据的表面积
rs -单位表面上的反应速率 Sg-催化剂的比表面积 f-催化剂内表面利用率
硅酸铝表面积与二甲基丁烷 转化率的影响
固体催化剂的比表面积包括内表面和外表面。
固体催化剂的比表面积和孔结构是表征其催化性能的重要参数,二者 都可以由物理吸附来测定。
2020/5/8
3
二、物理吸附理论简单介绍
1) 吸附现象及其描述
f (T , P)
P=常数,α=f(T) 称为吸附等压线 T=常数, α=f(P) 称为吸附等温线 α=常数,P= f(T) 称为吸附等量线
f (P / P0 )
V f (P / P0 )
Ⅰ型等温线 Ⅱ型等温线 Ⅲ型等温线 Ⅳ型等温线 Ⅴ型等温线 Ⅵ型等温线
单分子层可逆吸附 无孔或大孔固体多分子层吸附过程 水蒸气在活性炭上的吸附 中孔固体普遍出现的吸附行为 很少见,并且很难理解 均匀固体表面的等温吸附线
P为平衡压力, q1为第一 层的吸附热,a,d为常数
令y= a1P/d1exp(-q1/RT)=S1/S0 x=aiP/diexp(-q/RT)=Si/Si-1
S1=yS0; S2=xS1=xyS0; S3=xS2=x2yS0
同样,对第一层,平衡关系可表示为:
··· ··· ···
a1PS0+ d2S2exp(-q2/RT) =d1S1exp(-q1/RT)+ a2PS1
等温吸附线的Brunauer分类
2020/5/8
4
2) 吸附等温方程
➢单分子层吸附方程(兰格缪尔等温方程)
模型的基本假定是: (1)吸附表面在能量上是均匀的,即各吸
附位具有相同能量; (2)被吸附分子间的作用力可略去不计, (3)属单层吸附,且每个吸附位只能吸附
一个质点, (4)吸附是可逆的。
P P Kd 1 V Vm K a Vm
120 100
80
Vm=1/(斜率+截距)
60
a
40
b
Sg= Vm/22414×NA × Am ×10-18
20
c
若以氮气为吸附质,则Am=0.162nm2
0 0.0
0.2
0.4
0.6
0.8
1.0
Sg= 4.353Vm m2/g
Relative pressure / P/P 0
实验结果表明,多数催化剂的吸附实验数据用BET作图时的直线范围一般 是在P/P0 0.05-0.35
催化剂比表面积及孔结构 BET surface Area and Pore Distribution
2020/5/8
1
基本内容 ➢催化剂的宏观结构 ➢物理吸附理论 ➢比表面积计算 ➢孔容和孔径分布计算
2020/5/8
2
一、催化剂的宏观结构
催化剂的宏观结构影响催化剂活性、选 择性、强度和寿命
R=rsSgf
2020/5/8
θ为覆盖度 1-θ为表面空位 若一分子占据一个吸附位上 A + * = A* 吸附速率=KaP (1- θ) 脱附速度=Kdθ
达到平衡时, KaP (1- θ) =Kdθ θ = KaP/(KaP+ Kd) θ =V/Vm
5
➢多分子层等温吸附方程(BET)
Brunauer、Emmett和Teller提出Байду номын сангаас多分子层吸附模型,并且建立了相应的 吸附等温方程,通常称为BET方程。