公式

合集下载

公式大全

公式大全

三角形的面积=底×高÷2。

公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

初中数学全套公式大全

初中数学全套公式大全

初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。

数学的全部公式

数学的全部公式

数学的全部公式数学是一门自然科学,其研究对象是数量、结构、变化等数学概念和数学对象。

数学中有许多公式,这些公式可以帮助我们解决各种数学问题。

本文将介绍数学中的全部公式,包括代数、几何、微积分、概率等各个方面。

一、代数公式1. 二次方程公式:对于二次方程ax+bx+c=0,其解为x=[-b±√(b-4ac)]/2a。

2. 因式分解公式:对于多项式a-b,其可以因式分解为(a+b)(a-b)。

3. 平方差公式:对于(a+b),其可以展开为a+2ab+b。

4. 一次方程公式:对于一次方程ax+b=c,其解为x=(c-b)/a。

5. 乘法公式:对于两个数a和b,其乘积可以表示为(a+b)=a+2ab+b和(a-b)=a-2ab+b。

二、几何公式1. 三角形面积公式:对于三角形,其面积可以表示为S=1/2bh,其中b为底边长,h为高。

2. 圆周长公式:对于半径为r的圆,其周长可以表示为C=2πr,其中π为圆周率。

3. 球体积公式:对于半径为r的球体,其体积可以表示为V=4/3πr。

4. 直角三角形勾股定理:对于直角三角形,其直角边长分别为a和b,斜边长为c,有a+b=c。

5. 正弦定理:对于任意三角形ABC,其三条边分别为a、b、c,对应的角分别为A、B、C,则有a/sinA=b/sinB=c/sinC。

三、微积分公式1. 导数公式:对于函数f(x),其导数可以表示为f'(x)=lim(h →0)(f(x+h)-f(x))/h。

2. 积分公式:对于函数f(x),其积分可以表示为∫f(x)dx=F(x)+C,其中C为常数。

3. 洛必达法则:对于函数f(x)/g(x),如果在x=a处f(x)和g(x)的导数都存在且g'(a)≠0,则有lim(x→a)(f(x)/g(x))=lim(x→a)(f'(x)/g'(x))。

4. 牛顿-莱布尼茨公式:对于函数f(x),其在区间[a,b]上的定积分可以表示为∫a~bf(x)dx=F(b)-F(a),其中F(x)为f(x)的一个原函数。

数学全部的公式

数学全部的公式

数学公式全部有哪些?常用的数学公式:1、长方形面积=长×宽,计算公式S=ab。

2、正方形面积=边长×边长,计算公式S=a×a=a2。

3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2。

4、正方形周长=边长×4,计算公式C=4a。

5、平行四边形面积=底×高,计算公式S=ah。

6、三角形面积=底×高÷2,计算公式S=a×h÷2。

7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2。

8、长方体体积=长×宽×高,计算公式V=abh。

9、圆的面积=圆周率×半径平方,计算公式V=πr2。

10、正方体体积=棱长×棱长×棱长,计算公式V=a3。

11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh。

12、圆柱的体积=底面积×高,计算公式V=sh。

13、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。

14、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。

15、速度×时间=路程路程÷速度=时间路程÷时间=速度。

16、单价×数量=总价总价÷单价=数量总价÷数量=单价。

17、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。

18、加数+加数=和和-一个加数=另一个加数。

19、被减数-减数=差被减数-差=减数差+减数=被减数。

20、因数×因数=积积÷一个因数=另一个因数。

21、被除数÷除数=商被除数÷商=除数商×除数=被除数。

计算公式大全

计算公式大全

计算公式大全在数学领域中,计算公式是一种非常重要的工具,它们可以帮助我们解决各种复杂的问题,简化计算过程,提高工作效率。

本文将为大家整理一些常见的计算公式,希望能够对大家的学习和工作有所帮助。

一、基本运算公式。

1. 加法公式,a + b = b + a。

2. 减法公式,a b ≠ b a。

3. 乘法公式,a × b = b × a。

4. 除法公式,a ÷ b ≠ b ÷ a。

二、代数运算公式。

1. 平方公式,(a + b)² = a² + 2ab + b²。

2. 平方差公式,a² b² = (a + b)(a b)。

3. 三角形面积公式,S = 1/2 ×底×高。

4. 二次方程求根公式,x = (-b ±√(b² 4ac)) / 2a。

三、几何运算公式。

1. 圆的面积公式,S = πr²。

2. 圆的周长公式,C = 2πr。

3. 矩形的面积公式,S = 长×宽。

4. 三角形的面积公式,S = 1/2 ×底×高。

四、概率统计公式。

1. 概率公式,P(A) = n(A) / n(S)。

2. 期望公式,E(X) = Σ(x p(x))。

3. 方差公式,Var(X) = E(X²) (E(X))²。

4. 标准差公式,σ = √Var(X)。

五、微积分公式。

1. 导数公式,f'(x) = lim(h→0)[f(x + h) f(x)] / h。

2. 积分公式,∫f(x)dx = F(x) + C。

3. 泰勒展开公式,f(x) = f(a) + f'(a)(x a) + f''(a)(x a)²/2! + ...六、物理学公式。

1. 力的计算公式,F = m a。

2. 功的计算公式,W = F s cosθ。

数学所有的公式大全

数学所有的公式大全

数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。

2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。

3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。

4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。

6. 三角形面积公式:面积S=底×高÷2。

7. 圆柱体体积公式:体积V=底面积S×高h。

8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。

9. 圆周长公式:周长C=2πr(其中r是半径)。

10. 圆面积公式:面积S=πr^2(其中r是半径)。

11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。

12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。

13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。

14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。

15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。

以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。

计算公式大全

计算公式大全

计算公式大全在数学中,我们经常会遇到各种各样的计算公式,它们可以帮助我们解决各种问题,简化复杂的计算过程。

本文将为大家介绍一些常见的计算公式,希望能够对大家有所帮助。

一、代数公式。

1. 一次函数的一般式,y=ax+b。

其中,a为斜率,b为截距。

2. 二次函数的一般式,y=ax^2+bx+c。

其中,a、b、c为常数,且a≠0。

3. 二次方程的求根公式,x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}。

对于二次方程ax^2+bx+c=0,其根可以通过这个公式求得。

4. 两点间距离公式,d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}。

对于平面直角坐标系中的两点A(x1, y1)和B(x2, y2),它们之间的距离可以通过这个公式计算得出。

5. 等差数列通项公式,a_n=a_1+(n-1)d。

对于等差数列1, 3, 5, 7, ...,其中a1为首项,d为公差,a_n为第n项。

二、几何公式。

1. 矩形面积公式,S=a\times b。

其中,a为矩形的长,b为矩形的宽。

2. 圆的面积公式,S=\pi r^2。

其中,r为圆的半径,π为圆周率。

3. 圆的周长公式,C=2\pi r。

对于圆来说,周长就是圆的边界长度。

4. 直角三角形斜边长公式,c=\sqrt{a^2+b^2}。

对于直角三角形,斜边的长度可以通过直角边的平方和开平方得到。

5. 三角形面积公式,S=\frac{1}{2}bh。

对于任意三角形,其面积可以通过底边和高的乘积再除以2得到。

三、微积分公式。

1. 导数的定义,f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}。

这是函数在某一点的导数的定义式。

2. 不定积分的线性性质,\int[af(x)+bg(x)]dx=a\int f(x)dx+b\int g(x)dx。

对于不定积分,具有线性性质,可以将常数提取出来。

数学计算公式表大全

数学计算公式表大全

数学计算公式表大全一、小学数学计算公式。

1. 加法交换律。

- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。

- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。

- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。

- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。

- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。

- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。

- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。

- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。

9. 长方形的面积公式。

- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。

10. 正方形的周长公式。

- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。

11. 正方形的面积公式。

- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。

数学母题36个公式

数学母题36个公式

数学母题36个公式1. 乘法公式:两个实数的乘积等于其中一个实数与另一个实数乘以实数的符号:a * b = ab。

2. 除法公式:两个实数的商等于其中一个实数除以另一个实数的倒数:a / b = a * (1/b)。

3. 平方公式:一个实数的平方等于该实数与自身的乘积:a^2 = a * a。

4. 平方根公式:一个实数的平方根等于满足平方等于该实数的非负实数:√a = b,其中b满足b^2 = a。

5. 对数公式:一个数的对数等于以指定底数为底的幂等于该数:log_a(b) = x,其中a^x = b。

6. 三角函数的和差公式:正弦函数的和差公式为:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)。

余弦函数的和差公式为:cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)。

正切函数的和差公式为:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓tan(a)tan(b))。

7. 三角函数的倍角公式:正弦函数的倍角公式为:sin(2a) = 2sin(a)cos(a)。

余弦函数的倍角公式为:cos(2a) = cos^2(a) - sin^2(a) =2cos^2(a) - 1 = 1 - 2sin^2(a)。

正切函数的倍角公式为:tan(2a) = (2tan(a)) / (1 - tan^2(a))。

8. 三角函数的半角公式:正弦函数的半角公式为:sin(a/2) = ±√[(1 - cos(a)) / 2]。

余弦函数的半角公式为:cos(a/2) = ±√[(1 + cos(a)) / 2]。

正切函数的半角公式为:tan(a/2) = ±√[(1 - cos(a)) / (1 + cos(a))]。

9. 欧拉公式:欧拉公式是数学中一条重要的等式,表示以e为底的指数函数e^ix可以表达为余弦函数cos(x)与正弦函数sin(x)的和:e^ix = cos(x) + isin(x)。

十大著名数学公式

十大著名数学公式

十大著名的数学公式
以下是十大著名的数学公式:
1 欧拉公式:e^(iπ) + 1 = 0。

这个公式将五个重要的数学常数联系在一起:自然对数的底e、虚数单位i、圆周率π、单位元素1 和零0。

2 皮亚诺公理:这是数学基础理论的公理系统,用于推导整数的性质和运算规则。

3 傅里叶变换:这个公式将一个函数在频域和时域之间进行转换,可以将一个信号分解成一系列不同频率的正弦和余弦分量。

4 黎曼猜想:由黎曼提出的一个关于素数分布的猜想,尚未被证明或者推翻。

5 二项式定理:(a + b)^n = C(n,0)a^nb^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)a^0b^n。

这个公式展示了如何展开一个二项式的幂。

6费马大定理:由费马提出的一个关于整数解存在性的问题,直到近几年才被安德鲁·怀尔斯证明。

7斯特林公式:这个公式给出了n 的阶乘的近似值,以及对数函数在正实数范围内的近似值。

8黑-斯科尔定理:这个公式用于计算曲线围成的面积,推广了基本的微积分概念。

9导数定义:f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

这个公式给出了函数的导数定义,描述了函数在某一点的变化率。

10 矩阵乘法规则:矩阵乘法的公式,使得矩阵代数成为现代数学和应用中至关重要的工具。

这些公式在数学领域有着广泛的应用,对于数学研究和实际问题的解决起到了重要的作用。

数学公式表(完整版)

数学公式表(完整版)

数学公式表(完整版)1. 数学基础公式1.1 代数公式- 平均值公式:$\frac{{x_1 + x_2 + \cdots + x_n}}{n}$- 二次方程求解公式:$x = \frac{{-b \pm \sqrt{b^2 - 4ac}}}{2a}$ - 因式分解公式:$a^2 - b^2 = (a-b)(a+b)$1.2 几何公式- 长方形面积公式:$A = l \times w$- 圆周长公式:$C = 2\pi r$- 三角形面积公式:$A = \frac{1}{2}bh$2. 微积分公式2.1 函数与导数- 函数$f(x)$在$x=c$处的导数:$f'(c) = \lim_{{h \to 0}}\frac{{f(c+h) - f(c)}}{h}$- 求导法则:- 导数的和:$(f+g)' = f' + g'$- 导数的积:$(fg)' = f'g + fg'$- 导数的商:$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$2.2 微分与积分- 定积分:$\int_a^b f(x) dx$- 常见定积分公式:- $\int k \, dx = kx + C$- $\int x^n \, dx = \frac{{x^{n+1}}}{n+1} + C$- $\int e^x \, dx = e^x + C$- $\int \sin x \, dx = -\cos x + C$- $\int \cos x \, dx = \sin x + C$3. 概率与统计公式3.1 概率公式- 排列公式:$P(n,r) = \frac{{n!}}{{(n-r)!}}$- 组合公式:$C(n,r) = \frac{{n!}}{{r!(n-r)!}}$- 条件概率公式:$P(A|B) = \frac{{P(A \cap B)}}{{P(B)}}$3.2 统计公式- 平均值公式:$\bar{x} = \frac{{x_1 + x_2 + \cdots + x_n}}{n}$ - 方差公式:$Var(X) = \frac{{\sum{{(x_i - \bar{x})^2}}}}{n}$ - 标准差公式:$SD(X) = \sqrt{Var(X)}$这份完整版的数学公式表包含了数学基础、微积分和概率统计方面的常用公式,希望能对您的学习和应用有所帮助。

数学公式大全

数学公式大全

数学公式大全数学公式是数学中重要的概念和工具,用于描述和解决各种数学问题。

下面是数学公式的大全,包括代数、几何、概率与统计、微积分等方面的公式。

一、代数公式1. 二次方程的求根公式:对于一般的二次方程ax²+bx+c=0,其解可以通过求根公式计算:x=(-b±√(b²-4ac))/(2a)2. 四则运算法则:加法:a+b=b+a乘法:a*b=b*a减法:a-b=-(b-a)除法:a/b=1/(b/a)3. 指数与对数的关系:指数和对数是互为反函数的,即:a^loga(x)=xloga(a^x)=x二、几何公式1. 三角形的面积:对于已知底和高的三角形,其面积可以计算为:A=1/2 * 底 * 高2. 圆的面积和周长:圆的面积可以计算为:A=πr²圆的周长可以计算为:C=2πr3. 直角三角形的勾股定理:直角三角形的三边满足勾股定理:a²+b²=c²三、概率与统计公式1. 期望值的计算公式:对于一个离散型随机变量X,其期望值可以计算为:E(X)=∑(xP(X=x)),即各个取值x乘以相应的概率的加和2. 标准差的计算公式:标准差是描述变量离散程度的指标,可以计算为:σ=√(∑((x-μ)²P(X=x))),其中μ为随机变量X的期望值四、微积分公式1. 导数的定义:导数是函数在某一点处切线的斜率,可以定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h2. 求导法则:常见函数的求导法则包括:常数函数导数为0幂函数求导为幂次减1乘以导数指数函数求导为指数乘以导数对数函数求导为倒数乘以导数三角函数求导可以利用导数的定义累加求导数公式等以上是数学公式的部分内容,其中涵盖了代数、几何、概率与统计、微积分等方面的公式。

数学公式在数学领域中具有重要的应用价值和意义,可以帮助我们描述、分析和解决各种数学问题。

各种计算公式大全

各种计算公式大全

各种计算公式大全以下是一些常见的计算公式,涵盖了不同领域的数学、物理和化学等方面。

这里提供一些基础的公式,但请注意,具体的应用可能需要根据具体情况进行调整。

数学公式:1. 两点之间的距离:d = √((x2 - x1)² + (y2 - y1)²)2. 面积(矩形):A = 长×宽3. 圆的面积:A = πr²4. 三角形的面积:A = 0.5 ×底边长×高5. 直线方程:y = mx + c物理公式:1. 力的计算:F = m × a2. 动能:E = 0.5 × m × v²3. 能量:E = m × g × h4. 速度:v = s / t5. 加速度:a = (v - u) / t化学公式:1. 摩尔质量:M = m / n2. 摩尔浓度:C = n / V3. 反应物摩尔比:aA + bB → cC + dD摩尔比 = A:B:C:D = a/b:c/d4. 理想气体状态方程:PV = nRT5. 燃烧反应热量计算:q = m ×ΔH金融与经济学:1. 复利计算:A = P(1 + r/n)^(nt)2. 投资回报率:ROI = (收益 - 成本) / 成本3. 名义利率和实际利率之间的关系:r实际 = (1 + r名义) / (1 + 通货膨胀率) - 14. GDP增长率:增长率 = (当前GDP - 前期GDP) / 前期GDP统计学:1. 平均值:μ = (x1 + x2 + ... + xn) / n2. 方差:σ² = Σ(xi - μ)² / n3. 标准差:σ = √(Σ(xi - μ)² / n)4. 正态分布概率密度函数:f(x) = (1 / (σ√(2π))) * e^(-(x-μ)²/(2σ²)) 计算机科学:1. 时间复杂度:O(n),O(log n),O(n²)等2. 数据存储单位换算:1 KB = 1024 Bytes,1 MB = 1024 KB,1 GB = 1024 MB3. IP地址转换:将IP地址从十进制转为二进制或十六进制形式工程学:1. 电阻器电阻计算:R = V / I2. 电流计算:I = V / R3. 电功率计算:P = VI4. 斜坡上物体的下滑加速度:a = gsinθ这些是各个领域中常见的计算公式的一部分,但每个领域都有更多的专业公式和方程。

数学总结—公式大全

数学总结—公式大全

数学总结—公式大全1.代数方面的公式1.1 一次方程:ax + b = 0,其中a≠0。

1.2 二次方程:ax² + bx + c = 0,其中a≠0。

1.3 一元二次不等式:ax² + bx + c > 0或ax² + bx + c < 0。

1.4勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边,c 为斜边。

1.5 二项式定理:(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... +C(n,n-1)abⁿ⁻¹ + C(n,n)bⁿ,其中C(n,k)表示组合数。

1.6四则运算规则:加法:a+b=b+a,乘法:a×b=b×a。

2.几何方面的公式2.1 三角形面积公式:S = 1/2bh,其中S表示三角形的面积,b表示底边的长度,h表示高。

2.2直角三角形三边关系:a²+b²=c²,其中a、b为直角三角形的两条直角边,c为斜边。

2.3 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的内角,R为三角形外接圆的半径。

2.4 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的内角。

2.5 面积公式:三角形面积S = 1/2absinC,其中a、b为三角形的两条边,C为对应的夹角。

2.6弧长公式:L=rθ,其中L表示弧长,r表示弧的半径,θ表示圆心角的度数。

3.微积分方面的公式3.1 导数定义:f'(x) = lim (f(x + h) - f(x))/h,其中f'(x)表示函数f(x)在x处的导数。

3.2导数的基本运算法则:常数法则、乘法法则、除法法则、链式法则等。

3.3反函数导数:(f⁻¹)'(y)=1/f'(x),其中f⁻¹表示f的反函数。

数学公式大全

数学公式大全

数学公式大全1.代数运算法则- 交换律:a + b = b + a, ab = ba- 结合律:(a + b) + c = a + (b + c), (ab)c = a(bc)- 分配律:a(b + c) = ab + ac- 幂运算:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^n =a^n * b^n2.一次方程- 一次方程的一般形式:ax + b = 0, 其中a和b为常数,x为未知数-一次方程解的唯一性:如果a不等于零,则方程有唯一的解x=-b/a3.二次方程- 二次方程的一般形式:ax^2 + bx + c = 0, 其中a、b和c为常数,a不等于零,x为未知数- 二次方程的求解公式:x = (-b ± √(b^2 - 4ac)) / 2a4.三角函数- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边- 余切函数的定义:cotθ = 邻边/对边- 正割函数的定义:secθ = 斜边/邻边- 余割函数的定义:cscθ = 斜边/对边5.三角恒等式- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 三角和差公式:sin(A ± B) = sinAcosB ± cosAsinB, cos(A ± B) = cosAcosB ∓ sinAsinB- 两角和差公式:cos(A - B) = cosAcosB + sinAsinB, cos(A + B) = cosAcosB - sinAsinB6.指数与对数函数- 指数函数的性质:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^m = a^m * b^m- 对数函数的性质:log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m), log_a(1) = 0, log_a(a) = 17.概率-加法原理:对于两个互斥事件A和B,P(A∪B)=P(A)+P(B)-乘法原理:对于两个相互独立的事件A和B,P(A∩B)=P(A)*P(B)-条件概率:P(A,B)=P(A∩B)/P(B)-全概率公式:P(A)=P(A,B)*P(B)+P(A,C)*P(C)+...-贝叶斯定理:P(B,A)=P(A,B)*P(B)/P(A)8.微积分-连续与导数:f(x)在[x,x+h]范围内连续,则f(x)在x处可导- 导数的定义:f'(x) = lim(h→0)(f(x+h) - f(x))/h-链式法则:(f(g(x)))'=f'(g(x))*g'(x)9.矩阵-矩阵乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,则AB是一个m行p列的矩阵-矩阵转置:矩阵A的转置记作A^T,其中A^T的第i行第j列的元素是A的第j行第i列的元素-行列式:行列式代表了方阵的一些性质,如行列式为零表示矩阵不可逆。

数学公式大全【完整版】

数学公式大全【完整版】

数学公式大全【完整版】在数学中,公式是用来描述数学关系和规律的一种符号形式。

无论是初中数学还是高中数学,数学公式都是学习的重点和难点之一。

本文将为大家呈现一个数学公式大全的完整版,覆盖了从初中到高中各个阶段的数学公式。

希望通过本文的整理,能够帮助读者更好地理解和掌握数学公式。

一、初中数学公式1. 平方和公式在初中数学中,平方和公式是一个重要的公式之一。

它的公式表达式如下:(a+b)² = a² + 2ab + b²2. 因式分解公式在解题过程中,因式分解是一个重要的技巧。

其中,二次方差公式和完全平方公式是其中两个重要的因式分解公式。

它们的表达式如下:(1) 二次方差公式:a² - b² = (a+b)(a-b)(2) 完全平方公式:a² + 2ab + b² = (a+b)²3. 一次函数公式一次函数是初中数学中最基本的函数之一,它的公式表达式如下:y = kx + b4. 三角函数公式在初中阶段,我们会接触到正弦函数、余弦函数和正切函数等三角函数。

以下为三角函数的常见公式:(1) 正弦函数:sin(x+y) = sin(x)cos(y) + cos(x)sin(y)(2) 余弦函数:cos(x+y) = cos(x)cos(y) - sin(x)sin(y)(3) 正切函数:tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)tan(y))二、高中数学公式1. 二次函数公式二次函数是高中数学中的重点内容,以下为二次函数的一些常见公式:(1) 一般式:y = ax² + bx + c(2) 根与系数关系:若ax² + bx + c = 0的根为x₁和x₂,则有x₁+x₂ = -b/a, x₁x₂ = c/a(3) 平方完成式:对于一般式y = ax² + bx + c,y = a(x -h)² + k为其标准式,其中(-h, k)为顶点坐标。

数学的所有公式

数学的所有公式

数学的所有公式数学是一门关于数量、结构、空间以及变化的学科,广泛应用于各个领域。

它以其严密的逻辑性和抽象性而闻名,而数学公式则是数学领域中最重要的工具之一。

本文将为您介绍一些数学领域中常见的公式。

一、代数公式1. 一次方程式:ax + b = 0方程的解为 x = -b/a2. 二次方程式:ax^2 + bx + c = 0根据求根公式得解 x = (-b ± √(b^2 - 4ac)) / (2a)3. 三次方程式:ax^3 + bx^2 + cx + d = 0求解此方程的方法比较复杂,可以使用牛顿法或者高斯消元法等方法。

4. 指数函数:f(x) = a^x指数函数具有以下性质:a^0 = 1,a^m * a^n = a^(m+n),(a^m)^n = a^(mn),a^(-m) = 1/a^m5. 对数函数:f(x) = loga(x)对数函数是指数函数的逆运算,具有以下性质:loga(1) = 0,loga(a) = 1,loga(xy) = loga(x) + loga(y),loga(x/y) = loga(x) - loga(y)二、几何公式1. 矩形面积公式:A = l * w其中,A表示矩形的面积,l和w分别表示矩形的长度和宽度。

2. 三角形面积公式:A = 1/2 * b * h其中,A表示三角形的面积,b表示底边的长度,h表示底边上的高度。

3. 圆的面积公式:A = πr^2其中,A表示圆的面积,r表示圆的半径,π是一个常数,约等于3.14159。

4. 球的表面积公式:S = 4πr^2其中,S表示球的表面积,r表示球的半径。

5. 球的体积公式:V = (4/3)πr^3其中,V表示球的体积,r表示球的半径。

三、微积分公式1. 导数的定义:f'(x) = lim(h→0)[f(x+h) - f(x)] / h导数表示函数在某一点的变化率,也可以理解为函数的斜率。

经典的数学公式

经典的数学公式

经典的数学公式经典的数学公式是数学领域中的重要工具,用于描述和解决各种问题。

下面列举了一些常见的数学公式,介绍其含义和应用。

一、勾股定理勾股定理是数学中最著名的公式之一,表达了直角三角形的边长关系。

公式为:a^2 + b^2 = c^2。

其中,a、b为直角三角形的两条直角边的长度,c为斜边的长度。

二、欧拉公式欧拉公式是数学分析中一个重要的公式,描述了复数的指数表示和三角函数之间的关系。

公式为:e^(iπ) + 1 = 0。

其中,e是自然对数的底数,i是虚数单位,π是圆周率。

三、费马小定理费马小定理是数论中的重要定理,用于判断一个数是否为素数。

公式为:a^(p-1) ≡ 1 (mod p)。

其中,a是整数,p是素数。

四、斐波那契数列斐波那契数列是一个经典的数列,每个数都是前两个数的和。

数列的递推公式为:F(n) = F(n-1) + F(n-2)。

其中,F(n)表示第n个斐波那契数。

五、调和级数调和级数是数学分析中的一个级数,表达了正整数的倒数之和。

级数的公式为:1 + 1/2 + 1/3 + 1/4 + ... + 1/n。

调和级数是一个发散的级数。

六、泰勒级数泰勒级数是数学分析中的一个重要工具,用于将函数表示为无穷级数的形式。

泰勒级数的公式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... 。

其中,f(x)是函数在点x处的值,a是近似点,f'(a)、f''(a)等表示函数在点a处的导数。

七、二项式定理二项式定理是代数中的一个重要定理,描述了二项式的展开形式。

二项式定理的公式为:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n)b^n。

其中,a、b为实数,n为非负整数,C(n,m)表示组合数。

八、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分中的一个重要公式,用于计算定积分。

数学公式大全 全套

数学公式大全 全套

数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。

掌握数学公式是理解和应用数学的关键。

本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。

一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进行测量。如果矿体与围岩的界线不清时,矿体厚度的测定必须根据取样结果来确定。
(2)钻孔中矿体厚度的测定
因为钻孔中所截穿的矿体均在地下深处、只能间接地去测定矿体的厚度。当钻孔是垂直
矿层钻进时,且岩心采取率为 100%,可直接丈量岩心,取得厚度的数据。若岩心采取率不
高,除用钢尺丈量岩心长度外,还要按下式进行换算:
m= L n
式中:m——矿体的厚度(米); L——实测矿心长度(米)I n——矿心采取率(%)。 当直孔钻进,且与矿层成角度截穿时,其厚度按下式计算:
m=L×cosβ
(11-12)
式中:m——矿体的真厚度(米);
L——钻孔截穿矿体的厚度(米)
β——矿体的倾角。
若斜孔钻进,且与矿层斜交时(图 11—25),其厚度计算公式如下:
∑ σ = ( Xi − X )2 /(n −1) 计算均方差
厚度、品位变化系数:
Vm 或 Vc=σ ÷ X × 100%
三、地质剖面岩石厚度计算公式:
y=sinα·cosβ·cosγ ±cosα·sinβ α--导线坡度角 β--地层倾角
γ --导线方向与地层倾向的夹角
地层倾向与坡向相反取正号,地层倾向与坡向相同取负号;
《DZ0130.3-94 地质矿产实验室测试质量管理规范》
y=C×20X-0.60
X≥ 3.08%
y= C×12.5X-0.182
X< 3.08%
A1 − A2
RD=
( A1 + A2) / 2
C=1.00 Cu 、Pb 、Sn (砂矿) 、WO3 、MO 、Sb、 Bi 、Hg 、Cd 、Fe(T) 、Fe(s) 、 BaSO4、 P、 SiO2 、Ai2O3 、CaO 、MgO;
D= P1/(V-(P2一P1)/d) D:矿石小体重; P1:干燥矿石重量;P2:封腊后矿石重量;
V:封腊矿石体积;d:腊的比重。
六、 样品误差的计算和处理
1、以检查分析为对比基数的偶然误差计算: 单个样品的绝对误差=检查分析结果-原分析结果
单个样品的相对误差=单个样品的绝对误差/检查分析结果×100 超差率=超差样品个数/检查样品个数×100
C=1.50 Zn 、Sn 、WO3 ; C=0.29 Au 、Ir、 Rh、 OS、 Ru C=0.4 Ag 、Pt、 Pd
地学中常用公式
一、平均品位的计算公式:
1、算术平均:(X1+X2-……+Xn)/n X1、X2、Xn为样品品位 2、加权平均:(Xl×Ll+X2×L2+……+ Xn×Ln)/(Ll+L2+……+Ln)
X1、X2……Xn。为样品品位,Ll+L2+……+Ln为样品长度
3、几何平均为 n X1× X 2 ×KL× Xn
四、钻孔矿体厚度的确定
真厚度=L×y
矿体的厚度是根据矿体露头上、坑道中和从钻孔中所获得的资料进行的。
(1)坑道中矿体厚度的测定 当坑道所揭露的矿体与围岩的接触界线清楚时,取样和编录时可在矿体上用钢尺直接捌
量出来。
厚度测量的次数决定于坑道的布置情况,如矿体是用穿脉坑道圈定的,则测量次数与穿
脉坑道的数量相符。如果矿体是用沿脉坑道圈定的,则厚度的测定按一定间隔在取样的位置
矿体形态 稳定程度 (Vm) 变化极小 的:5-50
变化中等: 30-80
变化很大 的 : 50 - 700
变化极大 的 : 80 - 100
矿体边界 变曲程度 (Fc) 形态简 单:<1.2
形态中 等:1.2- 1,5
形态复 杂:>1.5
有用组份 矿化均匀 程度(Vc) 矿化很均 匀:<20
工业矿 化连续 性(k) 矿变连 续:1
∑ 检查分析品位的平均值: X = X / n
∑ 原分析品位的平均值: Y = y / n
( ) ∑ 检查分析结果的均方差Байду номын сангаас σx=
X − X /n
原分析结果的均方差:
( ) σy= ∑ Y − Y / n
检查分析结果平均值的均方差:mx=σx/ n
原结果平均值的均方差:my=σy/ n
( )( ) ∑ 检查分析与原结果的相关系数: =
X1、X2、Xn为样品品位(品位为正态分
布时,处理特高品位时,可用此公式) (选取各种公式的依据:单工程矿体的样长与品位分布不均时,必须用样长来加权平均,这
样就更接近平均品位。但在矿块中,平均品位取决于样品的数量,因此采用算术平均。)
二、矿体厚度(Vm)、品位(Vc)变化系数:

X =(X1+X2+……+Xn)/n 计算矿体厚度、品位的平均值
八、勘探间距确定的方法
采用勘探网时,工程间距指工程间的水平距离。采用勘探线时,工程间距包括两部分: 一是线间距,一是线上工程见矿位置的间距。采用水平分层勘探时,工程间距包括中段高和 穿脉、天井、上山之间的距离。 1、确定工程间距的原则: (1)工程间距必须根据矿床地质构造的复杂程度来确定 (2)不能漏掉任向有开采价值的矿床 (3)保证剖面间、工程间的资料能联系对比; (4)地质条件不一致的矿体或地段,工程间距应区别对待; (5)采用坑道勘探时,坑道间距要与未来的中段高,开拓系统和矿块的间距相适应。 2、确定工程间距的方法 (1)、类比法 (2)、验证法
X − X Y −Y
( ) ( ) ∑ X − X 2 Y − Y 2
X −Y
然率系数: t=
Mx2 + My2 − 2MxMy × γ
系统误差平均值之比值: f= X / Y
当 t 值大于 2 时,说明存在系统误差,这时根据误差大小决定是否进行仲裁分析。
七、真、视倾角换算
tgβ =tgαcosγ 其中,α--真倾角,β--视倾角,γ--剖面线与倾向线之间的夹角(锐角)
m=L×COS(β-α)
(11 一 11)
m——矿体真厚度(米);
L——钻孔中矿体的视厚度(米);
β——矿体的倾角;
α——钻孔截穿矿体时的天顶角
图 11—25 钻孔垂直矿体走向、斜孔钻进时矿体厚度的计算
当钻孔截穿矿体处,钻孔倾斜方向不垂直盘矿体走向时(图 11—26), 矿体厚度按下式计算:
矿体真厚度 m= L ×(sinαsinβcosγ±cosaαcosβ) n
超差率小于 20%则认为原分析结果合格;超差率大于 20%,需对检查样品或超差样品重新 化验,如果仍然超差,则远分析结果不能利用。
原分析结果平均值=原分析结果的算术和/原分析样品数×100 检查分析结果平均值=检查分析结果的算术和/检查分析样品数×100
平均绝对误差=绝对误差的算术和/检查样品数 平均相对误差=平均绝对误差/原分析结果平均值×100% 2、系统误差检查计算: 设 n 代表检查样品数目,x 代表检查分析品位,y 代表分析品位。
以上各式中,凡是钻孔倾斜方向与矿体倾斜方向相反时,前后两项间为正号连接,否则
负号连接。
五、矿石体重
1、大体重样的测定: 一般大体重样每种类型测定 1-3 个,大体重样在坑道、探槽、浅井或采场采取,采样时 尽可能凿取规则体如立方体,应准确测量体积。一般规格不小于 0.125 立方米。公式为:
D=P/V D:大体重;P:矿石中量;V:体积。 2、小体重样每种类型测定 20-30 个,体积一般为 60-120CM3。测定的方法,在野外常 用封腊排水法,公式为:
矿体垂直厚度 M’= L ×(sinαtgβcosγ±cosα) n
水平厚度 M”= L ×(sinαcosγ±cosaαctgβ) n
(11-12) (11-13) (11-14)
L ——矿心长度,
n——矿心采取率(%)I
α——钻孔截穿矿体时的天顶角
β——矿体的倾角
γ——钻孔截穿矿体处方位角与矿体倾向的夹角。
因素分级 1 2 3 4 5
矿体大小(m)
规模巨大:长、深 ≥1000,厚度大于上 百米 规模较大:长、深 500~1000,厚度几 十米
规模中等:长、深 200~500 米,厚度 几米,十几米
规模小:长、深< 200 米。厚度几米或 不足一米
勘探难易程度地质因素分级综合表
矿体形态复杂 程度
简单类型:规则 的层状、似层 状、透镜状矿体 中等类型:不很 规则的层状、似 层状、透镜状、 脉状矿体 复杂类型:极不 规则的透镜状、 脉状、柱状、巢 状矿体
矿体产状的 稳定性
单斜,产状稳 定
矿化均匀: 微间断: 有一定褶皱、
20-40
1-0.7 断裂、产状不
太稳定
矿化不均 匀 : 40 - 100
间断的: 褶皱、断裂复 0.7-0.4 杂,产极不稳

矿化很不 均 匀 : 100 -150 矿化极不 均匀:大于
极间断 的:< 0.4
150
九、岩石矿物允许相对误差计算公式
相关文档
最新文档