刚体转动作业答案

合集下载

刚体转动习题解答

刚体转动习题解答

作业07(刚体转动1)1. 两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为A J 和B J ,则[ ]。

A. B A J J >B. B A J J <C. B A J J =答:[B ]解: 由V m =ρ,B A ρρ> ,B A m m =, B A V V <∴,B A R R <∴ 又:221mR =ρ B A J J <∴ 2. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体[ ]。

A. 必然不会转动B. 转速必然不变C. 转速必然改变D. 转速可能不变,也可能改变答:[D ]解:几个力的矢量和为零,不一定外力矩为零,因此,刚体不一定不转动。

但和外力为零,刚体不会平动。

3. 有两个力作用在一个有固定转轴的刚体上:(1). 这两个力都平行于轴作用时,它们对轴的合力矩一定是零。

(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零。

(3). 这两个力合力为零时,它们对轴的合力矩一定是零。

(4). 这两个力对轴的合力矩为零时,它们的合力一定是零。

在上述说法中是正确的是[ ]。

A. 只有(1)是正确的B. (1)(2)正确(3)(4)错误C. (1)(2)(3)都正确,(4)错误D. (1)(2)(3)(4)都正确答:[B ]解:如图所示(1)由)(a )(b )(c 可见,21//ˆ//F k F ,则它们对轴的力矩0ˆ)(111=⋅⨯=k F r L z ,0ˆ)(222=⋅⨯=k F r L z ,对轴的合力矩为零。

(1)是正确的。

(2)由)(d )(e )(f 可见,由21ˆF k F ⊥⊥,则它们对轴的力矩 0ˆ)(111=⋅⨯=k F r L z ,0ˆ)(222=⋅⨯=k F r L z ,对轴的合力矩为零; 由)(g )(i )(j 可见,21ˆF k F ⊥⊥,则它们对轴的力矩0ˆ)(111≠⋅⨯=k F r L z ,0ˆ)(222≠⋅⨯=k F r L z ,但如果21F F =,对轴的合力矩021=+z z L L 由)(h 可见,21ˆF k F ⊥⊥,则它们对轴的力矩 0ˆ)(111≠⋅⨯=k F r L z ,0ˆ)(222≠⋅⨯=k F r L z ,对轴的合力矩不为零。

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

刚体的定轴转动习题解答

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

第六章 刚体转动自测题答案

第六章   刚体转动自测题答案

第六章 刚体转动自测题答案一、选择题答案 1、(C ) 2、(B ) 3、(B ) 4、(C ) 5、(C ) 6、(D ) 7.(B ) 8、(B) 9、(D ) 10、(A ) 11、(C ) 12、(B) 13、(B) 14、(C ) 15、(A) 16、(C) 17、(C) 18、(D ) 19、(C) 20、(D) 21、(C)二、填空题答案1、1 ;2、3 ;3、变化 ;4、合外力矩 ;5、合外力矩 ;6、mL 2/12;7、mL 2/3 ;8、mr 2/2; 9、ω2; 10、不变 ; 11、0; 12、3g/2l ; 13、0 ;14、mgl/2 ; 15、ml 2ω/3 。

三、计算题1.一半径为 0.3m 的转轮作匀角加速度转动,其初角速度ω0=0.5π rad·s -1,在t =10 s 时,其角速度ω=6.5π rad·s -1,求:(1)在t =10 s 时,转轮转过的角度;(2) t =10 s 时,转轮边沿点的切向速度、切向加速度和法向加速度各为多少? 解:(1)由于转轮做匀角加速度转动,因此根据公式有t βωω+=0 (2分)20021t t βωθθ++= (2分)可得到t =10 s 时转轮转过的角度为0θθθ-=∆=35πrad 。

(2分) (2)切向速度的大小为πω95.1==r v m/s (2分)切向加速度为πβτ18.0===r dtdv a m/s 2 (2分)法向加速度2227.12πω===r rv a n m/s 2 (2分) 2.如图所示,一根长为l 、质量为m 的均匀细直棒可绕其一端在竖直面内自由转动,开始时棒处于水平位置,求棒转到与水平线成角度θ 时的角加速度和角速度。

(细棒对转轴的转动惯量为231ml J =)解:棒所受合外力矩 θcos 21mgl M = (3分)由转动定律得角加速度图l g ml mgl J M 2cos 331cos 212θθβ=== (3分) 因为 θωωθθωωβd d dt d d d dt d === (2分) 所以 ⎰⎰=θωθθωω002cos 3d l g d (3分)lg θωsin 3=(1分)3.如图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下。

刚体的定轴转动(带答案)【范本模板】

刚体的定轴转动(带答案)【范本模板】

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小.(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3。

(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变。

(B)它受热时角速度变大,遇冷时角速度变小。

(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大。

4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A)不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A)βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ](A )刚体不受外力矩的作用。

(B)刚体所受合外力矩为零。

05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

大学物理AⅠ刚体定轴转动习题答案及解法

大学物理AⅠ刚体定轴转动习题答案及解法

《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。

1环的质量分布均匀。

2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。

长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。

(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。

(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。

(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。

刚体的转动部分习题分析与解答

刚体的转动部分习题分析与解答

动轨迹为一个圆弧。
刚体的定轴转动和平面转动的比较
03
定轴转动和平面转动是刚体转动的两种基本形式,它们在运动
学和动力学上有一些不同之处,如角速度、角加速度等。
03
刚体的动能与势能
刚体的动能
总结词
刚体的动能是指刚体在转动过程中所 具有的能量,与刚体的转动速度和质 量分布有关。
详细描述
刚体的动能计算公式为$E_{k} = frac{1}{2}Iomega^{2}$,其中$I$为刚体的转 动惯量,$omega$为刚体的角速度。转动惯量 是描述刚体质量分布对其转动影响的物理量, 与刚体的质量分布、形状和大小有关。
解答过程
钢球下落过程中,其速度逐渐增大,故其动能在 不断增加。同时,钢球离地面的高度逐渐减小, 故其势能在不断减小。由于钢球下落过程中只有 重力做功,故其机械能守恒。
习题五:关于刚体的机械能守恒的题目
总结词
理解机械能守恒的概念,掌握机械能守恒的条件和机械能守恒的计算方法。
详细描述
机械能守恒是指系统内各种形式的能量在相互转化时总量保持不变。对于刚体系统,只有重力或弹力 做功时机械能守恒。机械能
刚体的势能
总结词
刚体的势能是指刚体在转动过程中相对于某一参考点所具有 的能量。
详细描述
刚体的势能计算公式为$U = -GMmcostheta$,其中$G$为万 有引力常数,$M$和$m$分别为两个质点的质量,$theta$为 两质点连线和垂直于势能参考平面的夹角。对于刚体,势能的 具体值取决于参考点的选择。
实际问题。
习题五解答与解析
要点一
总结词
刚体的角动量守恒
要点二
详细描述
这道题目考察了学生在刚体转动中如何应用角动量守恒的 知识。学生需要理解角动量的概念,知道角动量等于刚体 的转动惯量乘以角速度,并能够根据角动量守恒的条件判 断刚体的运动状态。

刚体转动答案

刚体转动答案

1、一均匀细杆,质量为m ,长为l ,可绕过其端点的水平轴在竖直平面内转动,如果将细杆置于水平位置,然后让其由静止开始自由摆下,那么开始转动的瞬间,细杆的角加速度为( lg 23 ),细杆转到竖直位置时角速度为(lg3 )。

2、一个人站在转动的转台上,在他伸出去的两手中各握有一个重物,若此人向着胸部缩回他的双手及重物,忽略所有摩擦,以下叙述正确的是:……………………( ③ ) ① 系统的转动惯量不变。

② 系统的转动角速度不变。

③ 系统的角动量保持不变。

④ 系统的转动动能保持不变。

3、(10分)一半径为R 的圆盘可绕通过盘中心O ,且与盘面垂直的水平轴转动,圆盘的转动惯量为I ,绕有一根不可伸长的轻绳,绳与圆盘间无相对滑动,当绳端系一质量为M 的物体时,物体加速下降,假设圆盘与轴间的摩擦力矩为0M解:Ma T Mg =-1 ………………………(4分) βI M R T =-01 ………………………(4分) R a β= ………………………(1分)可得202MRI RM MgR a +-= ………………………(1分) 4、一均匀圆盘状飞轮,质量为20kg, 半径为30cm, 当它以每分钟60转的速率旋转时,其动能为( 1.82πJ )。

5、一长为L ,质量为M 的均匀细杆自由悬挂于通过其上端的光滑水平轴上,现有一质量为m 的子弹以水平速度V 0射向棒的中心,并以V 0/2的水平速度穿出棒,此后棒的最大偏转角度恰好为90°,求V 0的大小。

解:根据角动量守恒定律和机械能守恒22200V L m I V L m +=ω, 其中I 为棒的转动惯量,……………(4分) 231ML I =,…………………(2分)2212LMg I =ω, ………… (3分) 可得:gL mMV 3340= ………(1分) 6、若质点的质量为m ,速度为v ,相对于转动中心的位置矢量为r ,则此质点相对于转动中心的角动量为…………………………………………………………………………( ④ )① mvr ; ② r mv 2; ③ r mv ⨯2; ④ v m r ⨯。

刚体答案——精选推荐

刚体答案——精选推荐

刚体的定轴转动作业题答案1.{均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法正确的是()}A.角速度从小到大,角加速度从大到小B.角速度从小到大,角加速度从小到大C.角速度从大到小,角加速度从大到小D.角速度从大到小,角加速度从小到大答案:A题型:单选题2.一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度将()A.不变B.变小C.变大D.如何变化无法判断答案:C题型:单选题3.一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统()A.动量守恒B.机械能守恒C.对转轴的角动量守恒D.动量、机械能和角动量都守恒E.动量、机械能和角动量都不守恒答案:C题型:单选题4.一刚体以每分钟60转绕z轴做匀速转动(沿z轴正方向)设某时刻刚体上一点P的位置矢量为,其单位为“10-2m”,若以“10-2m·s-1”为速度单位,则该时刻P点的速度为()A.B.C.D.试题编号:E17549 24678答案:B题型:单选题5.{一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力()}A.处处相等B.左边大于右边C.右边大于左边D.哪边大无法判断试题编号:E17549 24680答案:C题型:单选题6.{一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度w按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度将()}A.必然增大B.必然减少C.不会改变D.如何变化,不能确定试题编号:E17549 24681答案:A题型:单选题7.两个匀质圆盘A和B的密度分别为和,若>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则()A.J A>J BB.J B>J AC.J A=J BD.J A、J B哪个大,不能确定试题编号:E17549 24682答案:B题型:单选题8.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉绳时,飞轮的角加速度将()A.小于B.大于,小于C.大于D.等于试题编号:E17549 24684答案:C题型:单选题9.{光滑的水平桌面上有长为、质量为m的匀质细杆,可绕通过其中点O且垂直于桌面的竖直固定轴自由转动,转动惯量为,起初杆静止.有一质量为m的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是()}A.B.C.D.试题编号:E17549 24686答案:C题型:单选题10.质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为()A.,顺时针B.,逆时针C.,顺时针D.,逆时针试题编号:E17549 24687答案:A题型:单选题11.有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度转动,此时有一质量为m的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为()A.B.C.D.试题编号:E17549 24688答案:A题型:单选题12.一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是()A.动能B.绕木板转轴的角动量C.机械能D.动量试题编号:E17549 24690答案:B题型:单选题13一个作定轴转动的轮子,对轴的转动惯量J =2.0kg·m2,正以角速度作匀速转动.现对轮子加一恒定的力矩M = -12N·m,经过时间t=8.0s时轮子的角速度=-,则=___.试题编号:E17549 24694答案:24 rad/s题型:填空题14.{有一半径为R的匀质圆形水平转台,可绕通过盘心O且垂直于盘面的竖直固定轴OO'转动,转动惯量为J.台上有一人,质量为m.当他站在离转轴r处时(r<R),转台和人一起以的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度=___.}试题编号:E17549 24696答案:题型:填空题15.{长为l、质量为M的匀质杆可绕通过杆一端O的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示.有一质量为m的子弹以水平速度射入杆上A点,并嵌在杆中,OA=2l/ 3,则子弹射入后瞬间杆的角速度=___.}试题编号:E17549 24697答案:题型:填空题16.{质量为m、长为l的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O在水平面内自由转动(转动惯量J=m l2/ 12).开始时棒静止,现有一子弹,质量也是m,在水平面内以速度v0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度=___.}试题编号:E17549 24698答案:3v0/ (2l)题型:填空题17.一个圆柱体质量为M,半径为R,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m、速度为v的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=___.(已知圆柱体绕固定轴的转动惯量J=)试题编号:E17549 24700答案:题型:填空题18.一飞轮以角速度绕光滑固定轴旋转,飞轮对轴的转动惯量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度=___.试题编号:E17549 24703答案:题型:填空题19.可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为___.试题编号:E17549 24704答案:2.5 rad / s2题型:填空题20.一飞轮作匀减速转动,在5 s内角速度由40rad·s-1减到10rad·s-1,则飞轮在这5 s内总共转过了___圈,飞轮再经___的时间才能停止转动.试题编号:E17549 24705答案:62.5 | 1.67s题型:填空题21.{如图所示,一质量为m、半径为R的薄圆盘,可绕通过其一直径的光滑固定轴转动,转动惯量J=mR2/ 4.该圆盘从静止开始在恒力矩M作用下转动,t秒后位于圆盘边缘上与轴的垂直距离为R的B点的切向加速度a t=___,法向加速度a n=___.}试题编号:E17549 24706答案:4M/ (mR) |题型:填空题22.一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴(O轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O轴转动.系统绕O轴的转动惯量J=___.释放后,当杆转到水平位置时,刚体受到的合外力矩M=___;角加速度___.试题编号:E17549 24707答案:3mL2/ 4 |mgL |题型:填空题23.{有两位滑冰运动员,质量均为50 kg,沿着距离为3.0 m的两条平行路径相互滑近.他们具有10 m/s的等值反向的速度.第一个运动员手握住一根3.0 m长的刚性轻杆的一端,当第二个运动员与他相距3m时,就抓住杆的另一端.(假设冰面无摩擦)(1)试定量地描述两人被杆连在一起以后的运动.(2)两人通过拉杆而将距离减小为1.0m,问这以后他们怎样运动?}A. (%)试题编号:E17549 24710答案:{解:(1)对两人系统,对于杆中点合外力矩为零,角动量守恒.故 1分1分=2v/=6.67 rad / s∴w0两人将绕轻杆中心O作角速度为6.67 rad/s的转动. 1分(2)在距离缩短的过程中,合外力矩为零,系统的角动量守恒,则J0w0= J1w11分1分即作九倍原有角速度的转动.}题型:计算题题型:计算题24.{一轴承光滑的定滑轮,质量为M=2.00 kg,半径为R=0.100 m,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m=5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J=,其初角速度=10.0 rad/s,方向垂直纸面向里.求:(1)定滑轮的角加速度的大小和方向;(2)定滑轮的角速度变化到0时,物体上升的高度;(3)当物体回到原来位置时,定滑轮的角速度的大小和方向.}A. (%)试题编号:E17549 24712答案:{解:(1) ∵ mg-T=ma 1分TR=J2分a=R1分∴=81.7 rad/s21分方向垂直纸面向外. 1分(2) ∵当=0时,物体上升的高度h=R=6.12×10-2m 2分(3)10.0 rad/s方向垂直纸面向外.2分}题型:计算题25.{一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心O的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1)子弹击中圆盘后,盘所获得的角速度.(2)经过多少时间后,圆盘停止转动.(圆盘绕通过O的竖直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩)}A. (%)试题编号:E17549 24715答案:{解:(1)以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O的角动量守恒.1分mv0R=(MR2+mR2)2分1分(2)设s表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小为2分设经过时间圆盘停止转动,则按角动量定理有-M f=0-J=-(MR2+mR2-)=-mv0R 2分∴ 2分}题型:计算题26.{质量为M1=24 kg的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M2=5 kg的圆盘形定滑轮悬有m=10 kg的物体.求当重物由静止开始下降了h=0.5 m时,(1)物体的速度;(2)绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为,)}A. (%)试题编号:E17549 24717答案:{解:各物体的受力情况如图所示.图2分由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:T 1R =J 11=方程各1分共5分T 2r -T 1r =J 22=mg -T 2=ma , a =R 1=r2, v2=2ah求解联立方程,得m/s 2=2 m/s 1分T 2=m(g -a)=58 N 1分T 1==48 N 1分 }题型:计算题 27.{如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6N·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为.}A. (%)试题编号:E17549 24718 答案:{解:对两物体分别应用牛顿第二定律(见图),则有 m 1g -T 1=m 1a ①T 2– m 2g= m 2a ② 2分对滑轮应用转动定律,则有③ 2分对轮缘上任一点,有 a =r ④ 1分又:=T1,=T2⑤则联立上面五个式子可以解出=2 m/s22分T1=m1g-m1a=156 NT2=m2g-m2a=118N 3分}题型:计算题2844.{一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动的角速度.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的和分别为棒的质量和长度.)}A. (%)试题编号:E17549 24720答案:{解:碰撞前瞬时,杆对O点的角动量为3分式中r为杆的线密度.碰撞后瞬时,杆对O点的角动量为3分因碰撞前后角动量守恒,所以3分∴= 6v0/ (7L) 1分.{一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动的角速度.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的和分别为棒的质量和长度.)}A. (%)试题编号:E17549 24720答案:{解:碰撞前瞬时,杆对O点的角动量为3分式中r为杆的线密度.碰撞后瞬时,杆对O点的角动量为3分因碰撞前后角动量守恒,所以3分∴= 6v0/ (7L) 1分29.质量为75 kg的人站在半径为2 m的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg·m2.开始时整个系统静止.现人以相对于地面为1 m·s-1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.A. (%)试题编号:E17549 24709答案:解:由人和转台系统的角动量守恒 J11+ J22= 0 2分其中 J1=300 kg·m2,1=v/r=0.5rad / s, J2=3000kg·m2∴2=-J11/J2=-0.05 rad/s 1分人相对于转台的角速度=1-2=0.55 rad/s 1分∴ t=2/=11.4 s 1分。

第四章:刚体转动习题解答

第四章:刚体转动习题解答

l2
l1
厚 度 为 2.0cm 的 圆 盘 和 两 个 直 径 都 为 10cm 、长为 8.0cm 的共轴圆柱体组成, 设飞轮的密度为 7.8kg•m–3,求飞轮对轴 的转动惯量。
题解 4―12 图
d2 d1
解:总转动惯量等于各部分对转轴转动惯量之和,而且圆盘 和两个圆柱体共轴,因此飞轮对轴的转动惯量为
作用于质点上的重力为jmgoabg??任一时刻t质点也是重力的作用点的位置矢量为jgtibry???据定义该重力对原点o点的力矩为kbmmjgtibgrmgjg???????任一时刻t质点的动量为jmgtmvp???据定义质点对原点o的角动量为kbmgtmgtjgtibrjpl???????习题42我国第一颗人造卫星沿椭圆轨道运卫星v动地球的中心o为椭圆的一个焦点如图llo已知地球半径r6378km卫星与地面的最近距v离l439km与地面的最远距离l238km
第四章:刚体一章习题解答
习题 4—1 � M = 如图所示,X 轴沿水平方向,Y 轴竖直向下,在 t=0 时刻将质量为 m � ;在任意时刻 t,质点对原点的角动量 L =
的质点由 a 处静止释放,让它自由下落,则在任意时刻 t,质点对原点 O 的力矩 。
解:作用于质点上的重力为 � � G = mgj 任一时刻 t 质点 (也是重力的作用点 ) 的位 置矢量为 � � � r = bi + gtj 据定义,该重力对原点 O 点的力矩为 � � � � � � � M = r × G = (bi + gtj ) × mgj = bmgk 任一时刻 t 质点的动量为
轴正向
m,l
θ
M =
1 mgl cos θ 2
根据转动定律,棒的角加速度为

刚体转动习题

刚体转动习题

第四章:刚体转动习题及解答1.在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为R 21处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度ω0匀速转动,现在此人沿圆盘半径走到圆盘边缘。

已知圆盘对中心轴的转动惯量为221MR .求:求此时圆盘对地的角速度.解答及评分标准:(1) 设当人走到圆盘边缘时,圆盘对地的绕轴角速度为ω ,则人对与地固联的转轴的角速度也为 ω , 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωω⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+220221021211021R M MR R M MR 6分 解得: 087ωω=2分2.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解答及评分标准:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 2分 对滑轮: TR = J β ② 2分运动学关系: a =R β ③ 2分将①、②、③式联立得a =mg / (m +21M ) 2分∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分3.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.解答及评分标准:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律βJ M = 2分 其中 4/30sin 21mgl mgl M == 2分于是 2r a d /s 35.743 ===lg J M β 2分当棒转动到水平位置时, mgl M 21= 2分 那么 2r a d /s 7.1423 ===lg J M β 2分4.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度,(2) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解答及评分标准:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 24分(2) 根据转动定律fr = J β 3分则 f = J β / r = 32 N 3分5.质量为1m 的物体A 可在光滑水平面上滑动,系于A 上的不可伸长的轻绳绕过半径为r 、转动惯量为J 的转轮B 与质量为2m 的C 物相连,如图所示,设绳子与轮之间无滑动,且阻力不计。

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动

v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

《物理学基本教程》课后答案_第四章__刚体的转动

《物理学基本教程》课后答案_第四章__刚体的转动

第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。

大学物理-刚体的定轴转动-习题和答案

大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

(完整版)刚体定轴转动习题

(完整版)刚体定轴转动习题

刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。

(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。

(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。

(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。

5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动()(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变小,它遇冷时角速度变大.(C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅srad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

《刚体定轴转动》选择题解答与分析

《刚体定轴转动》选择题解答与分析

2 刚体定轴转动转动惯量1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.答案:(C ) 参考解答:首先明确转动惯量的物理意义,从转动定律与牛顿第二定律的对称关系可以看出,与质量m 是平动惯性大小的量度相对应,转动惯量I 则是刚体转动惯性大小的量度。

从转动惯量的的公式∑=∆=ni ii r m I12可以看出,其大小除了与刚体的形状、大小和质量分布有关外,还与转轴的位置有关。

凡选择回答错误的,均给出下面的进一步讨论:1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

参考解答:不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.2. 一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为 (A) J =J 1+J 2. (B) J =mR 2+mR 2.(C) J =(J 1+mR 2)+(J 2+mR 2).(D) J =[J 1+m (2R )2]+[J 2+m (2R )2]. 答案:(C) 参考解答:根据转动惯量具有叠加性,则整个刚体对通过杆与球体的固结点0且与杆垂直的轴的转动惯量为细杆和球体分别对该轴转动惯量之合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
R
2
2 rdr
dr rLeabharlann dM r dFM

r
2 2
2 Fdr
R
R 2F
R
2

r dr
2
2 3
FR
0
4.垂直于盘面力F将一粗糙平面紧压在一飞轮的 盘面上使其制动,飞轮看作是质量为m,半径为 R匀质圆盘,盘面与粗糙平面间摩擦系数为μ, 轴粗细可略,飞轮初始角速度为ω0。试求: (1)摩擦力矩 (2)经过多少时间,飞轮才停止转动?
J mR
2
0
D.ω0
二、填空题
1. 半径为0.2m,质量为1kg的匀质圆盘,可绕过 圆心且垂直于盘的轴转动。现有一变力F=0.1t (F以牛顿计,t以秒计)沿切线方向作用在圆 盘边缘上。如果圆盘最初处于静止状态,那么 它在第3秒末的角加速度β= 3rad s ,角速度 ω= 4.5rad s 。
2
2
K
9. 质量分别为 m 和 2 m 两物体(视为质点),用长为 l 的轻质刚性细杆相连,系统绕通过杆且与杆 垂直的竖直固定轴O转动,已知O 轴离质量为2m 的质点的距离为 l / 3 ,质量为m 质点的线速度为 且与杆垂直,则该系统对转轴的动量矩 L ____________。 m l 2m
o
( 2) mg l 2 mgl 1 2 ( ml
2
1 3
ml )
2
2


3 2
g l
,
l
3 2
lg
4.垂直于盘面力F将一粗糙平面紧压在一飞轮的 盘面上使其制动,飞轮看作是质量为m,半径为 R匀质圆盘,盘面与粗糙平面间摩擦系数为μ, 轴粗细可略,飞轮初始角速度为ω0。试求: (1)摩擦力矩 (2)经过多少时间,飞轮才停止转动? 解: dF
1 2
2.一飞轮直径为D,质量为m(可视为圆盘),边 缘绕有绳子,现用恒力拉绳子一端,使其由静 止开始均匀地加速,经过时间t,角速度增加为
ω,则飞轮的角加速度为 / t,
这段时间内飞轮转过 N t / 4 转,
拉力做的功为 A
1 16 mD 。
2 2
3. 在一水平放置的质量为m、长度为l的均匀细 杆上,套着一个质量为m套管B(可看作质点), 套管用细线拉住,它到竖直光滑固定轴OO′距离 为 l / 2 ,杆和套管组成系统以角速度 0 绕OO′轴 转动,如图所示。若在转动过程中细线被拉断, 套管将沿着杆滑动。在套管滑动过程中,该系统 转动的角速度 与套管轴的距离x的函数关系为 (杆对OO′轴转动惯量为 2 2 O 4( l 3 x ) 。 0
C.IA>IB
D.不能判断
10.有一半径为R的水平圆转台,可绕通过其 中的竖直固定光滑轴转动,转动惯量为J,开始 时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去, 当人到达转台边缘时,转台的角速度为 A. C.
J J mR
2
0
B.
J (J m )R
2
0
2
1
2 I / k 0。

0
3
0
d

2

k I
0 dt t
t
6. 一质量为m的质点沿着一条空间曲线运动,该 曲线在直角坐标系下的定义式为
r a cos( t ) i b sin( t ) j
式中a、b、ω都是常数, 则此质点所受的对原点
力矩 M
= 0 ;角动量 L = mabk。 M r ma L r m 2 M r F r ma m r r 0
1. 解
(1)
mg 1
l 2
cos mgl cos o
2 2

( ml ml ) 3

9 g cos 8l
3. 刚体由长为l,质量为m匀质细棒和质量也为 m小球牢固地连结在杆一端而成,绕过杆的另一 端O的水平轴转动,在忽略轴处摩擦情况下,杆 由水平位置由静止状态自由转下,试求: (1)杆与水平线成θ 角时,刚体角加速度; (2)竖直位置时刚体角速度,小球线速度。
L
5.转动飞轮转动惯量为I,在t =0时角速度为ω0, 飞轮经历制动过程,阻力矩M大小与角速度ω平 方成正比,比例系数为k(k为大于0常数)。 1 2 当ω= 3 ω0时,飞轮的角加速度β= k 0 / 9 I , 从开始制动到ω= 3 ω0经过时间t =
1) M k I d 2 2) M k I dt
3g 2l
6.一均匀细棒由水平位置绕一端固定轴能自由转 动,今从水平静止状态释放落至竖直位置的过程 中,则棒的角速度ω和角加速度β将
A.ω↗β↗
C.ω↘β↘
B.ω↗β↘
D.ω↘β↗
7.如图示,一均匀细杆可绕通过上端与杆垂直 的水平光滑固定轴O旋转,初始状态为静止悬 挂。现有一个小球自左方水平打击细杆。设小 球与细杆之间为非弹性碰撞,则在碰撞过程中 对细杆与小球这一系统 A. 只有机械能守恒;
1 0
8. 一刚体对某定轴的转动惯量为 在恒力矩作用下由静止开始做角加速度 2 rad s 500 J 定轴转动。在5s末的转动动能 E m 该恒力矩 M 20 N· ,该恒力矩在0~5s这段 时间内所作的功 A 500 J , 刚体转动的角度 25 rad
I 10 kg m
t
R
(2)
dt 2tdt t
0
2
4rad s
1
3
F
( 3) N M FR t
1 1 2 2 (4) A mR 2 2
N 8J s
1
A 4J
2.一刚体绕定轴转动,若它的角速度很大,则
A.作用在刚体上的合外力一定很大 B.作用在刚体上的合外力一定为零 C.作用在刚体上的合外力矩一定很大 D.以上说法都不对 3.关于力矩有以下几种说法,其中正确的是 A.内力矩会改变刚体对某个定轴的角动量 B.作用力和反作用力对同一轴力矩之和必为零 C.角速度的方向一定与外力矩的方向相同 D.质量相同、形状和大小不同的两个刚体,在 相同力矩作用下,它们角加速度一定相等
[ ml m( ) ] 0 [ ml mx ] 3 2 3
2 2 2 2
7 0 l
2
1 3
ml
)
2
1
l
1
l
m
1 2 l
m
O
4.质量m、长l均匀细杆,在水平桌面上绕通过 其一端竖直固定轴转动,细杆与桌面的滑动摩 擦系数为μ,则杆转动时受摩擦力矩的大小

1 2
mgl

M f rgdm xmgdx m 0
i j b sin t b cos t k
L r m m a cos t a sin t
0 mabk
0
7.一刚体绕定轴转动,初角速度 8 rad s 现在大小为 8 N m 恒力矩作用下,刚体转动的 1 角速度在2s内均匀减速至 4 rad s ,则刚体 s 在此恒力矩的作用下的角加速度 -2 rad·-2 m 刚体对此轴的转动惯量 I 4 kg· 2
m
O
m 作圆周运动

2 3 L ,
l/3

3 2L
l
系统动量矩大小为
2 1 m L 2m L m L 3 3
2
2
1.半径为r的圆盘是从半径为R的均质圆盘上切割 出来的,如图所示。圆孔中心到原来圆盘中心的 距离是R/2,求原来圆盘剩余部分的质心位置。 解: 根据质心概念,质心坐标为
R
xC
m x
i i
i
m
2 2
yC
m y
i i
i
m
2 2
xC
R 0 r R / 2 ( R r )
2 2

Rr
2
2(R r )
,
yC 0
3. 刚体由长为l,质量为m匀质细棒和质量也为 m小球牢固地连结在杆一端而成,绕过杆的另一 端O的水平轴转动,在忽略轴处摩擦情况下,杆 由水平位置由静止状态自由转下,试求: (1)杆与水平线成θ 角时,刚体角加速度; (2)竖直位置时刚体角速度,小球线速度。
刚体定轴转动作业答案
一、选择题
1.
1. 力学体系由两个质点组成,它们之间只有引力作用。 若两质点所受的外力的矢量和为零,则此系统 A. 动量、机械能以及角动量都守恒 B. 动量、机械能守恒,但角动量是否守恒还 不能确定 C. 动量守恒,但机械能和角动量是否守恒还 不能确定 D. 动量和角动量守恒,但机械能是否守恒还 不能确定
B. 只有动量守恒; C. 只有对转轴O的角动量守恒; D. 机械能、动量和角动量均守恒。
o
8.绕固定水平轴O匀速转动转盘,沿如图所示 的直线从相反方向射入两颗质量相同、速率相等 子弹,留在盘中,子弹射入后转盘的角速度应为 A.增大 B. 减小 C.不变 D.无法确定 9.质量相等,半径相同的一金属环A和同一种金 属的圆盘B,对于垂直于圆面的中心转轴,它两 的转动惯量有: A.IA=IB B.IA<IB
0 0 t
M 1 2 mR
2
dr
2 3

FR
r
t
0

3 mR 0 4F
5. 一半径为R=0.5m、质量m=4kg均质分布的 圆盘,受到作用在轻绳一端的力F=2tN的作用, 从静止开始绕过O点的水平轴转动,设摩擦阻力 忽略不计,轻绳与圆盘之间不发生相对滑动, 如图所示。试求: m (1)t=2s时,圆盘的角加速度 (2)t=2s时,圆盘的角速度; R (3)t=2s时,力矩的瞬时功率; (4)在头2s内,力矩对圆盘所做的功。 解: (1)
相关文档
最新文档