天津市2014年中考数学试卷(解析版)

合集下载

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣12.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10105.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.27.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:29.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1010.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.2014年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣1【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1608000000用科学记数法表示为:1.608×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解;从左面看下面一个正方形,上面一个正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.2【考点】正多边形和圆.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.9.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【考点】反比例函数的性质.【分析】将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【考点】加权平均数.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3【考点】二次函数图象与系数的关系.【分析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于x3.【考点】同底数幂的除法.【分析】同底数幂相除底数不变,指数相减,【解答】解:x5÷x2=x3故答案为:x3.【点评】此题考查了同底数幂的除法,解题要注意细心明确指数相减.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【专题】计算题.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).【考点】等腰三角形的性质.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)如图所示:.【考点】作图—应用与设计作图.【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【解答】解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.【点评】此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【考点】圆周角定理;等边三角形的判定与性质;勾股定理.【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).【考点】解直角三角形的应用.【专题】应用题.【分析】(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.【解答】解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.【点评】本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】综合题.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内,当点D′与点P重合时,点P的纵坐标最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【点评】本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识,而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t ﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.【点评】本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.祝福语祝你考试成功!。

2014年天津市中考数学试卷-答案

2014年天津市中考数学试卷-答案

天津市2014 年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】两数相乘,同号得正,异号得负,并把绝对值相乘,(-6) ⨯(-1) = 6 ,故选A. 【考点】有理数的计算2.【答案】A【解析】cos 60︒=1 . 2【考点】特殊角的三角函数值3.【答案】D【解析】轴对称图形沿对称轴折叠,直线两旁的部分能够重合,图形D 沿竖直的直线折叠两旁的部分能重合,D 是轴对称图形,故选D.【考点】轴对称图形的概念4.【答案】C【解析】科学计数法是将一个数写成a ⨯10n 的形式,其中1≤| a |<10 ,n 为整数.当原数的绝对值≥ 10 时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值< 1 时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),1608000000=1.608⨯109,故选C.【考点】科学计数法5.【答案】A【解析】此立体图形从左面能看到的图形是,故选A.【考点】三视图6.【答案】B【解析】正多边形的边长等于正六边形外接圆的半径,正六边形的边心距、外接圆的半径、边长的一半三条线段可以构成含有30︒角的直角三角形,由三角函数求得正六边形外接圆的半径为2,即边长为2,故选B. 【考点】正多边形的性质7.【答案】C【解析】连接OA ,则OA ⊥OC ,由∠B = 25︒知∠AOC = 50︒,所以∠C = 40︒,故选C.【考点】切线的性质8.【答案】D【解析】因为E 是平行四边形ABCD 中边AD 的中点,所以△EDF∽△CBF ,所以EF : FC =ED : BC =1: 2 ,故选D.【考点】相似三角形的性质9.【答案】C【解析】由反比例函数的性质结合图像写出取值范围.当x = 1 时,y = 10 ;当x = 2 时,y = 5 ,所以y 的取值范围是5 <y <10 ,故选C.【考点】反比例函数的性质10.【答案】B【解析】根据题意得共可进行28 场比赛,由于每两个队都要进行比赛,所以1x(x -1) = 28 ,故选B.2【考点】一元二次方程解决实际问题11.【答案】B【解析】首先根据权重计算四人的平均成绩,再根据平均成绩的大小确定录取人,甲的平均成绩:86⨯0.6 + 90⨯0.4 =87.6 ,乙的平均成绩:92⨯0.6 +83⨯0.4 = 88.4 ,丙的平均成绩:90⨯0.6 +83⨯0.4 = 87.2 ,丁的平均成绩:83⨯0.6 +92⨯0.4 =86.6,因为乙的平均成绩最高,所以公司将录取乙,故选B.【考点】加权平均数的计算12.【答案】D【解析】二次函数y =ax2 +bx +c 的图像与x 轴有两个交点,所以∆=b2 -4ac > 0 ,故①正确;由图像知a < 0 ,b > 0 ,c > 0 ,所以abc < 0 ,故② 正确;由二次函数y =ax2 +bx +c 的最大值为2,ax2 +bx +c -m = 0 没有实根,知ax2 +bx +c -m ≤ 2 -m < 0 ,m > 2 ,故③ 正确,所以正确的结论有三个,故选D.【考点】二次函数的图像和性质第Ⅱ卷二、填空题13.【答案】x3【解析】同底数幂相除,底数不变,指数相减,所以x5 ÷x2 =x3 .【考点】同底数幂的除法14. 【答案】1(满足 k > 0 即可)【解析】反比例函数 y = k (k ≠ 0) 位于第一、第三象限,只需k > 0 ,故 k 的值可以为 1.x【考点】反比例函数的性质15. 【答案】 813【解析】此 13 张牌中小于 9 的有 8 张,故从中任意抽取一张,抽到的牌的点数小于 9 的概率是 8 .13【考点】概率的计算16.【答案】(1, 2)b 4ac - b 22 2【解析】顶点坐标的计算有两种方法,一是公式法(- , 2a 4a 2) ;二是配方法,y = x - 2x + 3 = (x -1) + 2 ,故顶点坐标为(1, 2).【考点】二次函数顶点坐标的计算17.【答案】45 【解析】设∠A = a ,由题意知∠ACE = (180o - a ) ÷ 2 = 90o - 1 a ,∠DCB = [180o - (90o - a )] ÷ 2 = 45o + 1 a ,2 2∠ACE + ∠DCB = (90o - 1 a ) + (45o + 1 a ) = 135o = ∠ACB + ∠DCE = 90o + ∠DCE ,2 2所以∠DCE = 45o .【考点】三角形内角和,等腰三角形的性质18.【答案】(1)11(2)分别以 AC , BC , AB 为一遍作正方形 ACED ,正方形 BCNM ,正方形 ABHF ;延长 DE 交 NM 于点Q ,连接QC ;平移QC 至 AG , BP 位置;直线GP 分别交 AF , BH 于点T , S ,则四边形 ABST 即为 所求【解析】(1) AC 2 + BC 2 = ( 2)2 + 32 =112 (2) 连接 DG ,利用切割补形,可以得到四边形 DGPB 中,平行四边形 AGPB 的面积为 11,再作矩形 ATSB 使之与平行四边形 AGPB 等高即可.【考点】勾股定理,尺规作图三、解答题19.【答案】(1) x ≥ -1 .(2) x ≤ 1 .(3) 【解析】解:(1) 2x +1≥ -1则2x ≥ -2 ,解得 x ≥ -1 .(2) 2x +1≤ 3,则2x ≤ 2 ,解得 x ≤ 1 .(3) 如图所示【考点】不等式组的解法20.【答案】(1)40,15(2)36(3)60【解析】解:(1)40,15(2) 在这组样本数据中,35 出现了 12 次,出现的次数最多,∴这组样本数据的众数为 35.将这组样本数据从大到小的顺序排列,其中处于中间的两个数都是 361 有 36 + 36 = 36 ,2∴这组样本数据的中位数为 36.(3) 在 40 名学生中,鞋号为 35 的学生人数比例为30% ,∴由样本数据,估计学校各年级学生中鞋号为 35 的人数比例约为30%于是,计划购买 200 双运动鞋时,有200⨯30% = 60 .∴建议购买 35 号运动鞋 60 双【考点】扇形统计图,条形统计图解决实际问题21.【答案】(1) AC = 8 , BD = 50 , CD = 5 .(2) BD = 5【解析】解:(1)由已知, BC 为 O 的直径,得∠CAB = ∠BDC = 90.BC 2 - AB 2 102 - 62 2在 Rt △CAB 中, BC =10 , AB = 6 ,∴ AC = = = 8 .AD 平分∠CAB .∴ CD =BD .∴ CD = BD .在 Rt △BDC 中, BC =10 , CD 2 + BD 2 = BC 2 ,∴ BD 2 = CD 2 = 50 ,∴BD = CD = 5 .(2)如图,连接OB ,OD .AD 平分∠CAB ,且∠CAB = 60,∴ ∠DAB = 1 ∠CAB = 30 .2∴∠DOB = 2∠DAB = 60 .又 O 中OB = OD ,∴△OBD是等边三角形.O 的直径为 10,有OB = 5 ,∴BD = 5【考点】圆周角定理及其推论,勾股定理,等边三角形的判定及性质⎨ 4x + 2, x > 2.22.【答案】(1) 23.5(2)解放桥的全长约为 97 m.【解析】解:(1) A 'C ' = AC = 1 AB= 23.52(2)如图,根据题意, ∠PMQ = 54︒ , 在 Rt △MPQ 中, tan ∠PMQ =PQ, MQ ∠PNQ = 73︒,∠PQM = 90︒, MN = 40. ∴PQ = MQ tan 54︒.在 Rt △NPM 中, tan ∠PNQ = PQ ,NQPQ = NQ tan 73︒.∴MQ tan54︒ = NQ tan 73︒.又 NQ = MN + NQ .∴(40 + NQ ) tan54︒ = NQ 40tan54︒tan73︒-tan54︒∴PQ = NQ40tan54︒ tan73︒ ≈ 40⨯1.4⨯3.3 ≈ 97 . tan73︒-tan54︒ 3.3+1.4答,解放桥的全长 PQ 约为 97m【考点】直角三角形的应用.23.【答案】(1)10,18(2) y 关于 x 的函数解析式为 y = ⎧5x , 0 ≤ x ≤ 2,⎩(3) 小张购买了 7 kg 种子.【解析】解:(1)10,18.(2)根据题意,当0 ≤ x ≤ 2 时,种子的价格为 5 元/kg 计价,tan 73︒tan 73︒ = NQ =即OA 2 + OE 2 22 +12 ⎩∴ y = 5x ;当 x > 2 时,其中有2kg 的种子按 5 元/kg 计价, 其余的(x - 2) kg 种子按 4 元/kg (即 8 折)计价, ∴ y = 5⨯ 2 + 4(x - 2) = 4x + 2 .⎧5x , 0 ≤ x ≤ 2, ∴ y 关于 x 的函数解析式为 y = ⎨ 4x + 2, x > 2. (3) 30 >10 ,∴一次性购买种子的数量超过 2 kg .∴30 = 4x + 2 ,解得 x = 7 .【考点】利用一次函数解决实际问题24.【答案】(1) AE ' =BF ' =(2)略(3) 1 + 3 .2【解析】解:(1)当α = 90︒ 时,如图,点 E ' 与点 F ' 重合. 点 A (-2,0) ,点 B (0, 2) ,∴OA = OB = 2 .点 E ,点 F 分别为OA ,OB 的中点,∴OE = OF =1.正方形OE 'D 'F '是正方形OEDF 旋转后得到的, ∴OE ' = OE =1,OF ' = OF =1.在 Rt △AE 'O 中,AE ' == = 5 .在 Rt △BOF ' 中,55OB2 +OF'222 +125BF'===.(2)当α=135︒时,如图,正方形OE'D'F'是正方形OEDF 旋转后得到的,∴∠AOE'=∠BOD'.又OE'=OF',OA =OB ,∴△AOE'≌△BOF'.∴AE'=BF',且∠1 =∠2 .AE'与OB 相交,可得∠3 =∠4 .∴∠1+∠3 =∠2 +∠4 .记AE'与BF'相交于点P .∴∠APB =180︒- (∠2 +∠4) .又∠AOB =180︒- (∠1+∠3) .∴∠APB =∠AOB = 90︒.即AE'⊥BF'.(3)1 + 3. 2【考点】图形的旋转25.【答案】(1)①P(3,3)② y 关于x 的函数解析式为y =x2 - 2x .(2)m =t或m =2t2 -12t【解析】解:(1)①点O(0,0),点F(1,1),∴直线OD 的解析式为y =x .设直线EA 的解析式为y =kx +b ,由点E 和点F 关于点M (1, -1) 对称,得点E(1, -3) . 又点A(2,0) ,点 E 在直线EA 上,t t ⎧0 = 2k + b , ⎧ k = 3, ∴⎨-3 = k + b , 解得⎨ = -6.⎩ ⎩b∴直线 EA 的解析式为 y = 3x - 6 .直线点 P 是直线OF 与直线 EA 的交点,⎧ y = x , ⎧ x = 3, 有⎨ y = 3x - 6. 解得⎨ y = 3.⎩ ⎩∴点 P 的坐标为(3,3) .②由已知,设点 F (1,t ) ,∴直线OF 的解析式为 y = tx ,设直线 EA 的解析式为 y = kx + b ,由点 E 和点 F 关于点 M (1, -1) 对称,得点 E (1, -2 - t ) . 又点 A 、点 E 在直线 EA 上,⎧ 0 = 2k + b , ⎧ k = 2 + t ∴ ⎨-2 - t = k + b . 解得⎨b = -2(2 + t ).⎩ ⎩∴直线 EA 的解析式为 y = (2 + t )x - 2(2 + t ) , 点 P 为直线OF 与直线 EA 的交点,∴tx = (2 + t )x - 2(2 + t ) ,化简,得t = x - 2.有 y = tx = (x - 2)x = x 2 - 2x .∴ y 关于 x 的函数解析式为 y = x 2 - 2x .(2)根据题意,同(1)可得直线OF 的解析式为 y = tx ,直线 EA 的解析式为 y = (t - 2m )x - 2(t - 2m ) . 点 P 为直线OF 与直线 EA 的交点,∴tx = (t - 2m )x - 2(t - 2m ), m ≠ 0.化简,得 x = 2 - 2 . 有 y = tx = 2t - . m m t t 2∴点 P 的坐标为(2 - , 2 t - ) . m mt 2 PQ ⊥ l 于点Q ,得点Q (1, 2t - ) . m∴OQ 2 = 1+ t 2 (2 - t )2 , PQ 2 = (1- t )2 .M m∴OQ =PQ ,∴1+t2 (2 -t)2 = (1-t)2 . m m化简,得t(t - 2m)(t 2 - 2mt -1) = 0 .又t ≠ 0 ,∴t - 2m = 0 或t2 - 2mt -1 = 0 .t t2 -1∴m =或m =即为所求.2 2t【考点】点的运动变化,待定系数法求函数解析式,一元二次方程的应用11 / 10。

2014年天津市中考数学试题及答案

2014年天津市中考数学试题及答案

2014年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A )6 (B )-6(C )1(D )-1(2)cos60o 的值等于(A )21 (B )33 (C )23 (D )3(3)下列标志中,可以看作是轴对称图形的是(A ) (B ) (C ) (D )(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608000000人次.将1608 000 000用科学记数法表示应为 (A )160.8×107(B )16.08×108(C )1.608×109(D )0.1608×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A ) (B )(C ) (D )(6)正六边形的边心距为3,则该正六边形的边长是(A )3(B )2(C )3(D )32(7)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B =25o ,则∠C 的大小等于(A )20o (B )25o(C )40o(D )50o(8)如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于(A )3:2 (B )3:1 (C )1:1(D )1:2(9)已知反比例函数xy 10=,当1<x <2时,y 的取值范围是 (A )0<y <5 (B )1<y <2 (C )5<y <10(D )y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为 (A )()28121=+x x (B )()28121=-x x (C )()281=+x x(D )()281=-x x(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人 甲 乙 丙 丁测试成绩(百分制) 面试86 92 90 83 笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取第(5)题第(7)题第(8)题(A )甲 (B )乙 (C )丙 (D )丁(12)已知二次函数y =ax 2+b x+c (a ≠0)的图象如下图所示,且关于x 的一元二次方程ax 2+bx +c -m =9没有实数根,有下列结论:①b 2-4ac >0;②abc <0;③m >2. 其中,正确结论的个数是 (A )0 (B )1(C )2(D )32014年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。

天津市历年中考数学真题及答案

天津市历年中考数学真题及答案

2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60o的值等于(A)(B)(C)(D)(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A)×107(B)×108(C)×109(D)×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)(C)(D)(6)正六边形的边心距为,则该正六边形的边长是(A)(B)2(C)3 (D)(7)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25o,则∠C的大小等于(A)20o(B)25o(C)40o(D)50o(8)如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于(A)3:2 (B)3:1(C)1:1 (D)1:2(9)已知反比例函数,当1<x<2时,y的取值范围是(A)0<y<5 (B)1<y<2(C)5<y<10(D)y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为(A)(B)(C)(D)(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取(A)甲(B)乙(C)丙(D)丁(12)已知二次函数y=ax2+b x+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=9没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是(A)0 (B)1 (C)2 (D)32014年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。

2014年天津市中考数学试卷(word版)及答案

2014年天津市中考数学试卷(word版)及答案

机密★启用前2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60︒的值等于(A)12(B)3(C)3(D)3(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通. 2013年天津市公共交通客运量约为1 608 000 000人次.将1 608 000 000用科学记数法表示应为(A)7160.810⨯(B)816.0810⨯(C)91.60810⨯(D)100.160810⨯(5)如图,从左面观察这个立体图形,能得到的平面图形是(A ) (B )(C ) (D ) (6(A(B )2(C )3 (D)(7)如图,AB 是⊙O 的弦,AC 是⊙O 的切线, A 为切点,BC 经过圆心. 若∠B =25°,则∠C 的大小等于 (A )20° (B )25°(C )40°(D )50°(8)如图,中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ︰FC等于 (A )3︰2 (B )3︰1(C )1︰1(D )1︰2(9)已知反比例函数10y x=,当12x <<时,y 的取值范围是 (A )05y << (B )12y << (C )510y << (D )10y > (10)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场. 根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为 (A )1(1)282x x += (B )1(1)282x x -= (C )(1)28x x += (D )(1)28x x -= (11)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权. 根据四人各自的平均成绩,公司将录取(A )甲 (B )乙 (C )丙 (D )丁第(7)题第(5)题B第(8)题(12)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,且关于x的一元二次方程20ax bx c m ++-=没有实数根,有下列结论:①240b ac ->;②0abc <;③2m >. 其中,正确结论的个数是(A )0 (B )1 (C )2 (D )3机密★启用前2014年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。

2014年天津市中考数学试卷(word版)及答案

2014年天津市中考数学试卷(word版)及答案

机密★启用前2014年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A )6(B )-6(C )1(D )-1(2)cos60︒的值等于(A )12(B )33 (C )32(D )3 (3)下列标志中,可以看作是轴对称图形的是(A ) (B ) (C ) (D )(4)为让市民出行更加方便,天津市政府大力发展公共交通. 2013年天津市公共交通客运量约为1 608 000 000人次.将1 608 000 000用科学记数法表示应为 (A )7160.810⨯ (B )816.0810⨯(C )91.60810⨯(D )100.160810⨯(5)如图,从左面观察这个立体图形,能得到的平面图形是(A ) (B )(C ) (D ) (6(A(B )2(C )3 (D)(7)如图,AB 是⊙O 的弦,AC 是⊙O 的切线, A 为切点,BC 经过圆心. 若∠B =25°,则∠C 的大小等于 (A )20° (B )25°(C )40°(D )50°(8)如图,中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ︰FC等于 (A )3︰2 (B )3︰1(C )1︰1(D )1︰2(9)已知反比例函数10y x=,当12x <<时,y 的取值范围是 (A )05y << (B )12y << (C )510y << (D )10y >(10)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场. 根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为 (A )1(1)282x x += (B )1(1)282x x -= (C )(1)28x x += (D )(1)28x x -= (11)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权. 根据四人各自的平均成绩,公司将录取(A )甲 (B )乙 (C )丙 (D )丁第(7)题第(5)题B第(8)题(12)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,且关于x的一元二次方程20ax bx c m ++-=没有实数根,有下列结论:①240b ac ->;②0abc <;③2m >. 其中,正确结论的个数是(A )0 (B )1 (C )2 (D )3机密★启用前2014年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。

2014年天津市中考数学试卷

2014年天津市中考数学试卷

B.
A.
B.
C.
D.
4. (3 分)为了市民出行更加方便,天津市政府大力发展公共交通,2013 年天津 市公共交通客运量约为 1608000000 人次,将 1608000000 用科学记数法表示 为( ) B.16.08×10 C.1.608×109 D.0.1608×1010 )
A.160.8×107
第2页(共29页)
12. (3 分)已知二次函数 y=ax2+bx+c(a≠0)的图象如图,且关于 x 的一元二次 方程 ax2+bx+c﹣m=0 没有实数根,有下列结论: ①b2﹣4ac>0;②abc<0;③m>2. 其中,正确结论的个数是( )
A.0
B.1
C.2
D .3
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分) 13. (3 分)计算 x5÷x2 的结果等于 .
������ 14. (3 分)已知反比例函数 y= (k 为常数,k≠0)的图象位于第一、第三象限, ������ 写出一个符合条件的 k 的值为 .
15. (3 分)如图,是一副普通扑克牌中的 13 张黑桃牌,将它们洗匀后正面向下 放在桌子上,从中任意抽取一张,则抽出的牌点数小于 9 的概率为 .
2014 年天津市中考数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分) 1. (3 分)计算(﹣6)×(﹣1)的结果等于( A.6 B.﹣6 ) D. )√3 3ຫໍສະໝຸດ ) D.﹣1C.1
2. (3 分)cos60°的值等于( A.
1
√2 √3 C. 2 2 2 3. (3 分)下列标志中,可以看作是轴对称图形的是(
A.20°

1997—2019天津市中考数学试卷含详细解答(历年真题)

1997—2019天津市中考数学试卷含详细解答(历年真题)

2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.62.(3分)2sin60︒的值等于()A B.2C.1D3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算2211aa a+++的结果是()A.2B.22a+C.1D.41 a a+8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D 在坐标轴上,则菱形ABCD的周长等于()AB.C.D .209.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算5x x的结果等于.14.(3分)计算1)的结果等于.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)对于直线21y x=-与x轴的交点坐标是.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若5DE=,则GE的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC∆的顶点A在格点上,B是小正方形边的中点,50ABC∠=︒,30BAC∠=︒,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足PAC PBC PCB∠=∠=∠,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组11 211 xx+-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)已知PA,PB分别与O相切于点A,B,80∠=︒,C为O上一点.APB(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31︒,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin310.52︒≈.︒≈,tan310.60︒≈,cos310.8623.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.6【解答】解:(3)927-⨯=-;故选:A.2.(3分)2sin60︒的值等于()A B.2C.1D【解答】解:2sin602︒==故选:A.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.7⨯B.60.4231042310⨯⨯D.442.3104.2310⨯C.5【解答】解:6=⨯.4230000 4.2310故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2. 故选:B .6.(3( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间【解答】解:253336<<,∴,56∴<.故选:D . 7.(3分)计算2211a a a +++的结果是( ) A .2B .22a +C .1D .41aa + 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )AB .C .D .20【解答】解:A ,B 两点的坐标分别是(2,0),(0,1),AB ∴=, 四边形ABCD 是菱形,∴菱形的周长为故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【解答】解:将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠,1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--, 22m n a ∴==-, 44m n a ∴+=-,当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18) 13.(3分)计算5x x 的结果等于 6x . 【解答】解:56x x x =. 故答案为:6x14.(3分)计算1)的结果等于 2 . 【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 37. 【解答】解:从袋子中随机取出1个球,则它是绿球的概率37=. 故答案为37. 16.(3分)对于直线21y x =-与x 轴的交点坐标是 1(2,0) .【解答】解:根据题意,知,当直线21y x =-与x 轴相交时,0y =, 210x ∴-=,解得,12x =; ∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,13BF =, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==,13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【解答】解:(Ⅰ)AB ,(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 2x - ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【解答】解:(Ⅰ)解不等式①,得2x -; (Ⅱ)解不等式②,得1x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -. 故答案为:2x -,1x ,21x -.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为40,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=,10%100%25%40m=⨯=,故答案为:40,25;(Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是1.5,中位数是1.5;(Ⅲ)40480072040-⨯=(人),答:该校每天在校体育活动时间大于1h的学生有720人.21.(10分)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.【解答】解:(Ⅰ)连接OA、OB,PA,PB是O的切线,90OAP OBP∴∠=∠=︒,360909080100AOB ∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB ∠=∠=︒;(Ⅱ)连接CE ,AE 为O 的直径,90ACE ∴∠=︒, 50ACB ∠=︒,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850. (Ⅱ)16y x = (0)x >当050x <时,27y x = (050)x <当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+ (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去; 当12y y =时,也有:65100x x =+,解得100x =, 故他在同一个批发店一次购买苹果的数量为100千克. ②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元, 720700>∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).【解答】解:(Ⅰ)点(6,0)A , 6OA ∴=, 2OD =,624AD OA OD ∴=-=-=,四边形CODE 是矩形, //DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED == 2OD =,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE ',1122MFE S ME FE t ∆'∴=''=⨯=,2C O D E S O D E D ''''=''⋅''=⨯矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S ③所示: 6O A OA OO t ''=-=-,90AO F '∠=︒,30AFO ABO '∠=∠=︒,)O F A t ''∴==-1(6))2S t t ∴=--=解得:6t =6t =,6t ∴=S =④所示:6O A t '=-,624D A t t '=--=-,)O G t '∴=-,)D F t '=-,1))]22S t t ∴=--⨯=,解得:52t =, ∴353S 时,t 的取值范围为5622t -.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.【解答】解:(Ⅰ)抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=,即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--, 由0b >,得02bb >>,10b --<, ∴点(,1)D b b --在第四象限,且在抛物线对称轴2bx =的右侧, 如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b , 1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,22()2QM AM QM +=+, ∴可取点(0,1)N ,如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,由45GAM ∠=︒,得2AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,QH MH ∴=,QM =,点(,0)M m ,310()()242b b m ∴---=+-,解得,124b m =-,24QM +=,∴1112[()(1)])()]24224b b b ---++--=4b ∴=.2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

2024年天津市中考数学试卷(Word版含解析)

2024年天津市中考数学试卷(Word版含解析)

2024年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算3﹣(﹣3)的结果等于()A.﹣6B.0C.3D.62.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A.0.08×107B.0.8×106C.8×105D.80×1046.的值等于()A.0B.1C.D.7.计算的结果等于()A.3B.x C.D.8.若点A(x1,﹣1),B(x2,1),C(x3,5)都在反比例函数的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x39.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳子长y尺,则可以列出的方程组为()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,∠B=40°,以点A为圆心,适当长为半径画弧,交AB于点E,交AC于点F;再分别以点E,F为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在∠BAC 的内部相交于点P;画射线AP,与BC相交于点D,则∠ADC的大小为()A.60°B.65°C.70°D.75°11.如图,△ABC中,∠B=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别为D,E,延长BA交DE于点F,下列结论一定正确的是()A.∠ACB=∠ACD B.AC∥DE C.AB=EF D.BF⊥CE12.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.14.计算x8÷x6的结果为.15.计算的结果为.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第三、第一象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD的边长为,对角线AC,BD相交于点O,点E在CA的延长线上,OE=5,连接DE.(Ⅰ)线段AE的长为;(Ⅱ)若F为DE的中点,则线段AF的长为.18.如图,在每个小正方形的边长为1的网格中,点A,F,G均在格点上.(I)线段AG的长为;(II)点E在水平网格线上,过点A,E,F作圆,经过圆与水平网格线的交点作切线,分别与AE,AF 的延长线相交于点B,C,△ABC中,点M在边BC上,点N在边AB上,点P在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点M,N,P,使△MNP的周长最短,并简要说明点M,N,P 的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)填空:a的值为,图①中m的值为,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为和;(Ⅱ)求统计的这组学生每周参加科学教育的时间数据的平均数;(Ⅲ)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?21.已知△AOB中,∠ABO=30°,AB为⊙O的弦,直线MN与⊙O相切于点C.(Ⅰ)如图①,若AB∥MN,直径CE与AB相交于点D,求∠AOB和∠BCE的大小;(Ⅱ)如图②,若OB∥MN,CG⊥AB,垂足为G,CG与OB相交于点F,OA=3,求线段OF的长.22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB的高度(如图①).某学习小组设计了一个方案:如图②,点C,D,E依次在同一条水平直线上,DE=36m,EC⊥AB,垂足为C.在D 处测得桥塔顶部B的仰角(∠CDB)为45°,测得桥塔底部A的俯角(∠CDA)为6°,又在E处测得桥塔顶部B的仰角(∠CEB)为31°.(I)求线段CD的长(结果取整数);(Ⅱ)求桥塔AB的高度(结果取整数).参考数据:tan31°≈0.6,tan6°≈0.1.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km,文化广场离家1.5km.张华从家出发,先匀速骑行了4min到画社,在画社停留了15min,之后匀速骑行了6min到文化广场,在文化广场停留6min后,再匀速步行了20min返回家.如图图中x表示时间,y表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(I)①填表:141330张华离开家的时间/min张华离家的距离/km0.6②填空:张华从文化广场返回家的速度为km/min;③当0≤x≤25时,请直接写出张华离家的距离y关于时间x的函数解析式;(Ⅱ)当张华离开家8min时,他的爸爸也从家出发匀速步行了20min直接到达了文化广场,那么从画社到文化广场的途中(0.6<y<1.5)两人相遇时离家的距离是多少?(直接写出结果即可)24.将一个平行四边形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点B,C在第一象限,且OC=2,∠AOC=60°.(Ⅰ)填空:如图①,点C的坐标为,点B的坐标为;(Ⅱ)若P为x轴的正半轴上一动点,过点P作直线l⊥x轴,沿直线l折叠该纸片,折叠后点O的对应点O′落在x轴的正半轴上,点C的对应点为C′.设OP=t.①如图②,若直线l与边CB相交于点Q,当折叠后四边形PO′C′Q与▱OABC重叠部分为五边形时,O′C′与AB相交于点E.试用含有t的式子表示线段BE的长,并直接写出t的取值范围;②设折叠后重叠部分的面积为S,当时,求S的取值范围(直接写出结果即可).25.已知抛物线y=ax2+bx+c(a,b,c为常数,a>0)的顶点为P,且2a+b=0,对称轴与x轴相交于点D,点M(m,1)在抛物线上,m>1,O为坐标原点.(I)当a=1,c=﹣1时,求该抛物线顶点P的坐标;(Ⅱ)当时,求a的值;(Ⅲ)若N是抛物线上的点,且点N在第四象限,∠MDN=90°,DM=DN,点E在线段MN上,点F在线段DN上,,当DE+MF取得最小值为时,求a的值.。

天津市2014年中考数学试卷(解析版)41858

天津市2014年中考数学试卷(解析版)41858

2014年天津市中考数学试卷一、选择题(本大题共12小题.每小题3分.共36分)1.(3分)(2014•天津)计算(﹣6)×(﹣1)的结果等于()A.6B.﹣6 C.1D.﹣1考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣6)×(﹣1)=6×1=6.故选A.点评:本题考查了有理数的乘法运算.是基础题.熟记运算法则是解题的关键.2.(3分)(2014•天津)cos60°的值等于()A.B.C.D.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值解题即可.解答:解:cos 60°=.故选A.点评:本题考查特殊角的三角函数值.准确掌握特殊角的函数值是解题关键.3.(3分)(2014•天津)下列标志中.可以看作是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形.是中心对称图形.不符合题意;B、不是轴对称图形.是中心对称图形.不符合题意;C、不是轴对称图形.是中心对称图形.不符合题意;D、是轴对称图形.符合题意.故选:D.点评:此题主要考查了中心对称图形和轴对称图形的定义.掌握中心对称图形与轴对称图形的概念.解答时要注意:判断轴对称图形的关键是寻找对称轴.图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心.图形旋转180度后与原图重合.4.(3分)(2014•天津)为了市民出行更加方便.天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608000000人次.将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n的绝对值与小数点移动的位数相同.当原数绝对值>1时.n是正数;当原数的绝对值<1时.n是负数.解答:解:将1608000000用科学记数法表示为:1.608×109.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.表示时关键要正确确定a的值以及n的值.5.(3分)(2014•天津)如图.从左面观察这个立体图形.能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左面看得到的图形是左视图.可得答案.解答:解;从左面看下面一个正方形.上面一个正方形.故选:A.点评:本题考查了简单组合体的三视图.从左面看得到的图形是左视图.6.(3分)(2014•天津)正六边形的边心距为.则该正六边形的边长是()A.B.2C.3D.2考点:正多边形和圆.分析:运用正六边形的性质.正六边形边长等于外接圆的半径.再利用勾股定理解决.解答:解:∵正六边形的边心距为.∴OB =.AB =OA.∵OA2=AB2+OB2.∴OA2=(OA)2+()2.解得OA=2.故选B.点评:本题主要考查了正六边形和圆.注意:外接圆的半径等于正六边形的边长.7.(3分)(2014•天津)如图.AB是⊙O的弦.AC是⊙O的切线.A为切点.BC经过圆心.若∠B=25°.则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质.分析:连接OA.根据切线的性质.即可求得∠C的度数.解答:解:如图.连接OA.∵AC是⊙O的切线.∴∠OAC=90°.∵OA=OB.∴∠B=∠OAB=25°.∴∠AOC=50°.∴∠C=40°.点评:本题考查了圆的切线性质.以及等腰三角形的性质.已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014•天津)如图.在▱ABCD中.点E是边AD的中点.EC交对角线BD于点F.则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.分析:根据题意得出△DEF∽△BCF.进而得出=.利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD.故AD∥BC.∴△DEF∽△BCF.∴=.∵点E是边AD的中点.∴AE=DE=AD.∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识.得出△DEF∽△BCF是解题关键.9.(3分)(2014•天津)已知反比例函数y=.当1<x<2时.y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10.当x=2时.y=5.∴当1<x<2时.y的取值范围是5<y<10.故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0.双曲线的两支分别位于第一、第三象限.在每一象限内y随x的增大而减小;(3)当k<0.双曲线的两支分别位于第二、第四象限.在每一象限内y随x的增大而增大.10.(3分)(2014•天津)要组织一次排球邀请赛.参赛的每个队之间都要比赛一场.根据场地和时间等条件.赛程计划安排7天.每天安排4场比赛.设比赛组织者应邀请x个队参赛.则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7.把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场.但2队之间只有1场比赛.所以可列方程为:x(x﹣1)=4×7.故选B.点评:本题考查了由实际问题抽象出一元二次方程.解决本题的关键是得到比赛总场数的等量关系.注意2队之间的比赛只有1场.最后的总场数应除以2.11.(3分)(2014•天津)某公司欲招聘一名公关人员.对甲、乙、丙、丁四位候选人进行了面试和笔试.他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92如果公司认为.作为公关人员面试的成绩应该比笔试的成绩更重要.并分别赋予它们6和4的权.根据四人各自的平均成绩.公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数.再进行比较.即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分).乙的平均成绩为:(92×6+83×4)÷10=88.4(分).丙的平均成绩为:(90×6+83×4)÷10=87.2(分).丁的平均成绩为:(83×6+92×4)÷10=86.6(分).因为乙的平均分数最高.所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式.注意.计算平均数时按6和4的权进行计算.12.(3分)(2014•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图.且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根.有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中.正确结论的个数是()A.0B.1C.2D.3考点:二次函数图象与系数的关系.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点.进而判断①;先根据抛物线的开口向下可知a<0.由抛物线与y轴的交点判断c与0的关系.根据对称轴在y轴右侧得出b与0的关系.然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根.则可转化为ax2+bx+c=m.即可以理解为y=ax2+bx+c和y=m没有交点.即可求出m的取值范围.判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点.∴b2﹣4ac>0.故①正确;②∵抛物线的开口向下.∴a<0.∵抛物线与y轴交于正半轴.∴c>0.∵对称轴x=﹣>0.∴ab<0.∵a<0.∴b>0.∴abc<0.故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根.∴y=ax2+bx+c和y=m没有交点.由图可得.m>2.故③正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系.会利用对称轴的范围求2a与b的关系.以及二次函数与方程之间的转换.根的判别式的熟练运用.二、填空题(本大题共6小题.每小题3分.满分18分)13.(3分)(2014•天津)计算x5÷x2的结果等于x3.考点:同底数幂的除法.分析:同底数幂相除底数不变.指数相减.解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法.解题要注意细心明确指数相减.14.(3分)(2014•天津)已知反比例函数y=(k为常数.k≠0)的图象位于第一、第三象限.写出一个符合条件的k的值为 1 .考点:反比例函数的性质.专题:开放型.分析:反比例函数y=(k为常数.k≠0)的图象在第一.三象限.则k>0.符合上述条件的k的一个值可以是1.(正数即可.答案不唯一)解答:解:∵反比例函数的图象在一、三象限.∴k>0.只要是大于0的所有实数都可以.例如:1.故答案为:1.点评:此题主要考查反比例函数图象的性质:(1)k>0时.图象是位于一、三象限;(2)k<0时.图象是位于二、四象限.15.(3分)(2014•天津)如图.是一副普通扑克牌中的13张黑桃牌.将它们洗匀后正面向下放在桌子上.从中任意抽取一张.则抽出的牌点数小于9的概率为.考点:概率公式.分析:抽出的牌的点数小于9有1.2.3.4.5.6.7.8共8个.总的样本数目为13.由此可以容易知道事件抽出的牌的点数小于9的概率.解答:解:∵抽出的牌的点数小于9有1.2.3.4.5.6.7.8共8个.总的样本数目为13.∴从中任意抽取一张.抽出的牌点数小于9的概率是:.故答案为:.点评:此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014•天津)抛物线y=x2﹣2x+3的顶点坐标是(1.2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式.用配方法转化为顶点式.根据顶点式的坐标特点.直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.∴抛物线y=x2﹣2x+3的顶点坐标是(1.2).点评:此题考查了二次函数的性质.二次函数y=a(x﹣h)2+k的顶点坐标为(h.k).对称轴为x=h.此题还考查了配方法求顶点式.17.(3分)(2014•天津)如图.在Rt△ABC中.D.E为斜边AB上的两个点.且BD=BC.AE=AC.则∠DCE的大小为45 (度).考点:等腰三角形的性质.分析:设∠DCE=x.∠ACD=y.则∠ACE=x+y.∠BCE=90°﹣∠ACE=90°﹣x﹣y.根据等边对等角得出∠ACE=∠AEC=x+y.∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中.利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°.解方程即可求出∠DCE的大小.解答:解:设∠DCE=x.∠ACD=y.则∠ACE=x+y.∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC.∴∠ACE=∠AEC=x+y.∵BD=BC.∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中.∵∠DCE+∠CDE+∠DEC=180°.∴x+(90°﹣y)+(x+y)=180°.解得x=45°.∴∠DCE=45°.故答案为45.点评:本题考查了等腰三角形的性质及三角形内角和定理.设出适当的未知数列出方程是解题的关键.18.(3分)(2014•天津)如图.将△ABC放在每个小正方形的边长为1的网格中.点A.点B.点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11 ;(Ⅱ)请在如图所示的网格中.用无刻度的直尺.画出一个以AB为一边的矩形.使该矩形的面积等于AC2+BC2.并简要说明画图方法(不要求证明)如图所示:.考点:作图—应用与设计作图.分析:(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED.正方形BCNM.正方形ABHF;进而得出答案.解答:解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED.正方形BCNM.正方形ABHF;延长DE交MN于点Q.连接QC.平移QC至AG.BP位置.直线GP分别交AF.BH于点T.S.则四边形ABST即为所求.点评:此题主要考查了应用设计与作图.借助网格得出正方形是解题关键.三、解答题(本大题共7小题.共66分)19.(8分)(2014•天津)解不等式组请结合题意填空.完成本题的解答:(Ⅰ)解不等式①.得x≥﹣1 ;(Ⅱ)解不等式②.得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集.再求出其公共解集.并在数轴上表示出来即可.解答:解:(I)解不等式①.得x≥﹣1;(II)解不等式②得.x≤1.(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1.x≤1.﹣1≤x≤1.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014•天津)为了推动阳光体育运动的广泛开展.引导学生走向操场.走进大自然.走到阳光下.积极参加体育锻炼.学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号.绘制了如下的统计图①和图②.请根据相关信息.解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 .图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据.若学校计划购买200双运动鞋.建议购买35号运动鞋多少双?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.专题:计算题.分析:(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1.求出m的值即可;(Ⅱ)找出出现次数最多的即为众数.将数据按照从小到大顺序排列.求出中位数即可;(Ⅲ)根据题意列出算式.计算即可得到结果.(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40.图①中m的值为100﹣30﹣25﹣20﹣10=15;解答:解:故答案为:40;15;(Ⅱ)∵在这组样本数据中.35出现了12次.出现次数最多.∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列.其中处于中间的两个数都为36.∴中位数为=36;(Ⅲ)∵在40名学生中.鞋号为35的学生人数比例为30%.∴由样本数据.估计学校各年级中学生鞋号为35的人数比例约为30%.则计划购买200双运动鞋.有200×30%=60双为35号.点评:此题考查了条形统计图.扇形统计图.以及用样本估计总体.弄清题意是解本题的关键.21.(10分)(2014•天津)已知⊙O的直径为10.点A.点B.点C在⊙O上.∠CAB的平分线交⊙O于点D.(Ⅰ)如图①.若BC为⊙O的直径.AB=6.求AC.BD.CD的长;(Ⅱ)如图②.若∠CAB=60°.求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形.利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形.所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②.连接OB.OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形.则BD=OB=OD=5.解答:解:(Ⅰ)如图①.∵BC是⊙O的直径.∴∠CAB=∠BDC=90°.∵在直角△CAB中.BC=10.AB=6.∴由勾股定理得到:AC===8.∵AD平分∠CAB.∴=.∴CD=BD.在直角△BDC中.BC=10.CD2+BD2=BC2.∴易求BD=CD=5;(Ⅱ)如图②.连接OB.OD∵AD平分∠CAB.且∠CAB=60°.∴∠DAB=∠CAB=30°.∴∠DOB=2∠DAB=60°.又∵OB=OD.∴△OBD是等边三角形.∴BD=OB=OD.∵⊙O的直径为10.则OB=5.∴BD=5.点评:本题综合考查了圆周角定理.勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014•天津)解放桥是天津市的标志性建筑之一.是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①.已知解放桥可开启部分的桥面的跨度AB等于47m.从AB的中点C处开启.则AC开启至A′C′的位置时.A′C′的长为23.5 m;(Ⅱ)如图②.某校数学兴趣小组要测量解放桥的全长PQ.在观景平台M处测得∠PMQ=54°.沿河岸MQ前行.在观景平台N处测得∠PNQ=73°.已知PQ⊥MQ.MN=40m.求解放桥的全长PQ(tan54°≈1.4.tan73°≈3.3.结果保留整数).考点:解直角三角形的应用.专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x.在Rt△PMQ中表示出MQ.在Rt△PNQ中表示出NQ.再由MN=40m.可得关于x的方程.解出即可.解答:解:(I)∵点C是AB的中点.∴A'C'=AB=23.5m.(II)设PQ=x.在Rt△PMQ中.tan∠PMQ==1.4.∴MQ=.在Rt△PNQ中.tan∠PNQ==3.3.∴NQ=.∵MN=MQ﹣NQ=40.即﹣=40.解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用.解答本题的关键是熟练锐角三角函数的定义.难度一般.23.(10分)(2014•天津)“黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg以上的种子.超过2kg部分的种子的价格打8折.(Ⅰ)根据题意.填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 10 16 18 …(Ⅱ)设购买种子数量为xkg.付款金额为y元.求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元.求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.分析:(1)根据单价乘以数量.可得答案;(2)根据单价乘以数量.可得价格.可得相应的函数解析式;(3)根据函数值.可得相应的自变量的值.解答:解:(Ⅰ)10.8;(Ⅱ)根据题意得.当0≤x≤2时.种子的价格为5元/千克.∴y=5x.当x>2时.其中有2千克的种子按5元/千克计价.超过部分按4元/千克计价.∴y=5×2+4(x﹣2)=4x+2.y关于x的函数解析式为y=;(Ⅲ)∵30>2.∴一次性购买种子超过2千克.∴4x+2=30.解得x=7.答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用.分类讨论是解题关键.24.(10分)(2014•天津)在平面直角坐标系中.O为原点.点A(﹣2.0).点B(0.2).点E.点F分别为OA.OB 的中点.若正方形OEDF绕点O顺时针旋转.得正方形OE′D′F′.记旋转角为α.(Ⅰ)如图①.当α=90°时.求AE′.BF′的长;(Ⅱ)如图②.当α=135°时.求证AE′=BF′.且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P.求点P的纵坐标的最大值(直接写出结果即可).考点:几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:综合题.分析:(1)利用勾股定理即可求出AE′.BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时).然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.解答:解:(Ⅰ)当α=90°时.点E′与点F重合.如图①.∵点A(﹣2.0)点B(0.2).∴OA=OB=2.∵点E.点F分别为OA.OB的中点.∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的.∴OE′=OE=1.OF′=OF=1.在Rt△AE′O中.AE′=.在Rt△BOF′中.BF′=.∴AE′.BF′的长都等于.(Ⅱ)当α=135°时.如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得.∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中..∴△AOE′≌△BOF′(SAS).∴AE′=BF′.且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB.∠CAO=∠CBP.∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内.当点D′与点P重合时.点P的纵坐标最大.过点P作PH⊥x轴.垂足为H.如图③所示.∵∠AE′O=90°.E′O=1.AO=2.∴∠E′AO=30°.AE′=.∴AP=+1.∵∠AHP=90°.∠PAH=30°.∴PH=AP=.∴点P的纵坐标的最大值为.点评:本题是在图形旋转过程中.考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识.而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014•天津)在平面直角坐标系中.O为原点.直线l:x=1.点A(2.0).点E.点F.点M都在直线l上.且点E和点F关于点M对称.直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1.﹣1).①当点F的坐标为(1.1)时.如图.求点P的坐标;②当点F为直线l上的动点时.记点P(x.y).求y关于x的函数解析式.(Ⅱ)若点M(1.m).点F(1.t).其中t≠0.过点P作PQ⊥l于点Q.当OQ=PQ时.试用含t的式子表示m.考点:一次函数综合题.分析:(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程.然后联立方程组.求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1.t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t).整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ).易求P(2﹣.2t﹣).则由PQ⊥l于点Q.得点Q(1.2t﹣).则OQ2=1+t2(2﹣)2.PQ2=(1﹣)2.所以1+t2(2﹣)2=(1﹣)2.化简得到:t(t﹣2m)(t2﹣2mt﹣1)=0.通过解该方程可以求得m与t的关系式.解答:解:(Ⅰ)①∵点O(0.0).F(1.1).∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1.﹣1)对称.∴E(1.﹣3).又A(2.0).点E在直线EA上.∴.解得.∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点.则.解得.∴点P的坐标是(3.3).②由已知可设点F的坐标是(1.t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数.且c≠0).由点E和点F关于点M(1.﹣1)对称.得点E(1.﹣2﹣t).又点A、E在直线EA上.∴.解得.∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点.∴tx=(2+t)x﹣2(2+t).即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得.直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点.∴tx=(t﹣2m)x﹣2(t﹣2m).化简.得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣.2t﹣).∵PQ⊥l于点Q.得点Q(1.2t﹣).∴OQ2=1+t2(2﹣)2.PQ2=(1﹣)2.∵OQ=PQ.∴1+t2(2﹣)2=(1﹣)2.化简.得t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0.∴t﹣2m=0或t2﹣2mt﹣1=0.解得m=或m=.则m=或m=即为所求.点评:本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式.一次函数与直线的交点问题.此题难度不大.掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.。

2014年天津市中考数学试卷及答案解析

2014年天津市中考数学试卷及答案解析

-12014年天津市中考数学试卷、选择题(本大题共 12小题,每小题3分,共36 分)1.( 3分)(2014年天津市)计算(-6) X ( - 1)的结果等于() A.6 B .- 6 C .1 D .考点: 有理数的乘法.分析: 根据有理数的乘法运算法则进行计算即可得解. 解答: 解:(-6) X (- 1), =6X1, =6. 故选A .点评: 本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2. ( 3分)(2014年天津市)cos60°的值等于( )A .-B.2-C -P -£3考点: 特殊角的三角函数值.分析: 根据特殊角的三角函数值解题即可.解答:解:cos60°=—2故选A .点评:本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.考点: 轴对称图形.分析: 根据轴对称图形与中心对称图形的概念求解.解答: 解:A 、不是轴对称图形,是中心对称图形,不符合题意; B 、 不是轴对称图形,是中心对称图形,不符合题意; C 、 不是轴对称图形,是中心对称图形,不符合题意; D 、 是轴对称图形,符合题意. 故选:D .点评: 此题主要考查了中心对称图形和轴对称图形的定义, 掌握中心对称图形与轴对称图形的概念,解答时要注意:3. ( 3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是(B .)D .A .判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称 是要寻找对称中心,图形旋转180度后与原图重合.4. ( 3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通, 2013年 天津市公共交通客运量约为 1608000000人次,将1608000000用科学记数法表示为()789A . 160.8X10B . 16.08XI0C . 1.608>10D .100.160 8 X 0考点: 科学记数法一表示较大的数.分析: 科学记数法的表示形式为 a X 0n 的形式,其中1弓a|v 10, n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同•当原数 绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数.解答: 解:将1608000000用科学记数法表示为:1.608X 09.故选:C .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 a X 0n 的形式,其中1哼a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.5. ( 3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是().分析: 根据从左面看得到的图形是左视图,可得答案. 解答: 解;从左面看下面一个正方形,上面一个 正方形,故选:A .点评: 本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6. ( 3分)(2014年天津市)正六边形的边心距为 ;,则该正六边形的边长是(_) A . 二 B . 2 C . 3 D . 2 二考点: 正多边形和圆.分析: 运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.解答: 解:•••正六边形的边心距为 匚, •••OB= ;, AB=—OA ,22 2 2•••OA =AB +OB ,图形C .D .A .•••0A 2= ( OA ) 2+ ( 7) 2,2解得OA=2 . 故选 B .x_k_b_i点评: 本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7. ( 3分)(2014年天津市)如图,AB 是O O 的弦,AC 是O O 的切线,A 为切点,BC 经过••• AC 是O O 的切线, •••/ OAC=90 ° •/ OA=OB , •••/ B= / OAB=25 ° •••/ AOC=50 ° •••/ C=40°点评: 本题考查了圆的切线性质, 以及等腰三角形的性质, 已知切线时常用的辅助线是连 接圆心与切点.& ( 3分)(2014年天津市)如图,在?ABCD 中,点E 是边AD 的中点, 点F ,则EF : FC 等于(& ¥ ____ DC . 1: 1D . 1 : 225° C . 40° D . 50考点:切线的性质.分析: 连接OA ,根据切线的性质,即可求得/ 解答: 解:如图,连接 OA ,C 的度数.EC 交对角线BD 于3: 2 C考点:平行四边形的性质;相似三角形的判定与性质.分析:根据题意得出△ DEFBCF ,进而得出1= '「,利用点E是边AD的中点得出答BC FC案即可.解答:解:?ABCD,故AD // BC,•••△DEFBCF ,•丁一“… =——,BC FC•••点E是边AD的中点,• AE=DE= _AD ,2•匚一- -- = ・FC 2故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△ DEF BCF是解题关键.9. (3分)(2014年天津市)已知反比例函数y=「,当1 v x V 2时,y的取值范围是()xA . 0v y v 5B . 1 v y v 2C . 5v y v 10D . y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:T反比例函数y=二-中当x=1时y=10,当x=2时,y=5,•••当1 v x v 2时,y的取值范围是5v y v 10, 故选C .点评:本题考查了反比例函数的性质:(1)反比例函数y=^ (k旳)的图象是双曲线;(2)x当k> 0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k v 0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10 . (3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A . x (x+1 )=28B . x (x - 1)=28C . x (x+1 )=28D .2 2x (x - 1)=28考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数x每支球队需赛的场数吃=4 >7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x - 1)场,但2队之间只有1场比赛,所以可列方程为: x (x - 1) =4 >7.2故选B .点评: 本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以 2.11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进 行了面试和笔试,他们的成绩如表: 候选人甲 乙 丙 丁测试成绩(百分制)面试86929083笔试 90 83 8392 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们 6和4的权.根据四人各自的平均成绩,公司将录取()A .甲B .乙C .丙D .丁考点: 加权平均数.分析: 根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出 答案.解答: 解:甲的平均成绩为: (86 0+90 >4)勻0=87.6 (分), 乙的平均成绩为:(92>6+83 >4) ^10=88.4 (分), 丙的平均成绩为:(900+83 >4) ^10=87.2 (分), 丁的平均成绩为:(83 >6+92 >4) ^10=86.6 (分), 因为乙的平均分数最高, 所以乙将被录取. 故选B .点评: 此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.212 . (3分)(2014年天津市)已知二次函数y=ax +bx+c (a 用)的图象如图,且关于 x 的一元2二次方程ax +bx+c - m=0没有实数根,有下列结论:O① b - 4ac >0;② abc v 0;③ m >2 .其中,正确结论的个数是()考点: 二次函数图象与系数的关系.分析: 由图象可知二次函数 y=ax +bx+c 与x 轴有两个交点,进而判断 ①; 先根据抛物线的开口向下可知 a v 0,由抛物线与y 轴的交点判断c 与0的关系,根据对称 轴在y 轴右侧得出b 与0的关系,然后根据有理数乘法法则判断 ②;一 2 21 C . 2D . 3B .一元二次方程ax+bx+c - m=0没有实数根,则可转化为ax+bx+c=m,即可以理解为2y=ax +bx+c和y=m没有交点,即可求出m的取值范围,判断③即可. 解答:解:①•••二次函数y=ax2+bx+c与x轴有两个交点,2••• b - 4ac> 0,故① 正确;②•••抛物线的开口向下,• a v 0,•••抛物线与y轴交于正半轴,• c> 0,•••对称轴x= - —> 0,2a• ab v 0,•/ a v 0,• b > 0,• abc v0,故②正确;2③•••一元二次方程ax +bx+c - m=0没有实数根,2• y=ax +bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D .点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)5 2 313. (3分)(2014年天津市)计算x次的结果等于x .考点:同底数幕的除法.分析:同底数幕相除底数不变,指数相减,解答:解:X5畝2=x3 故答案为:x3.点评:此题考查了同底数幕的除法,解题要注意细心明确指数相减.14. (3分)(2014年天津市)已知反比例函数沪(k为常数,k用)的图象位于第一、第三象限,写出一个符合条件的k的值为 1 .考点:反比例函数的性质.专题:开放型.分析:反比例函数y=‘ (k为常数,k老)的图象在第一,三象限,则k > 0,符合上述条x件的k的一个值可以是1.(正数即可,答案不唯一)解答:解:•••反比例函数的图象在一、三象限,• k > 0,只要是大于0的所有实数都可以.例如:1.故答案为:1.故答案为:一.点评: 此题主要考查了概率的求法.2 一16. (3分)(2014年天津市)抛物线y=x - 2x+3的顶点坐标是 (1, 2)考点: 二次函数的性质. 专题: 计算题.分析: 已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点, 直接写出顶点坐标.2 2 2解答: 解:••• y=x 2 - 2x+3=x 2 - 2x+1 - 1+3= (x - 1) 2+2,2•抛物线y=x - 2x+3的顶点坐标是(1, 2). .§k §b,点评: 此题考查了二次函数的性质,二次函数y=a (x - h ) 2+k 的顶点坐标为(h , k ),对称轴为x=h ,此题还考查了配方法求顶点式.17. (3分)(2014年天津市)如图,在Rt △ ABC 中,D , E 为斜边AB 上的两个点,且BD=BC , AE=AC ,则/ DCE 的大小为 45(度).考点: 等腰三角形的性质.点评: 此题主要考查反比例函数图象的性质: (1) k >0时,图象是位于一、三象限;(2)k v 0时,图象是位于二、四象限.15. ( 3分)(2014年天津市)如图,是一副普通扑克牌中的 向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于13张黑桃牌,将它们洗匀后正面 9的概率为 —一13—考点: 概率公式.分析: 抽出的牌的点数小于 9有1, 2, 3, 4, 5, 6, 由此可以容易知道事件抽出的牌的点数小于 9的概率.解答: 解:•••抽出的牌的点数小于 9有1 , 2, 3, 4,为13,8共8个,总的样本数目为 13, 6, 7, 8共8个,总的样本数目•••从中任意抽取一张,抽出的牌点数小于 9的概率是:用到的知识点为: 概率=所求情况数与总情况数之比.分析:设/ DCE=x,/ ACD=y,则/ ACE=x+y,/ BCE=90ACE=90 °- x - y,根据等边对等角得出/ ACE= / AEC=x+y,/ BDC= / BCD= / BCE+ / DCE=90 °- y.然后在△ DCE中,利用三角形内角和定理列出方程x+ (90°-y) + (x+y) =180°解方程即可求出/ DCE的大小.解答:解:设/ DCE=x,/ ACD =y,则/ ACE=x+y,/ BCE=90。

天津市中考数学试卷及答案(Word解析版)

天津市中考数学试卷及答案(Word解析版)

天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(•天津)计算(﹣3)+(﹣9)的结果等于()A.12 B.﹣12 C.6D.﹣6考点:有理数的加法.分析:根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.解答:解:(﹣3)+(﹣9)=﹣12;故选B.点评:本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.(3分)(•天津)tan60°的值等于()A.1B.C.D.2考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案.解答:解:tan60°=.故选C.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.3.(3分)(•天津)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(3分)(•天津)中国园林网4月22日消息:为建设生态滨海,天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为()A.821×102B.82.1×105C.8.21×106D.0.821×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 210 000=8.21×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(•天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,∴(1)班成绩的方差>(2)班成绩的方差,∴(2)班比(1)班的成绩稳定.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:所给图形的三视图是A选项所给的三个图形.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键.7.(3分)(•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.8.(3分)(•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:2 考点:正多边形和圆.分析:首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.解答:解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.点此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.9.(3分)(•天津)若x=﹣1,y=2,则﹣的值等于()A.B.C.D.分式的化简求值.考点:先根据分式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可.分析:解解:原式=﹣答:===,当x=﹣1,y=2时,原式==.故选D.点本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.评:10.(3分)(•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y 升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P 与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3考函数的图象.分析:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;解答:解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选C.点评:本题考查了函数的图象,解答本题需要同学们仔细分析所示情景,判断函数图象是否符合,要求同学们能将实际问题转化为函数图象,有一定难度.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(•天津)计算a•a6的结果等于a7.考点:同底数幂的乘法.专题:计算题.分析:利用同底数幂的法则计算即可得到结果.解答:解:a•a6=a7.故答案为:a7点评:此题考查了同底数幂的乘法运算,熟练掌握运算法则是解本题的关键.12.(3分)(•天津)一元二次方程x(x﹣6)=0的两个实数根中较大的根是6.考点:解一元二次方程-因式分解法.专计算题.分析:原方程转化为x=0或x﹣6=0,然后解两个一次方程即可得到原方程较大的根.解答:解:∵x=0或x﹣6=0,∴x1=0,x2=6,∴原方程较大的根为6.故答案为6.点评:本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.13.(3分)(•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是k>0.考点:一次函数图象与系数的关系.分析:根据一次函数图象所经过的象限确定k的符号.解答:解:∵一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k>0.故填:k>0.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14.(3分)(•天津)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段AC=BD(答案不唯一).考点:全等三角形的判定与性质.专题:开放型.分析:利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.解答:解:∵在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),∴AC=BD,AD=BC.故答案为:AC=BD(答案不唯一).点评:本题考查了全等三角形的判定与性质,是基础题,关键在于公共边AB的应用,开放型题目,答案不唯一.15.(3分)(•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).考点:切线的性质.分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(•天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.17.(3分)(•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7.考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.解答:解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则=,即=,解得:CE=2,故AE=AC﹣CE=9﹣2=7.故答案为:7.点评:此题主要考查了相似三角形的判定和性质以及等边三角形的性质,根据等边三角形的性质证得△ABD∽△DCE是解答此题的关键.18.(3分)(•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.三、解答题(共8小题,满分66分)19.(6分)(•天津)解不等式组.考点:解一元一次不等式组.专计算题.题:分析:分别解两个不等式得到x<3和x>﹣3,然后根据大于小的小于大的取中间确定不等式组的解集.解答:解:,解①得x<3,解②得x>﹣3,所以不等式组的解集为﹣3<x<3.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.20.(8分)(•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.分析:(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值.(Ⅱ)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上;(Ⅲ)根据反比例函数图象的增减性解答问题.解答:解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得3=,解得,k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y=,∴6=xy.分别把点B、C的坐标代入,得(﹣1)×6=﹣6≠6,则点B不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又∵k>0,∴当x<0时,y随x的增大而减小,∴当﹣3<x<﹣1时,﹣6<y<﹣2.点评:本题考查了反比例函数图象的性质、待定系数法求反比例函数解析式以及反比例函数图象上点的坐标特征.用待定系数法求反比例函数的解析式,是中学阶段的重点.21.(8分)(•天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.分析:(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.解答:解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15=15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.点评:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.(8分)(•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.考点:切线的性质;圆周角定理;直线与圆的位置关系.分析:(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.解答:解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=180°﹣72°=18°.点评:此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.(8分)(•天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).考点:解直角三角形的应用-仰角俯角问题.分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.解答:解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD为:415m.点评:本题考查了仰角的知识.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.24.(8分)(•天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考一元一次不等式的应用;一元一次方程的应用.点:分析:(1)根据已知得出100+(290﹣100)×0.9以及50+(290﹣50)×0.95进而得出答案,同理即可得出累计购物x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.解答:解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(290﹣100)×0.9x=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(290﹣50)×0.95x=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,y B=0.95x+50(1﹣95%)=0.95x+2.5,正确;∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.25.(10分)(•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E 在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).考点:相似形综合题.分析:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到=,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2﹣m)2+42=m2﹣4m+20,在Rt△BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).点评:本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.26.(10分)(•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.x …﹣1 0 3 …y1=ax2+bx+c …0 0 …考点:二次函数综合题.专题:探究型.分析:(I)先根据物线经过点(0,)得出c的值,再把点(﹣1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式;(II)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q (1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P 点坐标,故可得出y2与x之间的函数关系式;②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,)在x 轴下方,因为3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.解解:(Ⅰ)∵抛物线经过点(0,),答:∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ANMP为菱形,∴PA∥l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,即y2=x3﹣x+,∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x3﹣x+(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥.点评:本题考查的是二次函数综合题,涉及到待定系数法二次函数解的解析式、勾股定理及二次函数的性质,解答此类题目时要注意数形结合思想的运用.。

2014年天津市中考数学模拟试卷解析版(最新)

2014年天津市中考数学模拟试卷解析版(最新)

2014年天津市中考数学模拟试卷(最新)一、选择题(共12小题,每小题3分,满分36分)=9 =﹣2=22.(3分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是.(3分)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学34.(3分)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)图中三视图所对应的直观图是()6.(3分)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()9.(3分)一个布袋里装有6个只有颜色可不同的球,其中2个红球,4个白球,从布袋里任意模出一个球,则模出的球是红球的概率为()A.12B.16C.23D.13【答案】D【解析】摸出红球的概率=2163,故选D。

【方法指导】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.让红球的个数除以球的总个数即为所求的概率.10.(3分)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()AB=×()=11.(3分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题(共6小题,每小题3分,满分18分)13.(3分)cos30°的值是.cos30×=.故答案为:.14.(3分) 如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因 两点之间线段最短 .15. (3分)因式分解:234ab a = ./公顷)经计算,=10,=10,试根据这组数据估计 甲 中水稻品种的产量比较稳定.17.(3分) 函数y=x1与y=x ﹣2图象交点的横坐标分别为a ,b ,则a 1+b 1的值为 ﹣2 .,再利用整体思想计算即可.==18.(3分) 如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =2+. 其中正确的序号是 ①②④ (把你认为正确的都填上).CE=CF=,)a=,,三、解答题(共7小题,满分66分)19.(6分)解不等式组:()21213x x x -≥⎧⎪⎨-<+⎪⎩【思路分析】先确定不等式组中的每一个不等式的解集,进而再确定其公共解集.【解】解不等式①,得x ≥3; 解不等式②,得x <5.∴不等式组的解集为3≤x <5.【方法指导】确定不等式组的解集的方法既可以通过“数轴法”来解决,也可以通过“口诀法”来解决.【易错警示】和解方程一样,容易出现去分母或去括号的错误,另外,不能正确地确定其解集,也是常见的错误问题.20.(8分)如图,一次函数y 1=x +1的图象与反比例函数y 2=k x(k 为常数,且k ≠0)的图象都经过点A (m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x >0时,y 1与y 2的大小.【思路分析】(1)将点A 的坐标代入一次函数的解析式求出m 的值,再将点A 的坐标代入反比例函数的解析式求出k 的值.(2)在y 轴右边比较两个函数值的大小.【解】(1)将点A (m ,2)的坐标代入一次函数y 1=x +1得2=m +1,解得m =1. 即点A 的坐标为(1,2).将点A (1,2)的坐标代入反比例函数y 2=k x 得2=1k .即k =2. ∴反比例函数的表达式为y 2=2.(2)当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2.【方法指导】函数图象的交点是比较两个函数值大小的关键点.此题中,易知两图象的另一个交点是(-2,-1).于是可知在y 轴左边,当-2<x <0时,y 1>y 2;当x =-2时,y 1=y 2;当x <-2时,y 1<y 2.21.(8分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图. (1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?【答案】解:(1)(2)平均数:x =10201140121013201410100⨯+⨯+⨯+⨯+⨯=11.6, 中位数:11,众数:11.(3)204010100++×500=350(户). 答:不超过12吨的用户约有350户.【解析】(1)由图知100户家庭月平均用水量为10吨,12吨,13吨,14吨的户数分别为20,10,20,10,故月平均用水量为11吨的户数为100-(20+10+20+10)=40(户).(2)按加权平均数计算公式及众数、中位数的定义计算求解.(3)先算出100户家庭中月平均用水量不超过12吨的家庭所占的百分比,再乘以500即可获解.【方法指导】本题考查条形统计图、统计三数(平均数,众数和中位数),用样本估计总体的思想方法.弄清楚常见统计量的实际意义以及计算方法是解题关键. 众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.22.(10分) 如图,已知⊙O 的半径为1,DE 是⊙O 的直径,过点D 作⊙O 的切线AD ,C 是AD 的中点,AE 交⊙O 于B 点,四边形BCOE 是平行四边形.(1)求AD 的长;(2)BC 是⊙O 的切线吗?若是,给出证明;若不是,说明理由.23.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?【思路分析】第一天到第三天,实际上是两天的增长,求天平均增长率,可用a(1+x) 2=b这个增长率的模型求解.【解】设捐款增长率为x,则错误!未找到引用源。

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考 数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算()33--的结果是( )A .6B .3C .0D .-6【答案】A【详解】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6.故选A .2.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .【答案】B【分析】本题主要考查了简单组合体的三视图,根据主视图是指从正前方向看到的图形求解即可.【详解】解:由此从正面看,下面第一层是三个正方形,第二层是一个正方形(且在最右边),故选:B .3.估算 的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间【答案】C4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61- 的值等于( )A .0B .1C 1D 17.计算3311x x x ---的结果等于( )A .3B .xC .1x x -D .231x -8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<∴10x <,∴132x x x <<.故选:B .9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( )A . 4.50.51y x x y -=⎧⎨-=⎩B . 4.50.51y x x y -=⎧⎨+=⎩C . 4.51x y x y +=⎧⎨-=⎩D . 4.51x y y x +=⎧⎨-=⎩【答案】A【分析】本题考查的是二元一次方程组的应用.用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长5尺得: 4.5y x -=;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:0.51x y -=;从而可得答案.【详解】解:由题意可得方程组为:4.50.51y x x y -=⎧⎨-=⎩,故选:A.10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60B .65C .70D .75【答案】B11.如图,ABC 中,30B ∠= ,将ABC 绕点C 顺时针旋转60 得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠=∠B .AC DE ∥C .AB EF =D .BF CE⊥【答案】D【分析】本题考查了旋转性质以及两个锐角互余的三角形是直角三角形,平行线的判定,正确掌握相关性质内容是解题的关键.先根据旋转性质得60BCE ACD ∠=∠=︒,结合30B ∠= ,即可得证BF CE ⊥,再根据同旁内角互补证明两直线平行,来分析AC DE ∥不一定成立;根据图形性质以及角的运算或线段的运算得出A 和C 选项是错误的.【详解】解:记BF 与CE 相交于一点H ,如图所示:∵ABC 中,将ABC 绕点C 顺时针旋转60 得到DEC ,∴60BCE ACD ∠=∠=︒∵30B ∠=︒∴在BHC 中,18090BHC BCE B ∠=︒-∠-∠=︒∴BF CE⊥故D 选项是正确的,符合题意;设ACH x ∠=︒∴60ACB x ∠=︒-︒,∵30B ∠=︒∴()180306090EDC BAC x x ∠=∠=︒-︒-︒-︒=︒+︒∴9060150EDC ACD x x ∠+∠=︒+︒+︒=︒+︒∵x ︒不一定等于30︒∴EDC ACD ∠+∠不一定等于180︒∴AC DE ∥不一定成立,故B 选项不正确,不符合题意;∵6060ACB x ACD x ∠=︒-︒∠=︒︒,,不一定等于0︒∴ACB ACD ∠=∠不一定成立,故A 选项不正确,不符合题意;∵将ABC 绕点C 顺时针旋转60 得到DEC ,∴AB ED EF FD ==+∴BA EF>故C 选项不正确,不符合题意;故选:D12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是( )A .0B .1C .2D .3【答案】C【分析】本题考查二次函数的图像和性质,令0= 解方程即可判断①;配方成顶点式即可判断②;把2t =和5t =代入计算即可判断③.【详解】解:令0= ,则23050t t -=,解得:10t =,26t =,∴小球从抛出到落地需要6s ,故①正确;∵()223055345t t x =-=--+ ,∴最大高度为45m ,∴小球运动中的高度可以是30m ,故②正确;当2t =时,23025240=⨯-⨯= ;当5t =时,23055525=⨯-⨯= ;∴小球运动2s 时的高度大于运动5s 时的高度,故③错误;故选C .二、填空题13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为 .14.计算86x x ÷的结果为 .【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .15.计算)11的结果为 .【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是 (写出一个即可).【答案】1(答案不唯一)【分析】根据正比例函数图象所经过的象限确定k 的符号.【详解】解: 正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、三象限,0k ∴>.∴k 的值可以为1,故答案为:1(答案不唯一).【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k 的关系.解答本题注意理解:直线y kx =所在的位置与k 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F 为DE 的中点,则线段AF 的长为 .∵F 为DE 的中点,A 为GD 的中点,∴AF 为DGE △的中位线,在Rt EAH △中,EAH DAC ∠=∠AH EH∴= 222AH EH AE +=,三、解答题18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为 ;(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明) .19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤(2)3x ≥-(3)见解析(4)31x -≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(3)根据前两问的结果,在数轴上表示不等式的解集;(4)根据数轴上的解集取公共部分即可.【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥-,故答案为:3x ≥-;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x -≤≤,故答案为:31x -≤≤.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为______,图①中m的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?【答案】(1)50,34,8,8(2)8.36(3)150人【分析】本题考查条形统计图、扇形统计图,用样本估计总体,众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据6h的人数和百分比可以求得本次接受调查的学生人数,再由总人数和8h的人数即可求出m;根据条形统计图中的数据,可以得到这50个样本数据的众数、中位数;(2)根据平均数的定义进行解答即可;(3)在所抽取的样本中,每周参加科学教育的时间是9h的学生占30%,用八年级共有学生数乘以30%即可得到答案.÷=(人),【详解】(1)解:36%50m=÷⨯=,%1750100%34%∴=,34m在这组数据中,8出现了17次,次数最多,∴众数是8,将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8,+÷=,∴中位数是(88)2821.已知AOB 中,30,ABO AB ∠=︒为O 的弦,直线MN 与O 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(2)如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.∴△AOB 中,A ABO ∠+∠又30ABO ∠=︒,1802AOB ABO ∴∠=︒-∠ 直线MN 与O 相切于点∵ 直线 MN 与 O ∴90OCM ∠=︒∵OC MN∴90OCM COB ∠=∠=22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张华离开家的时间/min141330张华离家的距离/km 0.6②填空:张华从文化广场返回家的速度为______km /min ;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)【答案】(1)①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-(2)1.05km【分析】本题考查了从函数图象获取信息,求函数的解析式,列一元一次方程解决实际问题,准确理解题意,熟练掌握知识点是解题的关键.(1)①根据图象作答即可;②根据图象,由张华从文化广场返回家的距离除以时间求解即可;③分段求解,04x ≤≤,可得出0.15y x =,当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,用待定系数法求解即可.(2)先求出张华爸爸的速度,设张华爸爸距家km y ',则0.0750.6y x '=-,当两人相遇书时有600.1.005 2..2575x x --=,列一元一次方程求解即可进一步得出答案.【详解】(1)解:①画社离家0.6km ,张华从家出发,先匀速骑行了4min 到画社,∴张华的骑行速度为()0.640.15km /min ÷=,∴张华离家1min 时,张华离家0.1510.15km ⨯=,张华离家13min 时,还在画社,故此时张华离家还是0.6km ,张华离家30min 时,在文化广场,故此时张华离家还是1.5km .故答案为:0.15,0.6,1.5.②()1.5 5.1 3.10.075km /min ÷-=,故答案为:0.075.③当04x ≤≤时,张华的匀速骑行速度为()0.640.15km /min ÷=,∴0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,可得出:190.625 1.5k b k b +=⎧⎨+=⎩,解得:0.152.25k b =⎧⎨=-⎩,∴0.15 2.25y x =-,综上:当04x ≤≤时,0.15y x =,当419x <≤时,0.6y =,当1925x <≤时,0.15 2.25y x =-.(2)张华爸爸的速度为:()1.5200.075km /min ÷=,设张华爸爸距家km y ',则()0.07580.0750.6y x x =-=-',当两人从画社到文化广场的途中()0.6 1.5y <<两人相遇时,有600.1.005 2..2575x x --=,解得:22x =,∴()0.07580.0750.60.075220.6 1.05km y x x =-=-=⨯-=',故从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是1.05km .24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).∵四边形OABC 是平行四边形,2,OC =∴23OC AB OA B AOC ====∠=∠,CB ,∵CH OA⊥∴30OCH ∠=︒此时AB与C O''的交点为E与A重合,OP 如图:当C'与点B重合时,此时AB与C O''的交点为E与B重合,OP=∴t的取值范围为35 22t<<;②如图:过点C作CH OA⊥由(1)得出()13C ,,60COA ∠=︒∴tan 60MP OP ︒=,3MP t =∴3MP t=当213t ≤<时,111222S O P OP MP t '==⨯=⨯()()1122S O P MC MP OP CM =+⨯''=+∴30>,S 随着t 的增大而增大∴在32t =时3333332222S =⨯-=-∵由①得出EO A ' 是等边三角形,EN AO⊥∴()11323222AN AO t t ==-=-',∴tan 3EAO '∠=,3EN AN=∴332EN t ⎛⎫=- ⎪⎝⎭()31333222S t AO BC MP t =--⨯+⨯=-''∴30-<,S 随着t 的增大而减小∴在51124t ≤≤时,则把51124t t ==,分别代入得出57333S =-⨯+=,113S =-⨯+25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当OM OP ==a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN上,点F 在线段DN 上,NE NF +=,当DE MF +a 的值.则901MHO HM ∠=︒=,在Rt MOH 中,由2HM 221312m ⎛⎫∴+= ⎪ ⎪⎝⎭.解得123322m m ==-,(舍)90DNK NDK MDH ∠∠∠=︒-=NDK DMH ∴≌△△.∴1DK MH ==,NK DH ==∴点N 的坐标为()2,1m -.在Rt DMN △中,DMN DNM ∠=∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•天津)计算(﹣6)×(﹣1)的结果等于()A.6B.﹣6 C.1D.﹣1考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣6)×(﹣1)=6×1=6.故选A.点评:本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.(3分)(2014•天津)cos60°的值等于()A.B.C.D.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值解题即可.解答:解:cos60°=.故选A.点评:本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.(3分)(2014•天津)下列标志中,可以看作是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.点评:此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.(3分)(2014•天津)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1608000000用科学记数法表示为:1.608×109.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014•天津)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6.(3分)(2014•天津)正六边形的边心距为,则该正六边形的边长是()A.B.2C.3D.2考点:正多边形和圆.分析:运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.解答:解:∵正六边形的边心距为,∴OB =,AB =OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.点评:本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7.(3分)(2014•天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014•天津)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.9.(3分)(2014•天津)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.(3分)(2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.11.(3分)(2014•天津)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.12.(3分)(2014•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.3考点:二次函数图象与系数的关系.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014•天津)计算x5÷x2的结果等于x3.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.14.(3分)(2014•天津)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.考点:反比例函数的性质.专题:开放型.分析:反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)解答:解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.点评:此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.(3分)(2014•天津)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.考点:概率公式.分析:抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.解答:解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.点评:此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.17.(3分)(2014•天津)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).考点:等腰三角形的性质.分析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.解答:解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.点评:本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.18.(3分)(2014•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)如图所示:.考点:作图—应用与设计作图.分析:(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.解答:解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.点评:此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题(本大题共7小题,共66分)19.(8分)(2014•天津)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014•天津)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.专题:计算题.分析:(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.解答:解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014•天津)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.点评:本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014•天津)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).考点:解直角三角形的应用.专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.解答:解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.23.(10分)(2014•天津)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.解答:解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用,分类讨论是解题关键.24.(10分)(2014•天津)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).考点:几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:综合题.分析:(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.解答:解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内,当点D′与点P重合时,点P的纵坐标最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠P AH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.点评:本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识,而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014•天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.考点:一次函数综合题.分析:(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.解答:解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.点评:本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.。

相关文档
最新文档