第8章 参数估计
第8章 参数估计
f
x,
x 1 0
求参数 的极大似然估计.
0 x 1,
其它
解 设 X1, X 2 ,L , X n为来自总体的样本, 则似然函数为
L n x1x2L xn 1 ,
取对数后有:
nபைடு நூலகம்
ln L nln 1ln xi, i1
上式对 求导, 并令其为零, 则有
解之得
dln L
d
n
n i1
h X1, X2,L , Xn , 通过样本观测值 x1, x2,L , xn 所对应的估计值
h x1, x2,L , xn
作为总体参数的估) 计值. 记作
h x1, x2,L , xn .
点估计的意义: 在数轴上表示一个点.
区间估计的含义是: 依据样本来估计未知参数的某一 范围.
区间估计的具体实现: 由样本构造两个统计量:
h1 X1, X2,L , Xn , h2 X1, X2,L , Xn ,
再由观测值 x1, x2 ,L , xn 得到具体的区间
h1 x1, x2,L , xn , h2 x1, x2,L , xn ,
以此区间作为未知参数的区间估计.
二、两种常用点估计
下面讨论两种常用的点估计方法: 矩估计和极大似然 估计.
例5 设 X1, X 2 ,L X n 是取自于总体的一个样本, 其中
X : R0, , 因
1
E
X
2
,
因此 21 的矩估计为2 X .
例6 设 X1, X 2 ,L X n 是取自于总体的一个样本, X 的
密度函数为
f
x
1
x
,
0,
求 的矩估计. 这里 1.
概率论和数理统计(第三学期)第8章参数估计
由契比雪夫不等式,有
P( S 2 ES2
n
n
)
DS
2
n
=
2 4
2 n 1 2
即 lim P( S 2 ES2 ) 0
n
n
n
(n 1)S 2
E
2
n n 1
ES2 2 n
故 lim P( S 2 2 ) 0
n
n
§8.3 参数的区间估计
定义
设是总体的未知参数,若 (1 1
6
S~2 1 1.20 0.162 0.85 0.162 0.30 0.162 6 0.45 0.162 0.82 0.162 0.12 0.162 1 1.042 0.692 0.142 0.612 0.982 0.282 6 1 2.99 6 0.498 2
n
p xi
1
p
1 xi
xi p i1
1
p
n
n xi
i1
i 1
n
令y xi,得: i 1 ln Lxi , p y ln p n yln1 p
由对数似然方程
d ln L y n y 0 dp p 1 p
解得
p
y n
1 n
n i 1
xi
x
因为这是惟一的解,所 以p的极大似然估计值为
二、顺序统计量法
定义
1
, 2
,
,
为总体
n
的一个样本,将它
们按大小次序排列,取 居中的一个数 (若n为偶
数时,则取居中两数的 平均值)记为~,称~为
样本中位数。
即
~
k
1
,
1 2
k
参数估计
(2)再用样本k阶矩代替相应的总体k阶矩
上一页
下一页
返回
设 总 体X ~ N ( , 2 ), , 2 未 知 , 设 例1: ( X 1 , X 2 ,..., X n )为 来 自 总 体 的 样 本 , 求 X 与 2的 矩 估 计 量 。
解:先建立待估参数与总体矩的关系
维随机变量,样本的联合概率密度为:
f ( x1 , x2 ,, xn ) f X 1 ( x1 ) f X 2 ( x2 ) f X n ( xn )
f ( x1 , ) f ( x2 , ) f ( xn , ) f ( xi , )
i 1
n
显然上式也为θ的函数,记作 L( ),即
L( ) f ( xi , )
i 1 n
我们称 L( ) 为似然函数。
小结:
似然函数
n p( x i ; ) i 1 L( ) n f ( x i ; ) i 1
由上可知,求极大似然估计值就是求使 L( ) 取最大的θ值。 下面我们用例子来说明求解极大似然估计值的步骤。
6
3
[ x dx x dx]
2 3 0 0
2
用样本k阶矩代替相应的总体k阶矩,得θ的矩估计量:
ˆ 2X
2)将数据代入,得θ的矩估计值为:
ˆ 2x 2 1 xi 8.9 8 i 1
8
计 算 器 的 使 用
例3:设总体X在区间[a,b]上服从均匀分布, a , b
实为 发生的概率。
根据极大似然原理,
概率大的事件在一次观测中更容易发生。
现在只做一次抽样, 事件 { X 1 x1 , X 2 x2 ,, X n xn } 故 认为其概率较大。 认为其概率较大。 也即我们应选择 使 L( ) 取最大值。 我们把使 L( ) 取最大值的 值称为 的极大 竟然发生了,
第8章参数估计习题解答
∑ ( xi − µ )2
i =1
n
.
23.
设( ( X 1 , X 2 , L , X n ) )是抽自总体 X : N ( µ , σ ) 的随机样本, a , b 为常数,且
2
0<a<b , 则 随 机 区 间 ⎜
nσ 2 nσ 2 − a b
( X i − µ )2 n ( X i − µ )2 ⎞ ⎟ 的长度的数学期望为 ∑ b ,∑ a i =1 ⎝ i =1 ⎠ ⎛
i =1 i =1
.
22. 设 X 1 , X 2 ,L , X n 是来自总体 X 数 L( µ , σ ) =
2
− 1 e ∏ 2π i =1 σ n ( xi − µ )2 2σ
2
N ( µ , σ 2 ) 的样本,则有关于 µ 及 σ 2 的似然函
− n 2 − n 2 − 1 2σ
2
= (2π ) (σ 2 ) e
的分布函数 Φ ( x ) 的函数值:Φ (1.645) = 0.95 ,Φ (1.96) = 0.975 ,Φ (1.282) = 0.90 .则在 显著水平 α = 0.05 , E ( X ) 的置信区间为( A ).
A. (1.216, 2.784) .
B. (1.342,
2.658) .
C. (1.4872,
ˆ = 2X . D. θ 4
7.
设总体 X 的密度函数为 P ( x,
⎧θx θ −1 0 < x < 1 , θ > 0 , ( X 1 , X 2 ,L , X n ) θ) = ⎨ ⎩o 其它
为样本,记 Ak =
1 n k ∑ X i , k = 1,2.3 ,则以下结论中错误的是( A ). n i =1
08.1参数的矩估计方法
令
1(1,2 ,L ,k ) B1
2 (1,2 ,L ,k ) B2
LLLLLL
k (1,2 ,L ,k ) Bk
解得µl $l (B1, B2,L , Bk ),l 1, 2,L , k,并以$l作为参数l的
估计量,这种估计量称为矩估计量,矩估 计量的观察值就是矩估计值。
或者
Cl
矩估计法的理论依据: 大数定律
∵ X1, X2 , , Xn 是独立同分布的,
∴ X1k, X2k, , Xnk 也是独立同分布的.
于是有 E(X1k)=E(X2k)==E(Xnk)= E(Xk)=μk .
根据辛钦大数定律, 样本k阶矩Ak依概率收敛于总体k
阶矩μk ,即
Ak
1 n
n i 1
知参数1,2,…,k,即F=F(x;1,2,…,k), 总体X的前k 阶矩l =E(Xl )(l=1,2,…,k)存在, 它们是1,2,…,k的函数
l(1,2,…,k)(l =1,2,…,k)
假设X1,X2,…,Xn是总体X的一个样本,建 立统计量--样本l 阶原点矩Al (l=1,2,…,k),
试对参数给出估计。
1 n
E( X ) n i1 X i
一阶样本原 点矩
E(X 2)
1 n
n i 1
Xi
1 n
n i 1
Xi2
2
2
1 n
n i 1
Xi2
二阶样本原 点矩
解之得:
解之得:
)
1 n
n i 1
Xi
ˆ
2
1 n
n i 1
Xi2
(ˆ )2
从而得, 2
为: ) 1
ni
参数估计方法
参数估计方法参数估计是统计学中的一个重要概念,它是指根据样本数据推断总体参数的过程。
在实际应用中,我们往往需要利用已知数据来估计总体的各种参数,比如均值、方差、比例等。
参数估计方法有很多种,其中最常用的包括最大似然估计和贝叶斯估计。
本文将对这两种参数估计方法进行详细介绍,并分析它们的优缺点。
最大似然估计是一种常用的参数估计方法,它是建立在似然函数的基础上的。
似然函数是关于总体参数的函数,它衡量了在给定参数下观察到样本数据的概率。
最大似然估计的思想是寻找一个参数值,使得观察到的样本数据出现的概率最大。
换句话说,就是要找到一个参数值,使得观察到的样本数据出现的可能性最大化。
最大似然估计的优点是计算简单,且在大样本情况下具有较好的渐近性质。
但是,最大似然估计也有一些局限性,比如对于小样本情况下可能会出现估计不准确的问题。
另一种常用的参数估计方法是贝叶斯估计。
贝叶斯估计是建立在贝叶斯定理的基础上的,它将参数看作是一个随机变量,而不是一个固定但未知的常数。
在贝叶斯估计中,我们需要先假设参数的先验分布,然后根据观察到的样本数据,利用贝叶斯定理来计算参数的后验分布。
贝叶斯估计的优点是能够充分利用先验信息,尤其在小样本情况下具有较好的稳定性。
但是,贝叶斯估计也存在一些问题,比如对于先验分布的选择比较敏感,且计算复杂度较高。
在实际应用中,我们需要根据具体的问题和数据特点来选择合适的参数估计方法。
对于大样本情况,最大似然估计可能是一个不错的选择,因为它具有较好的渐近性质。
而对于小样本情况,贝叶斯估计可能更适合,因为它能够充分利用先验信息,提高估计的稳定性。
当然,除了最大似然估计和贝叶斯估计之外,还有很多其他的参数估计方法,比如矩估计、区间估计等,每种方法都有其特点和适用范围。
总之,参数估计是统计学中的一个重要概念,它涉及到如何根据已知数据来推断总体的各种参数。
最大似然估计和贝叶斯估计是两种常用的参数估计方法,它们各有优缺点,适用于不同的情况。
参数估计的一般步骤
参数估计的一般步骤
参数估计是统计学中的一种方法,用于根据样本数据估计总体参数的值。
它是一个重要的统计推断技术,可以帮助我们了解和描述总体的特征。
参数估计的一般步骤如下:
1. 确定研究对象和目标参数:首先,我们需要明确研究对象是什么,需要估计的是哪个参数。
例如,我们可能希望估计某个产品的平均寿命,那么研究对象是产品,目标参数是平均寿命。
2. 收集样本数据:为了进行参数估计,我们需要收集一定数量的样本数据。
样本应该能够代表总体,并且必须是随机选择的,以避免抽样偏差。
3. 选择合适的估计方法:根据研究对象和目标参数的不同,我们可以选择不同的估计方法。
常见的估计方法包括点估计和区间估计。
点估计给出一个单一的数值作为参数的估计值,而区间估计给出一个范围,以表明参数估计值的不确定性。
4. 计算估计值:根据选择的估计方法,我们可以使用样本数据计算出参数的估计值。
例如,对于平均寿命的估计,我们可以计算样本的平均值作为总体平均寿命的估计值。
5. 评估估计的准确性:估计值的准确性可以通过计算估计的标准误
差或置信区间来评估。
标准误差反映了估计值与真实参数值之间的差异,而置信区间提供了参数估计值的不确定性范围。
6. 解释和应用估计结果:最后,我们需要解释估计结果并应用于实际问题中。
根据估计结果,我们可以得出结论,做出决策或提出建议。
参数估计是一种重要的统计推断方法,可以帮助我们了解总体特征并做出准确的推断。
通过正确的步骤和方法,我们可以获得可靠的参数估计结果,并将其应用于实际问题中。
参数估计方法
第八章参数估计方法研究工作的目的在于了解总体特征的有关信息,因而用样本统计数估计相应总体参数,并由之进行统计推断。
总体特征的各种参数,在前几章主要涉及平均数、标准差等,并只从直观上介绍其定义和公式,未就其历,即参数估计(parameter estimation)的方法作讨论。
本章将简要介绍几种常用参数估计方法,即矩法、最小二乘法、极大似然法。
第五章述及参数的点估计(point estimation)和区间估计(interval estimation),本章讨论点估计方法。
区间估计是在点估计的基础上结合统计数的抽样分布而进一步作出的推论,有关内容将散见在其它各章。
第一节农业科学中的主要参数及其估计量的评选标准一、农业科学中的主要参数农业科学研究中需要估计的参数是多种多样的,主要包括总体数量特征值参数,例如,用平均数来估计品种的产量,用平均数差数来估计施肥等处理的效应;用百分数(或比例)来估计遗传分离比例、群体基因或基因型频率、2个连锁主基因间的重组率;通过变异来源的剖分,用方差来估计环境方差、遗传方差和表型方差,在此基础上以估计性状的遗传力等遗传参数;用标准误来估计有关统计数的抽样误差,如重组率的标准误、遗传抽样误差、遗传多样性误差、频率误差等。
在揭示变数间的相互关系方面,用相关系数来描述2个变数间的线性关系;用回归系数、偏回归系数等来描述原因变数变化所引起的结果变数的平均变化的数量,用通径系数来描述成分性状对目标性状的贡献程度等。
有关数量关系和数量变化方面的内容将在第9至11章介绍。
二、参数估计量的评选标准讨论参数估计方法前需要了解数学期望(expectation)的概念和评价估计方法优劣的标准。
(一) 数学期望在抽样分布中,已经讲述了从总体中抽出所有可能样本的样本平均数的平均数等于总体平均数,这里,样本平均数的平均数就是一种数学期望。
例如,一个大豆品种的含油量为20%,测定一次可能是大于20%,再测定可能小于20%,大量反复测定后平均结果为20%,这时20%便可看作为该大豆品种含油量的数学期望,而每单独测定一次所获的值只是1个随机变量。
统计学8 参数估计
第二节 均值区间估计
有一定的概率P(95%或99%)保证,
x
请思考:P 与
与
x
三者怎样联系起来
???
答案:统计量
x 的分布是将三者联系起来的桥。
一、抽样分布与抽样误差
从总体中随机抽取一份样本,计算均数。 这个均数不同于总体均数!为什么? 再从该总体中随机抽取一份样本,再计 算均数。 前后两个均数不等,为什么?
S SE= = n n
标准误的特点
抽样的样本量越大,标准误就越小; 原来总体变异度小,标准误就越小。 标准误反映了样本均值间的离散程度,也反映了样本 均值与总体均值之间的差异。当标准误大时,用样本 均值对总体均值的估计的可靠程度就小;反之亦然。
标准误用途
衡量样本均值的可靠性:标准误越小,表明样本 均值越可靠; 参数估计:估计总体均值的置信区间(区域); 假设检验:用于总体均值的假设检验(比较)。
总体参数的点估计公式
1.样本均值 2.样本方差
1 x x n 1 2 2 s ( x x ) n 1
X,S 2 作为总体的参
即用样本的 数的点估计值。
点估计的优点在于它能够明确地估计总体 参数,但由于样本是随机的,抽出一个具 体的样本得到的估计值很可能不同于总体 真值。 它与真值的误差﹑估计的可靠性怎样,我 们无法知道,而区间估计则可弥补这种不 足之处。
二、均值的区间估计(教材p139)
当置信度为1-=0.95时,置信区间为:
[ x 1.96
n
n
, x 1.96
概率论与数理统计第八章
上式也可记为 PH0 {拒绝H 0}
本例中,上式应为
(x)
PH 0
X
/
0
n
u
2
/2
1
/2
u / 2 O
u / 2
x
b)第二类错误(取伪)
原假设H0事实上是假的,但是由于检验统计量的 观察值没有落在拒绝域中,从而导致接受H0.这时犯了 “取伪”的错误,即接受了错误的假设,这一类错误我
(2) 当H0不真时,作出接受H0的决策——称为第二 类错误(或称“存伪”错误)。
a)第一类错误(弃真)
原假设H0事实上是真的,但是由于检验统计量的观 察值落入拒绝域中,从而导致拒绝H0.这时犯了“弃真” 的错误,即将正确的假设摒弃了,将这一类错误称之为第
一类错误.记犯第一类错误的概率为 ,则有
PH0 {拒绝H0 H0为真}
们称之为第二类错误.记犯第二类错误的概率为 ,则
P{接受H0 | H0为假}
或者 PH1 {接受H 0} P{接受H 0 | H1为真}
在本例中,
PH1
X
/
0
n
u
2
(x)
/2
1
/2
u / 2 O
u / 2
x
可以看出假设检验中包含的两个重要的思想:
1)反证法思想
为了确定是否要拒绝原假设H0,首先是假定H0真,看
当然也不能总认为正常,有了问题不能及时 发现,这也要造成损失.
如何处理这两者的关系,假设检验面对的就 是这种矛盾.
一般可以认为X1,…,X5是取自正态总体 N (, 2 ) 的样本,当生产比较稳定时, 2 是一个常数.
现在要检验的假设是:
H0: 0( 0 = 355)
徐国祥《统计学》(第2版)配套题库【课后习题】(参数估计)
第8章参数估计1.什么是统计推断?统计推断的两类问题是什么?答:统计推断就是根据样本的信息,对总体的特征作出推断,它包括参数估计和假设检验,其中参数估计可分为点估计和区间估计两大类。
2.什么是点估计?什么是区间估计?两者各有什么优缺点?答:点估计是根据样本数据计算的一个估计值,其优点在于它通过样本资料就能够明确地估计总体参数。
不足之处是,一般点估计值不会等于总体参数的真值,并且无法给出它与真值的误差以及估计可靠性程度。
区间估计是通过样本来估计总体参数可能位于的区间。
优点是指出了未知参数所在区间的上下限,同时指出该区间包含真值的可靠度(置信度),弥补了点估计的不足。
3.评判一个估计量好坏的标准有哪些?答:评判一个估计量的好坏有以下三个标准:(1)无偏性如果样本统计量的期望值等于该统计量所估计的总体参数,则这个估计量叫做无偏估计量。
这是一个好的估计量的一个重要条件。
(2)一致性当样本容量n增大时,如果估计量越来越接近总体参数的真值时,就称这个估计量为一致估计量。
估计量的一致性是从极限意义上讲的,它适用于大样本的情况。
(3)有效性有效性是指估计量的离散程度。
如果两个估计量都是无偏的,其中方差较小的(对给定的样本容量而言)就可认为相对来说是更有效的。
4.确定样本容量大小的因素有哪些? 答:决定样本容量大小的因素有以下三点: (1)受总体方差σ2数值大小的影响总体方差大,抽样误差大,则应多抽一些样本容量,反之,则可少抽一些。
当然,总体方差为0时,那么只需抽出其中一个就能代表总体。
但实际工作中,我们往往不知道总体方差,因而必须做试验性调查,或以过去的历史资料做参考。
(2)可靠性程度的高低要求可靠性越高,所必需的样本容量就越大。
也就是说,为获得所需精度而指定的概率越大,所需要的样本容量就越大。
(3)允许误差的大小这主要由研究的目的而定。
若要求推断比较精确,允许误差应该低一些,随之抽取的样本容量也要求多一些;反之,若允许误差可以大一些,样本容量也可以少一些。
讲座-8第八章 参数估计与假设检验基础学习文档
从N(165.70 , 3.212) 抽到的100份随机样本的计算结果(n=20)
Path of Statistical inference
总体
抽样
样本
估计 参数: , ,
统计推断
获取统计量
如: x, s, p
探讨成年男性肺炎患者与男性健康成年的血红蛋白(g/dl)有无区别? 在这两个人群中随机抽取各10例:
组别 肺炎 健康
1 11.9 13.9
2 10.9 14.2
3 10.1 14.0
t 分布曲线(ν=9)
① 相同自由度时,∣t∣值越大,概率P 越小; ∣t∣值越小, 概率P 越大;
② 在相同∣t∣值时,同一自由度的双侧概率是单侧概率的两 倍。
归纳:
随机变量 X
N(μ, σ2)
均数 X
N(μ ,σ2/n )
Z X
Z 变换 Z X
n
标准正态分布 N(0, 12)
用途不同: 当资料呈正态分布时,标准差与均数结合可估计参考值范围,
计算 CV 等;标准误可用于估计参数的置信区间,进行假设检验。
与样本例数关系不同: 样本量足够大时,标准差趋向于稳定,标准误随例数的增加而减小,甚至
趋近于0,若样本量趋向总例数,则标准误接近0;
二者联系: 均为变异指标,若把总体中各样本均数看作一个变量,则标准误可称为样
p
参数估计的一般步骤
参数估计的一般步骤参数估计是统计学中的一种方法,用于根据样本数据估计总体参数的取值。
它在各个领域都有广泛的应用,例如经济学、医学、社会学等。
本文将介绍参数估计的一般步骤,帮助读者了解如何进行参数估计。
一、确定参数类型在进行参数估计之前,首先需要确定要估计的参数类型。
参数可以是总体均值、总体比例、总体方差等,根据具体问题来确定。
二、选择抽样方法接下来,需要选择合适的抽样方法来获取样本数据。
常用的抽样方法有简单随机抽样、系统抽样、分层抽样等。
选择合适的抽样方法可以保证样本的代表性,从而提高参数估计的准确性。
三、收集样本数据在进行参数估计之前,需要收集样本数据。
收集样本数据时要注意数据的准确性和完整性,避免数据采集过程中的偏差。
四、计算点估计量得到样本数据后,可以计算点估计量来估计总体参数的取值。
点估计量是根据样本数据计算得出的一个具体数值,用来估计总体参数的未知值。
常见的点估计量有样本均值、样本比例等。
五、构建置信区间除了点估计量,还可以构建置信区间来估计总体参数的取值范围。
置信区间是一个区间估计,表示总体参数的真值有一定的概率落在该区间内。
置信区间的计算方法与具体的参数类型有关,可以利用统计学中的分布理论或抽样分布来计算。
六、进行假设检验除了估计总体参数的取值,参数估计还可以用于假设检验。
假设检验是根据样本数据来判断总体参数是否符合某个特定的假设。
在假设检验中,需要先提出原假设和备择假设,然后计算检验统计量,最后根据统计显著性水平来判断是否拒绝原假设。
七、解释结果需要对参数估计的结果进行解释和说明。
解释结果时要清楚、简洁,避免使用过于专业的术语,以便读者能够理解和接受。
参数估计是统计学中重要的内容之一,它可以帮助我们从有限的样本数据中推断总体的特征。
通过合理选择抽样方法、收集准确的样本数据,并运用适当的统计方法,我们可以得到准确可靠的参数估计结果,为实际问题的决策提供科学依据。
概率论与数理统计教程 第8章
MSe= Se/fe
总和
ST
fT=n1
对给定的,可作如下判断:
若F F1 (fA ,fe) ,则说明因子A不显著。 该检验的p值也可利用统计软件求出,若 以Y记服从F(fA ,fe)的随机变量,则检验的 p 值为 p=P(YF)。
如果 F >F1 (fA ,fe),则认为因子A显著;
由定理8.1.2,若H0成立,则检验统计量F服从自由度为fA和fe的F分布,因此拒绝域为W={FF1 (fA ,fe)},通常将上述计算过程列成一张表格,称为方差分析表。
表8.1.3 单因子方差分析表
来源
平方和
自由度
均方和
F比
因子
SA
fA=r1
MSA= SA/fA
F= MSA/ MSe
误差
Se
第八章 方差分析与回归分析
§8.1 方差分析 §8.2 多重比较 §8.3 方差齐性分析 §8.4 一元线性回归 §8.5 一元非线性回归
§8.1 方差分析
8.1.1 问题的提出 实际工作中我们经常碰到多个正态总体均值的比较问题,处理这类问题通常采用所谓的方差分析方法。
例8.1.1 在饲料养鸡增肥的研究中,某研究所提出三种饲料配方:A1是以鱼粉为主的饲料,A2是以槐树粉为主的饲料,A3是以苜蓿粉为主的饲料。为比较三种饲料的效果,特选 24 只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量。试验结果如下表所示:
模型(8.1.3)可以改写为 (8.1.8) 假设(8.1.1)可改写为 H0 :a1 =a2 =…=ar =0 (8.1.9)
8.1.5 参数估计
在检验结果为显著时,我们可进一步求出总均值 、各主效应ai和误差方差 2的估计。
参数估计的一般步骤
参数估计的一般步骤
参数估计是通过从总体中抽取一个样本,利用样本数据对总体未知参数进行估计的过程。
参数估计的一般步骤如下:
1. 确定总体参数:首先需要明确要估计的总体参数,例如总体均值、总体比例、总体方差等。
2. 选择样本:从总体中抽取一个合适的样本。
样本的选择应该具有代表性,能够反映总体的特征。
3. 收集样本数据:对选择的样本进行观测或测量,收集样本数据。
4. 选择估计方法:根据所收集的样本数据和要估计的总体参数,选择合适的估计方法。
常见的估计方法包括点估计和区间估计。
5. 计算估计量:使用所选择的估计方法,根据样本数据计算出估计量。
估计量是用于估计总体参数的统计量。
6. 评估估计量的性质:评估所计算出的估计量的性质,如无偏性、有效性、一致性等。
这些性质可以帮助判断估计量的优劣。
7. 计算置信区间或置信水平:如果进行的是区间估计,根据估计量和置信水平,计算出总体参数的置信区间。
8. 解释估计结果:根据估计量或置信区间,对总体参数进行推断和解释。
同时,需要考虑估计结果的统计显著性和实际意义。
9. 分析误差和不确定性:考虑样本大小、抽样方法等因素对估计结果的影响,分析可能存在的误差和不确定性。
10. 结论和应用:根据参数估计的结果,得出结论并将其应用于实际问题中,例如进行决策、预测或进一步的研究。
需要注意的是,参数估计的具体步骤和方法会根据不同的统计问题和数据类型而有所差异。
在进行参数估计时,应根据实际情况选择合适的方法,并结合统计学原理和专业知识进行分析和解释。
参 数 估 计
二、参 数 估 计
【例5-5】 设X~B(1,p),(X1,X2,…,Xn)是取自总体X的一个子样, 试求参数p的极大似然估计量。
解:设(x1,x2,…,xn)是子样(X1,X2,…,Xn)的一组相应的取值。总体X 的分布律为
则似然函数为 取对数后,有 令
二、参 数 估 计
从而得p的极大似然估计值为 p的极大似然估计量为
项目
参数估计
二、参 数 估 计
一、 参数估计的基本原理
参数估计是指由样本指标值(统计量)估计总体指标值 (参数),即当总体的分布性质已知,但其所含参数真值未 知时,根据一组样本的观察值X1,X2,…,Xn来估计总体中未 知参数θ或θ的某函数。首先从样本(X1,X2,…,Xn)中提取有 关总体X的信息,即构造样本的函数——统计量 g(X1X2,…,Xn);然后用样本值代入,求出统计量 g(x1,x2,…,xn)的值,用该值来作为相应待估参数的值。
二、参 数 估 计
二 、 评价估计量的标准
在参数估计中,用样本估计量 作为总体参数θ的估 计量,实际上,对于同一参数,用不同的估计方法求出的估 计量可能不相同,用相同的方法也可能得到不同的估计量。 也就是说,同一参数可能具有多种估计量,而且,从原则上 讲,任何统计量都可以作为未知参数的估计量,那么采用哪 一个估计量好呢?这就涉及估计量的评价问题,而判断估计 量好坏的标准是:有无系统偏差,波动性的大小,伴随样本 容量的增大是否越来越精确,这就是估计的无偏性、有效性 和一致性。
区间的概念,并给出在一定可信程度的前提下求置信区间的
方法,使区间的平均长度最短。
二、参 数 估 计
用给定的置信度1-α说明区间估计的可靠程度
,通常α取值很小,如取0.05、0.01,有时取0.1。
计量经济学第八章分布滞后模型
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
•递减型: 即认为权数是递减的, X 的近期值对 Y 的 影响较远期值大。 如消费函数中,收入的近期值对消费的影 响作用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
1.
滞后效应与与产生滞后效应的原因
因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
该模型可用OLS法估计。假如参数估计结果为:
ˆ0
=0.5
ˆ 1 =0.8
则原模型的估计结果为:
0 .8 0 .8 Yˆ t 0 . 5 Xt X 2 4
t 1
0 .8 6
X
t2
0 .8 8
X
t3
0 .5 0 .4 X t 0 .2 X
t 1
0 . 133 X
①在解释变量x之后必须指定k和m的值,d为可选项, 不指定时取默认值0;1强制b0趋于0;2强制bk趋于0; 3强制两端趋于0。
②如果有多个具有滞后效应的解释变量,则分别用几 个PDL项表示;例如: LS Y C PDL(x1,4,2) PDL(x2,3,2,2) ③在估计分布滞后模型之前,最好使用互相关分析命 令CROSS初步判断滞后期的长度k; 命令格式为: CROSS Y X 接着输入滞后期 p 之后,将输出 yt 与 xt , xt-1…xt-p的各期相关系数,以判断较为合适的滞后 期长度k。 例 表给出了中国电力基本建设投资X与发电 量Y的相关资料,拟建立一多项式分布滞后模型 来考察两者的关系。
第八章 模型中的特殊解释变量
一、随机解释变量 二、滞后变量问题 三、虚拟变量问题 四、时间变量
第一节
随机解释变量问题
一、估计量的渐近特征
1.渐进无偏性(P202) 所谓渐进分布是指,当样本容量N→∞时, 随机变量序列将收敛到某个特定的分布。 所谓渐进无偏性是指,如果当N→∞时, 参数估计量的数学期望值将趋向于总体参数 的真实值。这时,将参数估计量称为总体参 数的渐近无偏估计。
第三节 虚拟变量
一、虚拟变量的基本含义 许多经济变量(定量变量)是可以定量度量 的,如:商品需求量、价格、收入、产量等; 但是,经济中有一些影响经济变量的因素无 法定量度量(定性变量),如:职业、性别对收 入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等等。 为了在模型中能够反映这些因素的影响,并 提高模型的精度,需要将它们“量化”,这种 “量化”通常是通过引入“虚拟变量”来完成的。
一元回归中,工具变量法估计量为
1
~ z ( x ) z z x z x
i 1 i i i i 1 i i i
i
两边取概率极限得:
P lim(1 ) 1
~
P lim 1 n zi i P lim 1 n z i xi
如果工具变量Z选取恰当,即有
根据定性变量的属性类型,构造只取“0”或 “1”的人工变量,这些人工变量通常称为虚拟变量 (dummy variables),记为D。 • 例如,反映文程度的虚拟变量可取为: • 1, 本科学历 • D= • 0, 非本科学历 一般地,在虚拟变量的设置中: • 基础类型、肯定类型取值为1;
• 比较类型、否定类型取值为0。
四、工具变量法
模型中出现随机解释变量且它(们) 与随机误差项相关时,OLS估计量是有偏的。 此时,为了得到参数的无偏估计量,最常 用的估计方法是工具变量法(Instrument variables)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/10/16
17
极大似然估计法
设总体X是离散型随机变量, 分布律为
P( X x) p( x, ), 则样本取某组观测值
的概率为
P( X1 x1 , X 2 x2 ,...,X n xn ) P( X1 x1 )P( X 2 x2 )P( X n xn )
n
p( xi , ) L( ) i 1
2)
m2 (1 ,..., k
)
mk E( X k ) mk (1 ,..., k )
反解出 1,2 ,..., k为m1, m2 ,..., mk 的函数
2020/10/16
8
多个未知参数时的矩估计
再用r阶样本原点矩
mr,则得到矩估计量
Ar
1 n
n i 1
X
r i
替代
ˆ1 g1( A1, A2 ...,Ak ) ˆ2 g2( A1, A2 ...,Ak ) ˆk gk ( A1, A2 ...,Ak )
2020/10/16
14
它首先是由德国数学家 高斯在1821年提出的 ,
然而, 这个方法常归功于 英国统计学家费歇.
费歇在1922年重新发现了 这一方法, 并首先研究了这 种方法的一些性质.
Gauss Fisher
2020/10/16
15
极大似然估计法的基本思想
先看一个简单例子:
某位同学与一位猎人一起外出打猎 . 一只野兔从前方窜过 .只听一声枪响, 野兔应声倒下.
称函数L( )为似然函数.
2020/10/16
18
极大似然估计引例
设一袋中装有黑、白两种球.设 p 是从袋 中随机摸得一个白球的概率, 现估计p.
解:根据问题, 我们令总体X为
1, 从 袋 中 取 得 一 白 球
X
0,
从
袋
中
取
得
一黑球
则X服从0-1分布, 其中
P( X 1) p, P( X 0) 1 p
2020/10/16
12
矩估计法的缺点:
(3) 总体分布的矩不一定存在, 所以矩估计
法不一定有解.
比如
X
~
f
(
x)
x
2
0
x x
EX xf ( x)dx
dx
x
( lim ln x ln )
x
2020/10/16
13
极大似然估计法
Maximum Likelihood Estimation 是在总体类型已知条件下使用的一种 参数估计方法
2020/10/16
4
§8.1.1 矩估计法
设总体X有分布函数F(x, ), 其中
为一维未知参数,若E(X)存在, 则
m=E(X)一般是 的函数,即m=m( ), 由此反解出 =g(m),
再由样本均值 X 代替m,就得到
的一个估计量 ˆ g( X )
理论依据:独立
同分布大数定律
2020/10/16
2020/10/16
9
例8.2
设总体X服从任何分布,且X的期望与方差均
存在,记 E( X ), 2 D( X ) 未知, 求 , 2 的矩估计量.
解: 因为有两个参数, 故将总体前二阶矩表
为参数的函数, 即
m1 E( X )
m2
E(X
2)
2
2
2020/10/16
10
例8.2
反解得
第八章 参数估计
§8.1 点估计
2020/10/16
1
总体是由总体分布来刻画的.
总体分布类型的判断--分布函数虽然 未知,但我们可以对总体分布的某些数字 特征,即对未知参数进行估计--总体分布 的参数往往是未知的,需要通过样本来估 计.通过样本来估计总体的参数,称为参数 估计,它是统计推断的一种重要形式.一般 可以分为点估计和区间估计两大类.
2020/10/16
2
估计量
定义8.1 设总体X的分布函数为F(x, ) ,
从总体X中抽取样本X1, X2 , ..., Xn , 其观测
值为 x1, x2 , ..., xn , 构造某个统计量
ˆ(X1, X2,..., Xn ), 用它的观测值
ˆ( x1, x2,..., xn ) 来估计未知参数 ,则
5
例8.1
设总体X的密度为
f
(x,Βιβλιοθήκη )xex2
2
,
x
0
未知,求 的矩估计量. 0, x 0
解:(1) 先求总体期望
m E( X ) x f ( x, )dx
2
0
反解 得到 2 m2 ,
2
用 X 替换m,得 的矩估计量
ˆ 2 X 2
2020/10/16
6
多个未知参数时的矩估计
基本原理:用样本矩作为总体同阶矩的 估计. 理论依据: 独立同分布大数定律,即
m1 2 m2 m12
再用2阶样本原点矩替代对应的总体矩得
ˆ X ˆ 2 A2 X 2 B2
2020/10/16
11
矩估计法的优点:计算简单
矩估计法的缺点:
(1) 矩估计法有时会得到不合理的解; (2) 求矩法估计时, 不同的做法会得到不 同的解;
(通常规定,在用矩估计法估计时, 要尽量使用低阶矩)
Ar
1 n
n i 1
X
r i
P E( X r )
mr
一般地,设总体X有分布函数 F ( x, ),
若 (1,2 ,..., k ) 为k 维未知参数,
2020/10/16
7
多个未知参数时的矩估计
且X的直到k阶原点矩存在,则有
m1 E( X ) m1 (1 ,..., k )
m 2
E(X
如果要你推测,是谁打中的呢?你会
如何想呢?
你就会想,只发一枪便打中, 猎人命中 的概率一般大于这位同学命中的概率. 看来这一枪是猎人射中的.
2020/10/16
16
这个例子所作的推断已经体现了极 大似然估计法的基本思想 .
具体地说, 就是由样本的具体取值, 选择
参数 的估计量 ˆ 使得取该样本值发生
2020/10/16
19
极大似然估计引例
为估计p, 我们有放回摸球10次, 其结果可 用随机变量表示如下:
1, 第i次 摸 得 白 球 Xi 0,第i次摸得黑球i 1,2,...,10
则 X1, X 2 ,..., X10 是来自总体X的样本.
若10次的结果为
(数据,样本观测值)
( x1, x2 ,..., x10 ) (1,0,1,0,0,0,1,0,0,0)
称 ˆ( x1, x2,..., xn ) 为 的估计值,
ˆ(X1, X2,..., Xn ) 为 的估计量.
2020/10/16
3
点估计
由于ˆ(x1 , x2 ,, xn ) 是实数域上的一个点, 现用它来估计未知参数,故称这种估计为
点估计.
点估计的经典方法是: (1) 矩估计法 (2) 极大似然估计法