二倍角的正弦、余弦、正切公式课件

合集下载

课件4:3.1.3 二倍角的正弦、余弦、正切公式

课件4:3.1.3 二倍角的正弦、余弦、正切公式

解析 (1)原式=12sin15°cos15°=41sin30°=18.
(2)cos215°-sin215°=cos30°=
3 2.
答案 (1)C (2)B
例2
求证:33- +44ccooss
2A+cos 2A+cos
44AA=tan4A.
证明:∵左边=33-+44ccooss
2A+2cos22A-1 2A+2cos22A-1
=11-+ccooss 22AA2=22csoins22AA2=(tan2A)2 =tan4A=右边,
∴33-+44ccooss
2A+cos 2A+cos
44AA=tan4A.
规律总结 利用倍角公式证明三角恒等式,关键是找到左、右两边
式子中角间的倍角关系.先用倍角公式统一角,再用同角三角函数 基本关系式等完成证明.
3 2.
跟踪训练 3 证明:(1)sin 2α=1+2tatnanα2α; (2)cos 2α=11-+ttaann22αα .
证明:(1)左边=sin
2α=2sin
αcos
α=2sin
αcos 1
α
=c2ossi2nα+αcsoisn2αα=1+2tatnanα2α=右边.
(2)左边=cos 2α=cos2α-sin2α=cos2α-1 sin2α=ccooss22αα+-ssiinn22αα
4.已知 cosx-π4=102,则 sin 2x= -2245 .
解析 sin 2x=cos2π-2x =cos2x-π2 =cos 2x-π4 =2cos2x-π4-1 =2× 1022-1 =-2245.
5.已知 tan(π4+α)=2,则 tan2α=________.
解析 ∵tan(π4+α)=11+ -ttaannαα=2,∴tanα=13, ∴tan2α=1-2tatannα2α=43.

数学人教A版(2019)必修第一册5.5.1二倍角的正弦、余弦、正切公式(共19张ppt)

数学人教A版(2019)必修第一册5.5.1二倍角的正弦、余弦、正切公式(共19张ppt)
( − ) = +
( + ) = +
两角和差的正弦公式
两角和差的正切公式
( − ) = −
+
( + ) =
1 −

(2)配方变换.
1±sin 2α=sin2α+cos2α±2sin αcos α=(sin α±cos α)2.
(3)升幂缩角变换.
1+cos 2α=2cos2α , 1-cos 2α=2sin2α .
(4)降幂扩角变换.
1
1
1
cos α=2(1+cos 2α),sin α=2(1-cos 2α),sin αcos α=2sin 2α.
5.5.1 第三课时
二倍角的正弦、余弦、正切公式
Hale Waihona Puke 学习目标1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、
正切公式.(逻辑推理)
2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变
形运用.(数学运算)
复习回顾
两角和差的余弦公式
两角和与差的正弦、余弦、正切公式
( + ) = −
( + ) = 2 = + = 2
+
2
( + ) = 2 =
=
1 − 1 − 2
新知梳理
二倍角公式
2sin αcos α
2cos2α-1
cos2α-sin2α
2
-1=1-2sin -x;
-x
4

4

2
例题讲解
题型三:化简与证明
例3
(1)化简:cos2(θ+15°)+sin 2(θ-15°)+sin(θ+90°)cos(90°-θ);

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式       课件

θ=
cos2θ-sin2θ=cos 2θ=右边.
法二:右边=cos 2θ=cos2θ-sin2 θ= cos2 θ1-csions22 θθ=cos2 θ(1-tan2 θ)=左边.
所以原式成立.
归纳升华 三角函数式的化简与证明
1.化简三角函数式的要求:(1)能求出值的尽量求出; (2)使三角函数的种类与项数尽量少;(3)次数尽量低.
2.证明三角恒等式的方法:(2)从复杂的一边入手, 左边
证明一边等于另一边;(2)比较法,左边—右边=0, 右边
=1;(3)分析法,即从要证明的等式出发,一步步寻找等 式成立的条件.
(1)sin 2π4·cos 2π4·cos 1π2;
(2)1-2sin2 750°;
(3)tan
1π2-tan1
π. 12
解:(1)原式=122sin
π 24cos
π 24·cos
1π2=12sin
1π2·cos
1π2=142sin
1π2·cos
π 12
=14sin
π6=18.
(2)原式=cos(2×750°)=cos 1 500°=
1+cos(2A+2B)
(1)证明:左边=
2

1-cos(2A-2B)
2

cos(2A+2B)+cos(2A-2B)
2

12(cos 2Acos 2B-sin 2Asin 2B+cos 2Acos 2B+sin
2Asin 2B)=
cos 2Acos 2B=右边,
所以原式成立.
(2)法一:左边=cos2θ1-cossi2nθ2
cos(4×360°+60°)=cos 60°=12.

5.5.1二倍角的正弦、余弦、正切公式课件(人教版)

5.5.1二倍角的正弦、余弦、正切公式课件(人教版)

例6
4
在△ ABC 中, cos A 5
tan 2 A 2B 的值.
, tan B 2 ,求
2A+2B与A,B之间能构成怎样的关系?
解:在△ ABC 中,由 cos A
4
,0
5
A π ,得
2
3
4
sin A 1 cos 2 A 1 ,
5
2
tan tan
2 tan
tan 2 tan

.
2
1 tan tan 1 tan
2
推导
二倍角的余弦公式有三种表达情势:
cos 2 cos sin
2
cos 2 1 2sin
2
cos 2 2 cos 1
2
2
推导
余弦公式,有下面的等价变情势:
cos 2 2 cos 1
2
cos 2 1 2sin
2
1 cos 2 2cos
1 cos 2 2sin
1 cos 2
cos
2
1 cos 2
sin
2
2
2
2

2
1+
2
2
sin 与 cos 的符号由角
24 4

tan 2 A tan 2 B
44
7 3
tan 2 A 2 B


24 4 117 .
1 tan 2 A tan 2 B
1
7 3

解法 2:
4
在△ ABC 中,

二倍角的正弦、余弦、正切公式课件

二倍角的正弦、余弦、正切公式课件

又∵2α∈0,π2,β∈π2,π,
∴2α-β∈(-π,0),∴2α-β=-34π.
[规律方法] 在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出 角.其中确定角的范围是关键的一步.
【活学活用3】 已知tan α=17,sin β= 1100,且α,β为锐角,求α
+2β的值. 解 ∵tan α=17<1,且α为锐角,∴0<α<π4,
类型一 给角求值问题 【例1】 求下列各式的值: (1)sin1π2cos1π2;(2)1-2sin2750°;(3)1-2tatnan125105°0°; (4)sin110°-cos 130°;(5)cos 20°cos 40°cos 80°.
[思路探索] 利用倍角公式或公式变形求值即可.
ππ π 解 (1)原式=2sin122cos12=si2n6=14. (2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12. (3)原式=tan(2×150°)=tan 300° =tan(360°-60°)=-tan 60°=- 3. (4)原式=cossi1n01°-0°co3ss1in0°10° =212cossin1100°-°co2s31s0in°10°
【活学活用1】 求下列各式的值:
(1)tan 15°+csoins 1155°°;
(2)tan 20°+4sin 20°的值.
解 (1)原式=csoins 1155°°+csoins 1155°°=sisni2n1155°+°cocsos1251°5°
=sin
1 15°cos
15°=2sin
2 15°cos
θ 2

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式  课件

14sinπ5π=14. sin5
(2)原式=-122cos2π8-1=-12cosπ4=-
2 4.
(3)原式=tan21π2π-1=-21-taπn21π2
tan12
2tan 12
=-2·tan21×1π2=t-an2π6=-2 3.
在解决这种题型时,要正确处理角的倍半关系.如 4α 是 2α 的二倍角,α 是α2的二倍角,π2-2α 是π4-α 的二倍角.
2α .
求下列各式的值.
(1)cosπ5cos25π;(2)12-cos2π8;
(3)tan1π2-
1 π.
tan12
分析式 把式子变形,使其符合 【思路点拨】子结构 → 正、逆用或变形用形式 → 求值
π π 2π 1 2π 2π 1 4π
sin 解:(1)原式=
5cos 5cos sinπ5
5 =2sins5incπ5os 5 =4ssiinnπ55 =
x
=2sin
xcos cos
x-sin x+sin
xcos x
x
=sin
2xcos x-sin cos x+sin x
x
=sin
1-tan 2x1+tan
xx=sin
2xtanπ4-x
=cosπ2-2xtanπ4-x= =2cos2π4-x-1tanπ4-x.
∵54π<x<74π, ∴-32π<π4-x<-π. 又∵cosπ4-x=-45, ∴sinπ4-x=35,tanπ4-x=-34. ∴原式=2×1265-1×-34=-12010.
• 给值求角问题的求解一般按如下两个步骤进行:
• (1)根据题设条件,求角的某个三角函数值;
• (2)讨论角的范围,必要时还需根据已知三角函数值缩小角 的范围,从而确定角的大小.

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式  课件

1 tan tan
2
思考:当 时,
你能推导出哪些恒等式呢? zxxk
二倍角公式
在公式S,C ,T中,令=
就得到下列当结果
sin 2 2sin cos (S2 )
cos2 cos2 sin2 tan 2 2 tan
1 tan2
(C2 ) (T2 )
公式推广
cos 2 cos 2 sin 2 中 cos2 sin 2 1,易得:
特别强调:tan 2=1-2ttaann2 仅当
k , k , k Z时成立2 Nhomakorabea4
例1、不查表,求下列各式的值
1、sin15cos15
2、 cos2 sin 2
8
8
3、
2 tan 22.5 1 tan 2 22.5
4、 1 2sin 2 75
例2、
已知:sin 12 , ( , )
二倍角的正弦余弦正切
复习引入
• 复习两角和与差的正弦、余弦、正切公式:
sin( ) sin cos cos sin , ( R, R) (S )
cos( ) cos cos sin sin ,( R, R) (C )
tan( ) tan tan , (, , k , k Z ) (T )
13
2
求sin2,cos2 , tan2的值
例3
求证:1 sin2 - cos2 =tan 1 sin2 cos2
试试身手!
1.已知:tan=3 求:sin2-cos2的值
答案:7/5
2.求函数y sin4 x cos x的周期。
课堂小结
●理解二倍角公式,领会二倍的相对意 义 ●运用公式求解,证明 ●特别注意公式的逆向使用,和公式变 形。

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式   课件
练习 1:2sin 15°cos 15°=________.
练习 2:cos2α2-sin2α2=________.
练习 3:1-2tatnan22α2α=________.
2tan α 1-tan2α 练习:1.12 2.cos α 3.tan 4α
二、二倍ቤተ መጻሕፍቲ ባይዱ公式中应注意的问题 (1)对“二倍角”公式应该有广泛的理解. 如 8α 是 4α 的二倍角,α 是α2的二倍角,α3是α6的 二倍角等等.又如 α=2×α2,α2=2×α4,…,2αn =2×2nα+1等等.
∴tan α<0,tan β<0.
∴tan(α+β)=1t-antαan+αttaannββ=-1-3 43= 3,
∵α,β∈-π2,π2,且 tan α<0,tan β<0, ∴α,β∈-π2,0,∴-π<α+β<0,
∴α+β=-23π.
∴cos 2θ=-
1-sin22θ=-
3 2.
利用二倍角公式化简与证明
已已知tatann2β2=β=tanta2αn+2α+co1s2α求.求证证::cos 2α-2c
cos 2α-2cos 2β=1.
分析:本题考查利用二倍角公式证明.首先要降 幂,然后才可以寻找到二倍角的形式,进而寻找到它 们的关系.
(2)当 α=kπ+2π,(k∈Z)时,tan α 的值不存在,
这时求 tan 2α 的值可用诱导公式求得. (3)一般情况下,sin 2α≠2sin α,例如 sin3π≠2sinπ6.
(4)公式的逆用变形
升幂公式:
1+cos α=________,1-cos α=________,
1±sin 2α=________

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式 课件

已知 sinα=35,cosα=45,则 sin2α等于(
)
A.7B.125源自5C.1225D.2245
[答案] D
[解析] sin2α=2sinαcosα=2245.
已知 cosα=13,则 cos2α等于(
)
A.13
B.23
C.-79
D.79
[答案] C
[解析] cos2α=2cos2α-1=29-1=-79.
[拓展]倍角公式的变形公式 剖析:(1)公式的逆用: 2sinαcosα=sin2α;sinαcosα=12sin2α; cosα=s2isni2nαα; cos2α-sin2α=cos2α; 1-2tatannα2α=tan2α.
(2)公式的有关变形: 1±sin2α=sin2α+cos2α±2sinαcosα =(sinα±cosα)2; 1+cos2α=2cos2α;1-cos2α=2sin2α; cos2α=1+c2os2α;sin2α=1-c2os2α.
自主预习 二倍角的正弦、余弦、正切公式如下表
三角函数
公式
正弦 sin2α= 2sinαcosα
余弦
cos2α=cos2α-sin2α = 2cos2α-1 = 1-2sin2α
正切
2tanα tan2α= 1-tan2α
简记 S(α+β) S2α C(α+β) C2α
T(α+β) T2α
[总结]对倍角公式的理解: ①成立的条件:在公式S2α,C2α中,角α可以为任意角, T2α则只有当α≠k2π+π4(k∈Z)时才成立. ②倍角公式不仅限于2α是α的二倍形式,其他如4α是2α的 二倍、α是α2的二倍、3α是32α的二倍等等都是适用的.
B.π
C.3π

第3课时 二倍角的正弦、余弦、正切公式 课件(共11张PPT) 高一数学人教A版必修第一册

第3课时 二倍角的正弦、余弦、正切公式 课件(共11张PPT) 高一数学人教A版必修第一册
cos 4α = cos [2×(2α)] = 1 −
sin 4α
120
tan 4α =
=−
.
cos 4α
119
注意:“倍”是两个数量间一种相对的关系,如 2α 是 α 的二倍,4α 又是 2α

的二倍,
2


4
的二倍;应准确理解“倍”的含义,灵活运用倍角公式.
学习目标
新课讲授
课堂总结
练一练
3
5
1. 已知 sin (α – π) = ,求 cos 2α 的值.
1 – tan 2A· tan 2B 117
思考:上述题目还有没有其他的解答方法,若有,请说出其他解法,若没
有,请说明理由.
将 tan (2A+2B) 视为 tan 2(A+B),先求出 tan (A+B)的值,再利用倍角公式即可.
学习目标
新课讲授
课堂总结
练一练
2. 已知 tan 2α =
1
,求
3
5.5.1.3 二倍角的正弦、余弦、正切公式
学习目标
新课讲授
课堂总结
1. 掌握二倍角的正弦、余弦、正切公式及其推导过程;(重点)
2. 能灵活运用二倍角公式解决有关的化简、求值等问题.(难点)
学习目标
新课讲授
课堂总结
知识点 1 :二倍角的正弦、余弦、正切公式
忆一忆:按照相应规律,说出所有的和(差)角公式!
sin (α + β) = sinα·cosβ + cosα·sinβ
sin (α − β) = sinα·cosβ − cosα·sinβ
cos (α + β) = cosα·cosβ − sinα·sinβ

5.5.1 第3课时 二倍角的正弦、余弦、正切公式(课件)

5.5.1 第3课时 二倍角的正弦、余弦、正切公式(课件)

经典例题
题型二 条件求值
例 2(1)已知 tan α=2,则 tan 2α=________;
(2)已知 0<α<π2,cosπ6+α=13,则 sin3π+2α=________.
解:(1)∵tan α=2, ∴tan 2α=1-2tatnanα2α =12-×222=-43.
(2)∵0<α<π2,∴π6<α+π6<23π.
=cos2( +α)=2cos2( +α)-1=2×( )2-1=- .
经典例题
题型二 条件求值
跟踪训练2 (2)设 α 为锐角,若 cosα+π6=45,则 sin2α+1π2的值为________.
(2)∵α 为锐角,∴α+π6∈π6,23π. 又∵cosα+π6=45,∴sinα+π6=35,
公式
简记
正弦 sin2α= 2sinαcosα
S2α
余弦 cos2α= cos2α-sin2α
C2α
正切 tan2α=
2tan α 1-tan2α
T2α
解读:倍角公式中的“倍角”是相对的,对于两个角的比值等于 2 的情况都 成立,如 4α 是 2α 的二倍,α 是α2的二倍等.
自主学习
二.正弦的二倍角公式的变形 1.sin αcos α=12sin 2α; 2.1±sin 2α=(sin α±cos α)2.
- 解析:因为 tanα=- ,所以 tan2α=

=- .
经典例题
题型一 给角求值
例 1 求下列各式的值:
(1)sin2 π-cos2 π;
(2)sin1π2cos1π2;
(3)

(4)cos20°·cos40°·cos80°.

二倍角的正弦、余弦、正切公式-PPT课件

二倍角的正弦、余弦、正切公式-PPT课件

sin2
1 cos 2
2
cos2
1 cos 2
2
7
思考3:tanα与sin2α,cos2α之间是 否存在某种关系?
tan2
1 cos 2
1 cos 2
tan sin 2 1 cos 2 1 cos 2 sin 2
8
大家学习辛苦了,还是要坚持
继续保持安静
9
思考4:sin2α,cos2α能否分别用 tanα表示?
cos2α=2cos2α-1=1-2sin2α
思考3:在二倍角的正弦、余弦和正切 公式中,角α的取值范围分别如何?
思考4:如何推导sin3α,cos3α与α的
三角函数关系?
6
探究(二):二倍角公式的变通 思考1:1+sin2α可化为什么?
1+sin2α=(sinα+cosα)2
思考2:根据二倍角的余弦公式,sinα, cosα与cos2α的关系分别如何?
sin 4x
tanx 学科网
例4 已知 sin cos π),求cos2α的值.
13,且α∈(0,
17 9
12
小结作业
1.角的倍半关系是相对而言的, 2α是α
的两倍,
4α是2α的两倍,
2

4
的两
倍等等,这里蕴含着换元的思想.
2.二倍角公式及其变形各有不同的特点 和作用,解题时要注意公式的灵活运用, 在求值问题中,要注意寻找已知与未知 的联结点.
3.二倍角公式有许多变形,不要求都记
忆,需要时可直接推导.
13
作业:
P135练习:2,3,4,5.
14
cos 2
1 tan2 1 tan2
sin 2

5.5.1二倍角的正弦余弦正切公式课件共17张PPT

5.5.1二倍角的正弦余弦正切公式课件共17张PPT
1 tan A tan B 2
tan
2A
2B
2 1
tan
tan 2
A B A B
44 117
巩固练习
变式:在ABC中, sin A 4 , tan B 2,
5
tan A 3
求 tan 2 A 2B 的值.
4
分A为钝角和锐角讨论
当A为钝角时,可求得tan(A+B)>0,与题 意不符,舍去
tan( ) tan tan 1 tan tan
tan( ) tan tan 1 tan tan
k (k Z )
2
k (k Z )
2
k (k Z )
2
学习新知 思考:能利用S(±)、C(±)、 T(±)推导出 sin2,cos2,tan2的公式吗?
复习引入 两角和与差的正弦、余弦、正切公式
( S(+) ) ( S(-) )
( C(-) ) ( C(+) )
sin(+)= sincos+cossin sin(-)= sincos-cossin
cos(-)= coscos+sinsin cos(+)= coscos-sinsin
( T(+) ) ( T(-) )
2
和 k , k Z时 ,公 式 才 有 意 义 .
42
学习新知
2.倍角公式
sin2= 2sincos
cos2= cos2-sin2
=1-2sin2
=2cos2-1
tan
2
2 tan 1 tan2
学习新知
1、掌握公式特征的同时,掌握二倍角函数 公式与和角的三角函数公式之间关系.

5.5.1(第三课时)二倍角的正弦、余弦、正切公式课件(人教版)

5.5.1(第三课时)二倍角的正弦、余弦、正切公式课件(人教版)

cos 2 1 2sin2 cos 2 2cos2 1
这样我们就得到了二倍角的正弦、余弦、正切公式
2 cos 2 1 1 2 sin2
不仅“2α”是“α”,而且 “4α”是“2α”的二倍角,只要一个角是另一个角的两倍就可以用二倍角公式
例 1 (1)cosπ7cos37πcos57π的值为(
注意: T2α公式成立的条件
二倍角的余弦公式的变形
cos 2 cos2 sin2
cos2 1 sin 2
(1 sin2 ) sin2
1 2 sin 2
cos 2 cos2 sin2
sin2 1 cos2
cos2 (1 cos2 )
2 cos2 1
7
cos
7 π
cos
7
2sin =
7
cos π
7
sin =
7π=-18.
8sin7
8sin7
8sin7
7
(2)求下列各式的值: ①cos415°-sin415°;②1-2sin275°;③1-tatnan7257°5°;
④sin110°-cos 310°.
(2)[解] ①cos415°-sin415° =(cos215°-sin215°)(cos215°+sin215°) =cos215°-sin215° =cos 30°
sinA 1 cos2 A 3,所以tanA sinA 3,
5
cosA 4
ቤተ መጻሕፍቲ ባይዱ
tan2 A
2tanA 1 tan2 A
24 . 7
又 tan
B
2,所以tan2B
2 tan B 1 tan2 B
4. 3
于是tan(2A 2B) tan2A tan 2B 44 . 1 tan2Atan 2B 117

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式    课件
1 2 ( 5 )2 119 ; 13 169
tan 4 sin 4 (120)169 120 . cos 4 169 119 119
例2.在△ABC中,cos A 4 , tan B 2,求 tan(2A 2B)的值. 5
解法1 在△ABC中,
Байду номын сангаас
由cos A 4 , 0 A , 得 5
sin A 1 cos2 A 1 ( 4 )2 3 . 55
所以tan A sin A 3 5 3 . cos A 5 4 4
tan 2A
2 tan A
2 3 4
24 .
1 tan2 A 1 ( 3)2 7
4
因为tan B 2,
所以tan 2B
1
2
tan tan
B 2B
22 1 22
4. 3
所以tan(2A 2B) tan 2A tan 2B 1 tan 2A tan 2B
1
24 4 73 24 (
4)
44 . 117
73
还可以把 2A 2B 看作 2(A B)
解法2 在ABC中,由cos A 4 , 0 A , 得 5
sin A 1 cos2 A 1 ( 4 )2 3 . 55
cos 2 co( s )
cos2 sin2 2cos2 1 1 2sin2 .
二倍角的余弦公式.
简记为 C2 .
tan
2
tan(
)
2 tan 1 tan2
二倍角的正切公式.
简记为 T2 .
倍角公式
S2 sin 2 2sin cos
C2 cos 2 cos2 sin2 1 2sin2 2cos2 1

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式 课件

两边式子中角间的倍角关系,先用倍角公式统一角,再用
同角三角函数基本关系式等完成证明.
跟踪训练 2
化简:11+ +ssiinn
2θ-cos 2θ+cos
2θ 2θ.

方法一
原式=11- +ccooss
2θ+sin 2θ+sin
22θθ=22csoins22θθ++22ssiinn
θcos θcos
θ θ
二倍角的正弦、余弦、正切公式
1.倍角公式
1
(1)S2α:sin 2α= 2sin αcos α
,sin
α 2cos
α2=
2sin α

(2)C2α:cos 2α= cos2α-sin2α = 2cos2α-1 = 1-2sin2α ;
2tan α (3)T2α:tan 2α= 1-tan2α .
2.倍角公式常用变形 (1)s2isnin2αα= cos α ,2sicnos2αα= sin α ;
跟 解踪原训式练=3 scion已sπ24π知++2sxixn=π4-2sxin=π4c+o15s3x,4πc+o0s<xxπ4<+π4x,=求2csoicnsoππ4s4++2xxx.的值. ∵sinπ4-x=cos4π+x=153,且 0<x<4π,
∴π4+x∈π4,π2,
∴sinπ4+x=
1-cos2π4+x=1123,
(2)cos 3α=cos(2α+α)=cos 2αcos α-sin 2αsin α =(2cos2α-1)cos α-2sin2αcos α =(2cos2α-1)cos α-2(1-cos2α)cos α =2cos3α-cos α-2cos α+2cos3α =4cos3α-3cos α.

课件8:3.1.3 二倍角的正弦、余弦、正切公式

课件8:3.1.3 二倍角的正弦、余弦、正切公式

θ 2>0.
∴原式=sin
θ2+cos
θ2-cos
θ2-sin
2θ=2sin
θ 2.
归纳点评 (1)三角函数中常用的解题技巧——“变次”.
本题用到了二倍角正弦和余弦的两个重要的变形:
1±sin α=(sin
α 2±cos
α2)2,
1+cos α=2cos2α2,1-cos α=2sin2α2.
(2)含有根号的式子化简,脱掉根号时要注意符号问题.
-cos π6=- 23.故选 C.
3.设 sin 2α=-sin α,α∈2π,π,则 tan 2α 的值是_____. 【解析】∵sin 2α=2sin αcos α=-sin α,α∈2π,π, ∴cos α=-12,sin α= 23.∴tan α=- 3,则 tan 2α= 12-tatannα2α= 3. 【答案】 3
17-15sin 2β≤4 2. 又当 β=-π4时,等号成立,所以|b+c|的最大值为 4 2.
(3)证明:由 tan αtan β=16,得4scionsβα=4scionsαβ, 所以 a∥b.
归纳点评 对向量的垂直,平等,模概念要清楚,记 忆防止混乱而出错.对三角函数的基本关系式应熟悉 掌握.
4.已知 sin π4+xsin π4-x=61,x∈π2,π,求 sin 4x, cos 4x,tan 4x 的值. 解:sin π4-x=sin[π2-π4+x]=cos π4+x, ∴2sin π4+xcos π4+x=13, 即 sin 2π4+x=31,sin π2+2x=13,
∴cos 2x=13.又 x∈π2,π,∴2x∈(π,2π),
2α,sin2α=1-c2os
2α .

二倍角的正弦、余弦和正切公式 课件

二倍角的正弦、余弦和正切公式    课件
“探究1”预示本节课我们要研究什么问题? 学习目标:
1.用和角公式推导倍角公式。 2.能运用倍角公式,变形公式,构造公
式进行求值。
提示:怎样对和角公式做适当变换得到二倍 角公式呢?
二倍角公式:
sin2 2sin cos R
cos 2 cos2 sin2 R
tan 2
2 tan 1 tan2
(3)2 5
7 25
tan 2
sin 2 4 ,(0 ),求cos2的值.
解:
5
2
cos 4 ,0
5
2
sin 3
5
cos2 cos2 sin2 ( 4 )2 ( 3 )2
55
7 25
探究2:你能只用cos的值,不求sin的值,直接
二倍角的正弦、余弦和正切公式
1.请写出两角和的正弦、余弦、正切公式
cos( ) cos cos sin sin sin( ) sin cos cos sin tan( ) tan tan
1 tan tan
探究1:你能利用S(+)、C(+)、 T(+)推导出
sin2,cos2,tan2的公式吗?
2 sin 400 cos 400 cos800 2 2sin 200
sin 800 cos 800 2 sin 800 cos800 4 sin 200 2 4sin 200
sin1600 8sin 200
1 8
课下以小组为单位探究下面这道题的解法
sin100 sin 300 sin 500 sin 700
24 24 12
2sin cos sin 1
12 12 6 2
思考:cos 200 cos 400 cos800

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式 课件

=2sin(π4c+osx()π4·+coxs()π4+x)=2sin(π4+x).
∵sin(π4-x)=cos(π4+x)=153,且 0<x<π4,
∴π4+x∈(π4,π2),
∴sin(π4+x)= 1-cos2(π4+x)=1123, ∴原式=2×1123=2143.
[一点通] 这类三角函数求值问题常有两种解题途径:一是对 题设条件变形,将题设条件中的角、函数名向结论中的角、函数 名靠拢;另一种是对结论变形,将结论中的角、函数名向题设条 件中的角、函数名靠拢,以便将题设条件代入结论,即解题过程 既要结合已知条件,又要增强目标意识.
二倍角公式
名称
公式
二倍角的正弦 sin 2α= 2sin αcos α
cos 2α= cos2α-sin2α
二倍角的余弦 = 2cos2α-1
= 1-2sin2α
2tan α 二倍角的正切 tan 2α= 1-tan2α
记法 S2α C2α
T2α
[例 1] 求下列各式的值:
(1)sin
π 12 cos
=8sisnin12600°°=18.
[例 2] 已知 sin(π4-x)=153,0<x<π4,求cos(coπs4+2xx)的值. [思路点拨] 注意角的关系(π4+x)+(π4-x)=π2,注意诱导 公式的应用 cos 2x=sin(π2+2x),利用倍角公式解题.
[精解详析]
原式=scions((π2π4++2xx))
=cos 10°+
3sin
10°=2(12cos
10°+
3 2 sin
10°)
2
2
2 sin 40°
2 sin 40°
=2 s2insi4n04°0°=2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos2α=2cos2α-1
1 2sin2 a
探究(二):二倍角公式的变形 思考1:1+sin2α可化为什么?
1+sin2α=(sinα+cosα)2
思考2:根据二倍角的余弦式, sin2 a,cos2 a 与cos2α的关系分别如何?
sin2 1 cos 2
2
cos2 1 cos 2
2
3.13 二倍角的正弦、余弦、正切公式
巨野县第一中学
谷卫丽
问题提出
1. 两角和与差的正弦、余弦和正切公式分别是 什么?
sin( ) sin cos cos sin
cos( ) cos cos sin sin
tan( ) tan tan 1 tan tan
探究(一):二倍角基本公式
思考3:sin2α,cos2α能否分别用 tanα表示?
cos
2
1 1
tan 2 tan2
sin
2
2 tan 1 tan2
理论迁移
例1
已知
sin 2 5
13
,4
2
求 sin 4,cos 4,tan 4 的值.
练一练 (1)sin 22.50 cos 22.50;
(2) cos2
sin2 ;
8
8
(3)
1
2 Biblioteka tan150 tan2 150
;
(4)1 2sin2 750.
【例 2】在 ABC 中, cos A 4 , tan B 2 ,求 5
tan(2A 2B) 的值;
已知 tan 2 1 , 求 tan 的值
3
解:
tan
2
2 tan 1 tan2
1 3
由此得 tan2 6 tan 1 0
解得 tan 2 5 或 tan 2 5
例3 化简 (sin 2x cos 2x 1)(sin 2x cos 2x 1)
sin 4x
tanx
思考?
求cos 20cos 40cos80的值.
作业:
P135练习:2,3,4,5.
思考1:两角和的正弦、余弦和正切公式 都是恒等式,特别地,当β=α时,这 三个公式分别变为什么?
sin2α=2sinαcosα;
.
cos2α=cos2α-sin2α;
tan
2
2 tan 1 tan2
思考2:上述公式称为倍角公式,分别记 作S2α,C2α,T2α,利用平方关系,二倍 角的余弦公式还可作哪些变形?
相关文档
最新文档