2020年初二数学上期末试题(带答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年初二数学上期末试题(带答案)
一、选择题
1.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )
A .10cm
B .6cm
C .4cm
D .2cm 2.下列计算正确的是( ) A .2236a a b b ⎛⎫= ⎪⎝⎭
B .1a b a b b a -=--
C .112a b a b +=+
D .1x y x y --=-+ 3.下列各因式分解的结果正确的是( ) A .()321a a a a -=-
B .2()b ab b b b a ++=+
C .2212(1)x x x -+=-
D .22()()x y x y x y +=+- 4.下列运算正确的是( )
A .236326a a a -⋅=-
B .()632422a a a ÷-=-
C .326()a a -=
D .326()ab ab =
5.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。
A .9
B .7
C .5
D .3 6.若(x ﹣1)0=1成立,则x 的取值范围是( )
A .x =﹣1
B .x =1
C .x≠0
D .x≠1 7.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .10
8.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( )
A .30
B .30或150
C .60或150
D .60或120
9.如果30x y -=,那么代数式
()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .72
10.如图,在Rt△ABC 中,∠ACB=90°,∠B =30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )
A .3cm
B .6cm
C .9cm
D .12cm
11.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12
AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )
A .7
B .14
C .17
D .20 12.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则
∠BPC 的度数可能是
A .50°
B .80°
C .100°
D .130°
二、填空题
13.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .
14.3(5)2(5)x x x -+-分解因式的结果为__________.
15.若x 2+kx+25是一个完全平方式,则k 的值是____________.
16.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.
17.如图,在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,若AB=20,则BD 的长是 .
18.因式分解:3x 3﹣12x=_____.
19.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
20.已知9y 2+my+1是完全平方式,则常数m 的值是_______.
三、解答题
21.如图,已知点B ,F ,E ,C 在同一条直线上,//AB CD ,且AB CD =,A D ∠=∠.求证:BE CF =.
22.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点.
(1)若,求的度数; (2)若,垂足为,求证:
. 23.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x 3+2x 2﹣x ﹣2因式分解的结果为(x ﹣1)(x +1)(x +2),当x =18时,x ﹣1=17,x +1=19,x +2=20,此时可以得到数字密码171920.
(1)根据上述方法,当x =21,y =7时,对于多项式x 3﹣xy 2分解因式后可以形成哪些数字密码?(写出两个)
(2)若多项式x 3+(m ﹣3n )x 2﹣nx ﹣21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m 、n 的值.
24.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证:
(1)∠AEC=∠BED;
(2)AC=BD .
25.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
试题解析:∵AD 是∠BAC 的平分线,
∴CD=DE ,
在Rt △ACD 和Rt △AED 中,
{CD DE AD AD
==, ∴Rt △ACD ≌Rt △AED (HL ),
∴AE=AC=6cm ,
∵AB=10cm ,
∴EB=4cm .
故选C .
2.D
解析:D
【解析】
【分析】
根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.
【详解】
A.
22
2
22
()
3(3)9
a a a
b b b
==,故该选项计算错误,不符合题意,
B.
a b a b a b
a b b a a b a b a b
+
-=+=
-----
,故该选项计算错误,不符合题意,
C.11b a a b
a b ab ab ab
+
+=+=,故该选项计算错误,不符合题意,
D.
()
1
x y x y
x y x y
---+
==-
++
,故该选项计算正确,符合题意,
故选:D.
【点睛】
本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.
3.C
解析:C
【解析】
【分析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.
【详解】
()
321
a a a a
-=-=a(a+1)(a-1),故A错误;
2(1)
b ab b b b a
++=++,故B错误;
22
12(1)
x x x
-+=-,故C正确;
22
x y+不能分解因式,故D错误,
故选:C.
【点睛】
此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.4.C
解析:C
【解析】
【分析】
根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.
【详解】
A、-3a2•2a3=-6a5,故A错误;
B、4a6÷(-2a3)=-2a3,故B错误;
C、(-a3)2=a6,故C正确;
D、(ab3)2=a2b6,故B错误;
【点睛】
本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.
5.A
解析:A
【解析】
【分析】
根据题意画出图形,分别以OA、OB、AB为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.
【详解】
如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,
则则所有符合条件的三角形个数为9,
故选:A.
【点睛】
本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解. 6.D
解析:D
【解析】
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
7.C
解析:C
【解析】
【分析】
根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.
【详解】
设第三边长为xcm,
则8﹣2<x<2+8,
故选:C .
【点睛】
本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.
8.B
解析:B
【解析】
【分析】
等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为
【详解】
解:如图1,
∵∠ABD=60°,BD 是高,
∴∠A=90°-∠ABD=30°;
如图2,∵∠ABD=60°,BD 是高,
∴∠BAD=90°-∠ABD=30°,
∴∠BAC=180°-∠BAD=150°;
∴顶角的度数为30°或150°.
故选:B .
【点睛】
本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.
9.D
解析:D
【解析】
【分析】
先把分母因式分解,再约分得到原式=
2x y x y +-,然后把x=3y 代入计算即可. 【详解】
原式=()22x y x y +-•(x-y )=2x y x y
+-,
∴x=3y,
∴原式=6
3
y y
y y
+
-
=
7
2
.
故选:D.
【点睛】
本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
10.D
解析:D
【解析】
【分析】
先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.
【详解】
在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,
∴∠ACD+∠DCB=90°,∠B+∠DCB=90°,
∴∠ACD=∠B=30°.
∵AD=3cm.
在Rt△ACD中,AC=2AD=6cm,
在Rt△ABC中,AB=2AC=12cm,
∴AB的长度是12cm.
故选D.
【点睛】
本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.
11.C
解析:C
【解析】
【分析】
本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.
【详解】
解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.
故选C.
【点睛】
本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.
12.C
解析:C
【解析】
【分析】
根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.
【详解】
∵AB=AC,∠B=50°,
∴∠B=∠ACB=50°,
∴∠A=180°-50°×2=80°,
∵∠BPC=∠A+∠ACP,
∴∠BPC>∠A,
∴∠BPC>80°.
∵∠B=50°,
∴∠BPC<180°-50°=130°,
则∠BPC的值可能是100°.
故选C.
【点睛】
此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.
二、填空题
13.280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数再根据多边形的外角和定理即可求解解:如图∵∠EAB+∠5=180°∠EAB=1 00°∴∠5=80°∵∠1+∠2+∠3+∠
解析:280°
【解析】
试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.
解:如图,∵∠EAB+∠5=180°,∠EAB=100°,
∴∠5=80°.
∵∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3+∠4=360﹣80°=280°
故答案为280°.
考点:多边形内角与外角.
14.(x-5)(3x-2)【解析】【分析】先把代数式进行整理然后提公因式即可得到答案【详解】解:==;故答案为:【点睛】本题考查了提公因式法分解因式解题的关键是熟练掌握分解因式的几种方法
解析:(x-5)(3x-2)
【解析】
【分析】
先把代数式进行整理,然后提公因式(5)x -,即可得到答案.
【详解】
解:3(5)2(5)x x x -+-
=3(5)2(5)x x x ---
=(5)(32)x x --;
故答案为:(5)(32)x x --.
【点睛】
本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法. 15.±10【解析】【分析】先根据两平方项确定出这两个数再根据完全平方公式的乘积二倍项即可确定k 的值【详解】解:∵x2+kx+25=x2+kx+52∴kx=±2•x•5
解得k=±
10故答案为:±10【点睛 解析:±10.
【解析】
【分析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.
【详解】
解:∵x 2+kx+25=x 2+kx+52,
∴kx=±2•x•5,
解得k=±
10. 故答案为:±
10. 【点睛】
本题考查完全平方式,根据平方项确定出一次项系数是解题关键,也是难点,熟记完全平方公式对解题非常重要.
16.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案
为80°【点睛】本题考查了平行线的性质三角形
解析:80°.
【解析】
【分析】
根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.
【详解】
∵a∥b,
∴∠4=∠l=60°,
∴∠3=180°-∠4-∠2=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
17.5【解析】【分析】【详解】试题分析:根据同角的余角相等知
∠BCD=∠A=30°所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD解:∵在直角△ABC中∠ACB=90°
解析:5
【解析】
【分析】
【详解】
试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.
解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB
∴∠BCD=∠A=30°,
∵AB=20,
∴BC=1
2
AB=20×
1
2
=10,
∴BD=1
2
BC=10×
1
2
=5.
故答案为5.
考点:含30度角的直角三角形.
18.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x (x+2)(x﹣2)【点睛】本题考查
解析:3x (x+2)(x ﹣2)
【解析】
【分析】
先提公因式3x ,然后利用平方差公式进行分解即可.
【详解】
3x 3﹣12x
=3x (x 2﹣4)
=3x (x+2)(x ﹣2),
故答案为3x (x+2)(x ﹣2).
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
19.【解析】【分析】【详解】因为大正方形边长为小正方形边长为m 所以剩余的两个直角梯形的上底为m 下底为所以矩形的另一边为梯形上下底的和:+m= 解析:24m +
【解析】
【分析】
【详解】
因为大正方形边长为4m +,小正方形边长为m ,所以剩余的两个直角梯形的上底为m ,下底为4m +,所以矩形的另一边为梯形上、下底的和:4m ++m=24m +.
20.±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键
解析:±6
【解析】
【分析】
利用完全平方公式的结构特征确定出m 的值即可.
【详解】
∵9y 2+my+1是完全平方式,
∴m=±
2×3=±6, 故答案为:±
6. 【点睛】
此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.
三、解答题
21.证明见解析
【解析】
【分析】
根据ASA 可判定ABF DCE ∆≅∆,可得BF CE =,即可得BE CF =.
【详解】
证明:
//AB CD ,
B C ∴∠=∠, 在ABF ∆和DCE ∆中,
B C AB CD A D ∠=∠⎧⎪=⎨⎪∠=∠⎩
()ABF DCE ASA ∴∆≅∆
BF CE ∴=,
BF EF CE EF ∴+=+,
即BE CF =.
【点睛】
本题考查了三角形的全等的判定和性质,掌握三角形的全等的判定是解题的关键.
22.(1)35°;(2)见解析.
【解析】
【分析】
(1)首先根据OB ∥FD ,可得∠OFD +∠AOB =18O °,进而得到∠AOB 的度数,再根据作图可知OP 平分∠AOB ,进而算出∠DOB 的度数即可;
(2)首先证明∴∠AOD =∠ODF ,再由FM ⊥OD 可得∠OMF =∠DMF ,再加上公共边FM =FM ,可利用AAS 证明△FMO ≌△FMD .
【详解】
(1)解:∵OB ∥FD ,
∴∠OFD +∠AOB =18O °,
又∵∠OFD =110°,
∴∠AOB =180°−∠OFD =180°−110°=70°,
由作法知,OP 是∠AOB 的平分线,
∴∠DOB =∠ABO =
;
(2)证明:∵OP 平分∠AOB ,
∴∠AOD =∠DOB ,
∵OB ∥FD ,
∴∠DOB =∠ODF ,
∴∠AOD =∠ODF ,
又∵FM ⊥OD ,
∴∠OMF =∠DMF ,
在△MFO 和△MFD 中
∴△MFO≌△MFD(AAS).
【点睛】
此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.
23.(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.【解析】
【分析】
(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设
x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n
【详解】
(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),
当x=21,y=7时,x+y=28,x﹣y=14,
∴可以形成的数字密码是:212814、211428;
(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),
∵当x=27时可以得到其中一个密码为242834,
∴27+p=24,27+q=28,27+r=34,
解得,p=﹣3,q=1,r=7,
∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),
∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,
∴
35
17
m n
n
-=
⎧
⎨
-=-
⎩
得,
56
17
m
n
=
⎧
⎨
=
⎩
即m的值是56,n的值是17.
【点睛】
本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)
(x+r),解出p、q、r
24.见解析
【解析】
(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;
(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.
证明:(1)∵AB∥CD,
∴∠AEC=∠ECD,∠BED=∠EDC,
∵CE=DE,
∴∠ECD=∠EDC,
∴∠AEC=∠BED;
(2)∵E是AB的中点,
∴A E=BE,
在△AEC和△BED中,
AE=BE,∠AEC=∠BED,EC=ED,
∴△AEC≌△BED(SAS),
∴AC=BD.
25.提速前的速度为200千米/小时,提速后的速度为350千米/小时,
【解析】
【分析】
设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.
【详解】
设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得:
10010010
-=
1.560
x x
解得:x=200,
经检验:x=200是原方程的根,
∴1.5x=300,
答:提速前后的速度分别是200千米每小时和300千米每小时.
【点睛】
考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.。