桥梁工程 外文翻译
桥梁工程外文翻译---桥梁裂缝产生原因浅析
![桥梁工程外文翻译---桥梁裂缝产生原因浅析](https://img.taocdn.com/s3/m/3dd9803e3968011ca30091f0.png)
The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficient to design the section; It is simply little and assigning the mistake for reinforcing bar to setup; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strength reinforcing bar of structure the. In the actual project, stress crack once produced the mostcommon reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in the structure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a lessone light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes the range with the conduct of the average temperature in the moon of January and July.Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component , prestressing force steel temperature can rise to 350 degrees Centigrade , the concretecomponent is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layer moisture loss soon, it is slow for inside to lose, produce surface shrink heavy , insideshrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light in addition, water content big to shrink the larger. 3, Water gray than. The heavier waterconsumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly . Such as hills area or bridge, district of mountain ridge,, hole interval to be too far whenreconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again, reduce the buoyancy on the foundation at the same time , shouldering the obstruction ofrubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地兴建了大量的混凝土桥梁。
桥梁工程专业词汇打印版
![桥梁工程专业词汇打印版](https://img.taocdn.com/s3/m/e6bfd2b118e8b8f67c1cfad6195f312b3169ebc5.png)
构造控制structural controlstructure control构造控制: structural control結構控制: structural control构造控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制旳: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: Optimum Theory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post 桥主梁: bridge girder主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube单墩肘形尾水管: one-pier elbow draught tube构造优化设计构造优化设计: optimal structure designing扩构造优化设计: Optimal Struc ture Designing 液压机构造优化设计软件包: HYSOP持续多跨多跨持续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber销钉拼接板: pin splice裂缝crackcrevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge持续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge懸索橋: Suspension bridge|Puente colgante加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressed concrete|prestre edconcrete预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressing tendon|pre-stre ingtendon抛物线型钢丝束(预应力配钢筋构造用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge拱橋: Arch bridge|Puente en arco|Pont en arc鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness 光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcement stirrup|hooping 箍筋柱: tied column|hooped column形箍筋: u stirrup u预应力元件预应力元件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads 等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch 彈性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor原则值standard value原则值: standard value,|reference value作用原则值: characteristic value of an action重力原则值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability不可靠度: Unreliability高可靠度: High Reliability几何特性geometrical characteristic几何特性: geometrical characteristic配位几何特性: coordinated geometric feature流域几何特性: basin geometric characteristics塑性plastic natureplasticity应力图stress diagram应力图: stress diagram|stress pattern谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress抗压应力: compressive stress|pressure load内压应力: internal pressure stress配筋率ratio of reinforcementreinforcement ratioreinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查, 查对, 克制, 控制, 试验, 裂缝, 支票, 账单, 牌号, 名牌: chec应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress 应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration 非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure) bending momentflexural torque弯矩: bending moment|flexural moment|kN-m 弯矩图: bending moment diagram|moment curve 双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分派法moment distributionmomentdistribution弯矩分派法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve 最终弯矩图: final bending moment diagram最大弯矩图: maximum bending moment diagram剪力shearing force剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel 剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams绘制剪力和弯矩图旳图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel抗剪力墙: shearwall剪力墙构造: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester轴向力: axial force|normal force|beam框架构造frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname)beam of roofbridge桥梁bridge曲率curvature材料力学mechanics of materials构造力学structural mechanics构造力学: Structural Mechanics|theory of structures重构造力学: barodynamics船舶构造力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity截面弯曲刚度: flexural rigidity of section弯曲刚度, 抗弯劲度: bending stiffness钢管混凝土构造encased structures钢管混凝土构造: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimate load design设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土旳主钢筋: mainbar悬臂梁socle beam悬臂梁: cantilever beam|cantilever|outrigger 悬臂梁长: length of cantilever双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette 伪悬链线: pseudocatenary悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener 短加劲肋: short stiffener支承加劲肋: bearing stiffener技术原则technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for持续梁through beam持续梁: continuous beam|through beam多跨持续梁: continuous beam on many supports 悬臂持续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection支撑刚性梁, 加劲梁, 横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文學: Hydrologie|水文学|??? ??????古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance 抗风锚: weather anchor抗风性: wind resistance基础旳basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction control survey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术征询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesignpreliminary plan技术设计technical design技术设计: technical design|technical project技术设计员: Technical Designer|technician技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital c桥台abutmentbridge abutment基础foundationbasebasis构造形式structural style构造形式: Type of construction|form of structure表构造形式: list structure form屋顶构造形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion地震活动性: seismicity|seismic地震活动图: seismicity map支撑体系支撑体系: bracing system|support system物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abs引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge装配式房屋: Prefabricated buildings装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance不耐久性: fugitiveness耐久性试验: endurance test|life test|durability test 持久状况持久状况: persistent situation短暂状况短暂状况: transient situation偶尔状况偶尔状况: accidental situation永久作用永久作用: permanent action永久作用原则值: characteristic value of permanent action可变作用可变作用: variable action可变作用原则值: characteristic value of variable action 可变光阑作用: iris action偶尔作用偶尔作用: accidental action偶尔同化(作用): accidental assimilation作用效应偶尔组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用原则值作用原则值: characteristic value of an action地震作用原则值: characteristic value of earthquake action 可变作用原则值: characteristic value of variable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass 生物安全等级: Biosafety Level生物安全等級: Biosafety Level作用actionactivity actionsactseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action 互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects 作用效应偶尔组合: accidental combination for action effects构造重要性系数构造重要性系数Coefficient for importance of a structure 桥涵桥涵跟桥梁比较类似, 重要区别在于:单孔跨径不不小于5m或多孔跨径之公路等级公路等级: highway classification原则:公路等级代码: Code for highway classification原则:公路路面等级与面层类型代码: Code for classification and typ 顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics水力旳: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter古河槽: old channel河槽线: channel axis河岸riversidestrand河岸: bank|riverside|river bank河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion河岸侵蚀河岸侵食: bank erosion河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct 高架橋: Viadukt|Viaducto|高架橋高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge 洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designed speed|design rate设计速度, 构造速度: desin speed|desin speed <haha最大阵风强度旳设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parking strip 紧急停车阀: emergency stop valve减速gear downretardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road硬路肩: hard shoulder|hardened verge软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle离散最大值原理: discrete maximum principle极大值原理, 最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path自行车道专供自行车行驶旳车道。
桥梁工程英语专业词汇
![桥梁工程英语专业词汇](https://img.taocdn.com/s3/m/83b899c577eeaeaad1f34693daef5ef7ba0d120a.png)
℃上承式拱桥deck arch bridge(3)扣索buckle cable人群荷载crowdload拱轴系数arch-axis coefficient拱脚区段arch foot sectio n跨中区段mid-span sectio n立柱column盖梁coping合力作用点a ction pointof result ant force上缘uppermargin下缘lowermargin形心轴centroidal axisSelf-climbi ng formwo rk 爬模In situCantil everconstr uctio n 悬臂施工中心线center line立面图elevat ion伸缩缝expans ion joint水流方向flow direct ion起拱线标高 spring line elevat ion黄海高程yellow sea height最高通航水位highest navigable waterlevel设计洪水位 design floodlevel强弱风化分界线Dividi ng line of strong and weak weathe ring立柱column底座base作用效应基本组合Fundam ental combin ation for action effect 上弦杆top chord下弦杆bottom chord预制桥道板p recas t deck后浇带late poured band合拢段closur e segmen t示意图schematic diagra m变形协调deform ation compat ibili ty一致质量法c onsis t ent m ass method最小势能原理princi ple of minimu m potent ial energy 变分法variatio nal method虚功virt ual work正定矩阵positive definite matrix振型 vibrat ion mode结构动力方程genera l dynami c equati on特征值方程 e igenvalueequati on透视图per spect ive view侧面图side elevat ion俯视图top view立面图ele v atio n抗侧刚度latera l s tiffn ess引桥appr oach bridge幅度 amplit ude抗扭刚度torsio nal stiffn ess振型叠加法m ode superp osition method ;刚度突变rigidit y abrupt change可行性feasib ility连续钢构桥c ontin uousr idged bridge托架:bracket模型建立:create实施研究:Studycarrie d outThe caps and column s were couple d to each otherusingridged links。
外文翻译---桥梁工程和桥梁美学
![外文翻译---桥梁工程和桥梁美学](https://img.taocdn.com/s3/m/14bc380179563c1ec5da7116.png)
附录3 外文文献翻译BRIDGE ENGINEERING AND AESTHETICS Evolvement of bridge Engineering,brief reviewAmong the early documented reviews of construction materials and structure types are the books of Marcus Vitruvios Pollio in the first century B.C.The basic principles of statics were developed by the Greeks , and were exemplified in works and applications by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueducts .The state of the art changed rapidly toward the end of the seventeenth century when Leibnitz, Newton, and Bernoulli introduced mathematical formulations. Published works by Lahire (1695)and Belidor (1792) about the theoretical analysis of structures provided the basis in the field of mechanics of materials .Kuzmanovic(1977) focuses on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood tosteel .According to recent records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the GaroyneCanal at Grisoles, but reinforced concrete was not introduced in bridge construction until the beginning of this century . Prestressed concrete was first used in 1927.Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle ages . These arches were half-circular , with flat arches beginning to dominate bridge work during the Renaissance period. This concept was markedly improved at the end of the eighteenth century and found structurally adequate to accommodate future railroad loads . In terms of analysis and use of materials , stone bridges have not changed much ,but the theoretical treatment was improved by introducing the pressure-line concept in the early 1670s(Lahire, 1695) . The arch theory was documented in model tests where typical failure modes were considered (Frezier,1739).Culmann(1851) introduced the elastic center method for fixed-end arches, and showed that three redundantparameters can be found by the use of three equations of coMPatibility.Wooden trusses were used in bridges during the sixteenth century when Palladio built triangular frames for bridge spans 10 feet long . This effort also focused on the three basic principles og bridge design : convenience(serviceability) ,appearance , and endurance(strength) . several timber truss bridges were constructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in the United States and Russia during the nineteenth century ,prompted by the need to cross major rivers and by an abundance of suitable timber . Favorable economic considerations included initial low cost and fast construction .The transition from wooden bridges to steel types probably did not begin until about 1840 ,although the first documented use of iron in bridges was the chain bridge built in 1734 across the OderRiver in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by England in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first iron arch truss bridge was built across the Erie Canal at Utica .The Impetus of AnalysisThe theory of structuresThe theory of structures ,developed mainly in the ninetheenth century,focused on truss analysis, with the first book on bridges written in 1811. The Warren triangular truss was introduced in 1846 , supplemented by a method for calculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-span bridges.In 1866, Culmann explained the principles of cantilever truss bridges, and one year later the first cantilever bridge was built across the MainRiver in Hassfurt, Germany, with a center span of 425 feet (130m) . The first cantilever bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the First of Forth bridge , built between 1883 and 1893 , with span magnitudes of 1711 feet (521.5m).At about the same time , structural steel was introduced as a prime material inbridge work , although its quality was often poor . Several early examples are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and the Glasgow bridge in Missouri , all completed between 1874 and 1883.Among the analytical and design progress to be mentioned are the contributions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and the works by Clapeyron who introduced the three-moment equations.The Impetus of New MaterialsSince the beginning of the twentieth century , concrete has taken its place as one of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its structural uses are almost unlimited . Wherever Portland cement and suitable aggregates are available , it can replace other materials for certain types of structures, such as bridge substructure and foundation elements .In addition , the introduction of reinforced concrete in multispan frames at the beginning of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical methods of the nineteenth century .The importance of joint rotation was already demonstrated by Manderla (1880) and Bendixen (1914) , who developed relationships between joint moments and angular rotations from which the unknown moments can beobtained ,the so called slope-deflection method .More simplifications in frame analysis were made possible by the work of Calisev (1923) , who used successive approximations to reduce the system of equations to one simple expression for each iteration step . This approach was further refined and integrated by Cross (1930) in what is known as the method of moment distribution .One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-plastic range , also known as load factor or ultimate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Saint-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War Ⅰ , mainly inGermany , with the center of activity shifting to England and the United States after World War Ⅱ.The probabilistic approach is a new design concept that is expected to replace the classical deterministic methodology.A main step forward was the 1969 addition of the Federal Highway Adiministration (FHWA)”Criteria for Reinforced Concrete Bridge Members “ that covers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Specification, and was presented in a format that is readily adaptable to the development of ultimate design specifications .According to this document , the proportioning of reinforced concrete members ( including columns ) may be limited by various stages of behavior : elastic , cracked , and ultimate . Design axial loads , or design shears . Structural capacity is the reaction phase , and all calculated modified strength values derived from theoretical strengths are the capacity values , such as moment capacity ,axial load capacity ,or shear capacity .At serviceability states , investigations may also be necessary for deflections , maximum crack width , and fatigue .Bridge TypesA notable bridge type is the suspension bridge , with the first example built in the United States in 1796. Problems of dynamic stability were investigated after the Tacoma bridge collapse , and this work led to significant theoretical contributions Steinman ( 1929 ) summarizes about 250 suspension bridges built throughout the world between 1741 and 1928 .With the introduction of the interstate system and the need to provide structures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete box girders ), steel beam and plate girders , steel box girders , composite construction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while interest in box sections remains strong .Bridge Appearance and AestheticsGrimm ( 1975 ) documents the first recorded legislative effort to control the appearance of the built environment . This occurred in 1647 when the Council of New Amsterdam appointed three officials . In 1954 , the Supreme Court of the United States held that it is within the power of the legislature to determine that communities should be attractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of the federal government to identify and develop methods and procedures to ensure that presently unquantified environmental amentities and values are given appropriate consideration in decision making along with economic and technical aspects .Although in many civil engineering works aesthetics has been practiced almost intuitively , particularly in the past , bridge engineers have not ignored or neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized aesthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities , and this direction is both theoretically and empirically oriented .Aesthetic control mechanisms are commonly integrated into the land-use regulations and design standards . In addition to concern for aesthetics at the state level , federal concern focuses also on the effects of man-constructed environment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgrading of aesthetic quality in bridge superstructures and substructures can be seen in the evaluation structure types aimed at improving overall appearance .LOADS AND LOADING GROUPSThe loads to be considered in the design of substructures and bridge foundations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .AASHTO loads . Section 3 of AASHTO specifications summarizes the loads and forces to be considered in the design of bridges (superstructure and substructure ) .Briefly , these are dead load ,live load , iMPact or dynamic effect of live load , wind load , and other forces such as longitudinal forces , centrifugal force ,thermal forces , earth pressure , buoyancy , shrinkage and long term creep , rib shortening , erection stresses , ice and current pressure , collision force , and earthquake stresses .Besides these conventional loads that are generally quantified , AASHTO also recognizes indirect load effects such as friction at expansion bearings and stresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct categories : permanent and transient .Permanent loadsDead Load : this includes the weight DC of all bridge components , appurtenances and utilities, wearing surface DW and future overlays , and earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .Transient LoadsVehicular Live Load (LL)Vehicle loading for short-span bridges :considerable effort has been made in the United States and Canada to develop a live load model that can represent the highway loading more realistically than the H or the HS AASHTO models . The current AASHTO model is still the applicable loading.桥梁工程和桥梁美学桥梁工程的发展概况早在公元前1世纪,Marcus Vitrucios Pollio 的著作中就有关于建筑材料和结构类型的记载和评述。
桥梁工程毕业设计外文翻译(箱梁)
![桥梁工程毕业设计外文翻译(箱梁)](https://img.taocdn.com/s3/m/aa3a60ff4a7302768f9939c5.png)
西南交通大学本科毕业设计(论文)外文资料翻译年级:学号:姓名:专业:指导老师:2013年 6 月外文资料原文:13Box girders13.1 GeneralThe box girder is the most flexible bridge deck form。
It can cover a range of spans from25 m up to the largest non—suspended concrete decks built, of the order of 300 m。
Single box girders may also carry decks up to 30 m wide。
For the longer span beams, beyond about 50 m,they are practically the only feasible deck section. For the shorter spans they are in competition with most of the other deck types discussed in this book.The advantages of the box form are principally its high structural efficiency (5.4),which minimises the prestress force required to resist a given bending moment,and its great torsional strength with the capacity this gives to re—centre eccentric live loads,minimising the prestress required to carry them。
The box form lends itself to many of the highly productive methods of bridge construction that have been progressively refined over the last 50 years,such as precast segmental construction with or without epoxy resin in the joints,balanced cantilever erection either cast in—situ or coupled with precast segmental construction, and incremental launching (Chapter 15)。
公路桥梁专业词汇英语翻译
![公路桥梁专业词汇英语翻译](https://img.taocdn.com/s3/m/2652e73b83c4bb4cf6ecd100.png)
桥梁bridge公路干道highway工程工程学engineering公路工程highway engineering路基roadbase路面pavement构造物建造构成制造construct施工(名)construction试验室laboratory现场检测field test(名)试验检验(不)进行试验experiment 试验检测测量test质量上流社会的quality合格,取得资格qualify材料material沥青柏油以沥青铺(一般指沥青路)asphalt 沥青(指原材料)bitumen沥青的bituminous沥青混合料bituminous mixture混凝土concrete钢筋混凝土RC (reinforced concrete)信誉信用贷款credit进度快慢tempo计划plan评定evaluation检查(名)检验inspection标准水准规格标准的合格的standard技术性的工业的technical技术技巧技术的工艺的专门的technic水泥cement碎石路碎石路macadam砂砾碎石砂砾层gravel钢筋reinforcing steel bar或reinfored steel石石头石场石的石制的stone检查员inspector测量(名)measuring测量(及)检测(及)勘测测绘(名)survey 设备仪器装置device申请application铺路工人paver经理manager加强reinforce(被加强的reinforced )sign 签字署名通知list 表名册目录列举tabulation 制表列表表格mapping 绘图制图camera 照相机photo 照片给。
拍照拍照lime 石灰petrol 汽油diesel-oil 柴油planer 计划者planed 有计划的根据计划的pile 柱桩把桩打入用桩支撑weld 焊接焊牢焊接点welder 焊接者焊工laborer 劳动者劳工辅助工manpower 人力劳动力人力资源雇佣使用利用employ职业租用受雇employment项目条款item关税税款税impostresign 放弃辞去辞职document 公文文件证件time limit from project 工期weighbridge 地磅台秤transbit 经纬仪mention 提到说起表扬career 职业经历skill 技术技能trade 行业商业owe 欠债organization 组织机构团体traffic 交通交往通行交易买卖spend 预算花钱浪费interest 股息股份兴趣cost 费用成本花费wage 薪水报酬earning 工资收入利润cash 现金现款把...兑现tax 税负担向...纳税deficit 赤字不足额业主owner(北美用)、employer(英语国用)发展商(房屋等业主)client 或developer承包商contractor总承包商prime contractor或general contractor 分承包商nominated contractor专业承包商specialist contractor咨询公司consulting firm 或consultants咨询工程师consulting engineer建筑师architect建筑工程经理constraction manager项目经理program manager材料供应商supplier建筑经济学contraction economics亚洲开发银行asian development bank世界银行集团world bank group学会institute协会association组织结构organizational styucture基础设施infrastructure环境environment质量管理体系qulity management system 质量方针quality policy质量目标quality objective职能,函数,职务function计量的metrological鉴定qualification评审review效率efficiency验证verification顾客,消费者customer过程process产品product项目,预计的,计划的project程序procedure特性characteristic记录record检验inspection文件document信息information能力capabitily 满意satisfaction投标邀请书invitation for bids公开招标unlimited competitive open biding 投标者须知instruction to bidders银行保函bank guarantee担保公司security company支付保函payment guarantee资质说明statement of qualification单位成本cost per unit成本计划cost plan成本价price cost业主要求client´s requirements投标书tender 或bid 或proposal 合同条件condition of contract合同协议书agreement图纸drawings工程量表bill of quantities投标保证bid security保价offer开标tender 或bid评标bid evaluation施工项目work items总价合同lump sum contract专题报告subjective report审核audit 审核员auditor测量控制measurement control测量设备measureing equipment技术专家technical expert习惯,惯例custom选择selection确定,决定definition合格conformity不合格nonconformity缺陷defect预防措施preventive action纠正措施corrective action返工rework降级regrade返修repair报废serap让步concession放行release。
道路与桥梁工程中英文对照外文翻译文献
![道路与桥梁工程中英文对照外文翻译文献](https://img.taocdn.com/s3/m/8b46f817bed5b9f3f90f1c76.png)
中英文对照外文翻译(文档含英文原文和中文翻译)Bridge research in EuropeA brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar.IntroductionThe challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purelyeconomic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency.Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial partners within a number of the states— a Brite Euram bid would normally be led by an industrialist.In terms of dissemination of knowledge, two quite different strands appear to have emerged. The UK and the USA have concentrated primarily upon disseminating basic research in refereed journal publications: ASCE, ICE and other journals. Whereas the continental Europeans have frequently disseminated basic research at conferences where the circulation of the proceedings is restricted.Additionally, language barriers have proved to be very difficult to break down. In countries where English is a strong second language there has been enthusiastic participation in international conferences based within continental Europe —e.g. Germany, Italy, Belgium, The Netherlands and Switzerland. However, countries where English is not a strong second language have been hesitant participants }—e.g. France.European researchExamples of research relating to bridges in Europe can be divided into three types of structure:Masonry arch bridgesBritain has the largest stock of masonry arch bridges. In certain regions of the UK up to 60% of the road bridges are historic stone masonry arch bridges originally constructed for horse drawn traffic. This is less common in other parts of Europe as many of these bridges were destroyed during World War 2.Concrete bridgesA large stock of concrete bridges was constructed during the 1950s, 1960s and 1970s. At the time, these structures were seen as maintenance free. Europe also has a large number of post-tensioned concrete bridges with steel tendon ducts preventing radar inspection. This is a particular problem in France and the UK.Steel bridgesSteel bridges went out of fashion in the UK due to their need for maintenance as perceived in the 1960s and 1970s. However, they have been used for long span and rail bridges, and they are now returning to fashion for motorway widening schemes in the UK.Research activity in EuropeIt gives an indication certain areas of expertise and work being undertaken in Europe, but is by no means exhaustive.In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio. The example relates to the identification of voids in post-tensioned concrete bridges, using digital impulse radar.Post-tensioned concrete rail bridge analysisOve Arup and Partners carried out an inspection and assessment of the superstructure of a 160 m long post-tensioned, segmental railway bridge in Manchester to determine its load-carrying capacity prior to a transfer of ownership, for use in the Metrolink light rail system..Particular attention was paid to the integrity of its post-tensioned steel elements. Physical inspection, non-destructive radar testing and other exploratory methods were used to investigate for possible weaknesses in the bridge.Since the sudden collapse of Ynys-y-Gwas Bridge in Wales, UK in 1985, there has been concern about the long-term integrity of segmental, post-tensioned concrete bridges which may b e prone to ‘brittle’ failure without warning. The corrosion protection of the post-tensioned steel cables, where they pass through joints between the segments, has been identified as a major factor affecting the long-term durability and consequent strength of this type of bridge. The identification of voids in grouted tendon ducts at vulnerable positions is recognized as an important step in the detection of such corrosion.Description of bridgeGeneral arrangementBesses o’ th’ Barn Bridge is a 160 m long, three span, segmental, post-tensionedconcrete railway bridge built in 1969. The main span of 90 m crosses over both the M62 motorway and A665 Bury to Prestwick Road. Minimum headroom is 5.18 m from the A665 and the M62 is cleared by approx 12.5 m.The superstructure consists of a central hollow trapezoidal concrete box section 6.7 m high and 4 m wide. The majority of the south and central spans are constructed using 1.27 m long pre-cast concrete trapezoidal box units, post-tensioned together. This box section supports the in site concrete transverse cantilever slabs at bottom flange level, which carry the rail tracks and ballast.The center and south span sections are of post-tensioned construction. These post-tensioned sections have five types of pre-stressing:1. Longitudinal tendons in grouted ducts within the top and bottom flanges.2. Longitudinal internal draped tendons located alongside the webs. These are deflected at internal diaphragm positions and are encased in in site concrete.3. Longitudinal macalloy bars in the transverse cantilever slabs in the central span .4. Vertical macalloy bars in the 229 mm wide webs to enhance shear capacity.5. Transverse macalloy bars through the bottom flange to support the transverse cantilever slabs.Segmental constructionThe pre-cast segmental system of construction used for the south and center span sections was an alternative method proposed by the contractor. Current thinking suggests that such a form of construction can lead to ‘brittle’ failure of the ent ire structure without warning due to corrosion of tendons across a construction joint,The original design concept had been for in site concrete construction.Inspection and assessmentInspectionInspection work was undertaken in a number of phases and was linked with the testing required for the structure. The initial inspections recorded a number of visible problems including:Defective waterproofing on the exposed surface of the top flange.Water trapped in the internal space of the hollow box with depths up to 300 mm.Various drainage problems at joints and abutments.Longitudinal cracking of the exposed soffit of the central span.Longitudinal cracking on sides of the top flange of the pre-stressed sections.Widespread sapling on some in site concrete surfaces with exposed rusting reinforcement.AssessmentThe subject of an earlier paper, the objectives of the assessment were:Estimate the present load-carrying capacity.Identify any structural deficiencies in the original design.Determine reasons for existing problems identified by the inspection.Conclusion to the inspection and assessmentFollowing the inspection and the analytical assessment one major element of doubt still existed. This concerned the condition of the embedded pre-stressing wires, strands, cables or bars. For the purpose of structural analysis these elements、had been assumed to be sound. However, due to the very high forces involved,、a risk to the structure, caused by corrosion to these primary elements, was identified.The initial recommendations which completed the first phase of the assessment were:1. Carry out detailed material testing to determine the condition of hidden structural elements, in particularthe grouted post-tensioned steel cables.2. Conduct concrete durability tests.3. Undertake repairs to defective waterproofing and surface defects in concrete.Testing proceduresNon-destructi v e radar testingDuring the first phase investigation at a joint between pre-cast deck segments the observation of a void in a post-tensioned cable duct gave rise to serious concern about corrosion and the integrity of the pre-stress. However, the extent of this problem was extremely difficult to determine. The bridge contains 93 joints with an average of 24 cables passing through each joint, i.e. there were approx. 2200 positions where investigations could be carried out. A typical section through such a joint is that the 24 draped tendons within the spine did not give rise to concern because these were protected by in site concrete poured without joints after the cables had been stressed.As it was clearly impractical to consider physically exposing all tendon/joint intersections, radar was used to investigate a large numbers of tendons and hence locate duct voids within a modest timescale. It was fortunate that the corrugated steel ducts around the tendons were discontinuous through the joints which allowed theradar to detect the tendons and voids. The problem, however, was still highly complex due to the high density of other steel elements which could interfere with the radar signals and the fact that the area of interest was at most 102 mm wide and embedded between 150 mm and 800 mm deep in thick concrete slabs.Trial radar investigations.Three companies were invited to visit the bridge and conduct a trial investigation. One company decided not to proceed. The remaining two were given 2 weeks to mobilize, test and report. Their results were then compared with physical explorations.To make the comparisons, observation holes were drilled vertically downwards into the ducts at a selection of 10 locations which included several where voids were predicted and several where the ducts were predicted to be fully grouted. A 25-mm diameter hole was required in order to facilitate use of the chosen horoscope. The results from the University of Edinburgh yielded an accuracy of around 60%.Main radar sur v ey, horoscope verification of v oids.Having completed a radar survey of the total structure, a baroscopic was then used to investigate all predicted voids and in more than 60% of cases this gave a clear confirmation of the radar findings. In several other cases some evidence of honeycombing in the in site stitch concrete above the duct was found.When viewing voids through the baroscopic, however, it proved impossible to determine their actual size or how far they extended along the tendon ducts although they only appeared to occupy less than the top 25% of the duct diameter. Most of these voids, in fact, were smaller than the diameter of the flexible baroscopic being used (approximately 9 mm) and were seen between the horizontal top surface of the grout and the curved upper limit of the duct. In a very few cases the tops of the pre-stressing strands were visible above the grout but no sign of any trapped water was seen. It was not possible, using the baroscopic, to see whether those cables were corroded.Digital radar testingThe test method involved exciting the joints using radio frequency radar antenna: 1 GHz, 900 MHz and 500 MHz. The highest frequency gives the highest resolution but has shallow depth penetration in the concrete. The lowest frequency gives the greatest depth penetration but yields lower resolution.The data collected on the radar sweeps were recorded on a GSSI SIR System 10.This system involves radar pulsing and recording. The data from the antenna is transformed from an analogue signal to a digital signal using a 16-bit analogue digital converter giving a very high resolution for subsequent data processing. The data is displayed on site on a high-resolution color monitor. Following visual inspection it is then stored digitally on a 2.3-gigabyte tape for subsequent analysis and signal processing. The tape first of all records a ‘header’ noting the digital radar settings together with the trace number prior to recording the actual data. When the data is played back, one is able to clearly identify all the relevant settings —making for accurate and reliable data reproduction.At particular locations along the traces, the trace was marked using a marker switch on the recording unit or the antenna.All the digital records were subsequently downloaded at the University’s NDT laboratory on to a micro-computer.(The raw data prior to processing consumed 35 megabytes of digital data.)Post-processing was undertaken using sophisticated signal processing software. Techniques available for the analysis include changing the color transform and changing the scales from linear to a skewed distribution in order to highlight、突出certain features. Also, the color transforms could be changed to highlight phase changes. In addition to these color transform facilities, sophisticated horizontal and vertical filtering procedures are available. Using a large screen monitor it is possible to display in split screens the raw data and the transformed processed data. Thus one is able to get an accurate indication of the processing which has taken place. The computer screen displays the time domain calibrations of the reflected signals on the vertical axis.A further facility of the software was the ability to display the individual radar pulses as time domain wiggle plots. This was a particularly valuable feature when looking at individual records in the vicinity of the tendons.Interpretation of findingsA full analysis of findings is given elsewhere, Essentially the digitized radar plots were transformed to color line scans and where double phase shifts were identified in the joints, then voiding was diagnosed.Conclusions1. An outline of the bridge research platform in Europe is given.2. The use of impulse radar has contributed considerably to the level of confidence in the assessment of the Besses o’ th’ Barn Rail Bridge.3. The radar investigations revealed extensive voiding within the post-tensioned cable ducts. However, no sign of corrosion on the stressing wires had been found except for the very first investigation.欧洲桥梁研究欧洲联盟共同的研究平台诞生于欧洲联盟。
【英语】桥梁工程英语词汇
![【英语】桥梁工程英语词汇](https://img.taocdn.com/s3/m/079884a377232f60dccca1e6.png)
扩结构优化设计: Optimal Struc ture Designing
液压机结构优化设计软件包: HYSOP
连续多跨
多跨连续梁: continuous beam on many supports
拼接板
splice bar
splice plate
拼接板: splice bar|scab|splice plate
预应力混凝土
prestressed concrete
预应力混凝土: prestressed concrete|prestre edconcrete
预应力混凝土梁: prestressed concrete beam
预应力混凝土管: prestressed concrete pipe
预应力钢筋束
预应力钢筋束: pre-stressing tendon|pre-stre ingtendon
装配式预制
装配式预制: precast
装配式预制的: precast-segmental
装配式预制混凝土环: precast concrete segmental ring
安装预应力
安装预应力: prestressed
最优化
optimization
最优化: Optimum Theory|optimization|ALARA
有限元分析
finite element analysis
有限元分析: FEA|finite element analysis (FEA)|ABAQUS
反有限元分析: inverse finite element analysis
有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN
道路与桥梁工程中英文对照外文翻译文献
![道路与桥梁工程中英文对照外文翻译文献](https://img.taocdn.com/s3/m/8b46f817bed5b9f3f90f1c76.png)
中英文对照外文翻译(文档含英文原文和中文翻译)Bridge research in EuropeA brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar.IntroductionThe challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purelyeconomic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency.Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial partners within a number of the states— a Brite Euram bid would normally be led by an industrialist.In terms of dissemination of knowledge, two quite different strands appear to have emerged. The UK and the USA have concentrated primarily upon disseminating basic research in refereed journal publications: ASCE, ICE and other journals. Whereas the continental Europeans have frequently disseminated basic research at conferences where the circulation of the proceedings is restricted.Additionally, language barriers have proved to be very difficult to break down. In countries where English is a strong second language there has been enthusiastic participation in international conferences based within continental Europe —e.g. Germany, Italy, Belgium, The Netherlands and Switzerland. However, countries where English is not a strong second language have been hesitant participants }—e.g. France.European researchExamples of research relating to bridges in Europe can be divided into three types of structure:Masonry arch bridgesBritain has the largest stock of masonry arch bridges. In certain regions of the UK up to 60% of the road bridges are historic stone masonry arch bridges originally constructed for horse drawn traffic. This is less common in other parts of Europe as many of these bridges were destroyed during World War 2.Concrete bridgesA large stock of concrete bridges was constructed during the 1950s, 1960s and 1970s. At the time, these structures were seen as maintenance free. Europe also has a large number of post-tensioned concrete bridges with steel tendon ducts preventing radar inspection. This is a particular problem in France and the UK.Steel bridgesSteel bridges went out of fashion in the UK due to their need for maintenance as perceived in the 1960s and 1970s. However, they have been used for long span and rail bridges, and they are now returning to fashion for motorway widening schemes in the UK.Research activity in EuropeIt gives an indication certain areas of expertise and work being undertaken in Europe, but is by no means exhaustive.In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio. The example relates to the identification of voids in post-tensioned concrete bridges, using digital impulse radar.Post-tensioned concrete rail bridge analysisOve Arup and Partners carried out an inspection and assessment of the superstructure of a 160 m long post-tensioned, segmental railway bridge in Manchester to determine its load-carrying capacity prior to a transfer of ownership, for use in the Metrolink light rail system..Particular attention was paid to the integrity of its post-tensioned steel elements. Physical inspection, non-destructive radar testing and other exploratory methods were used to investigate for possible weaknesses in the bridge.Since the sudden collapse of Ynys-y-Gwas Bridge in Wales, UK in 1985, there has been concern about the long-term integrity of segmental, post-tensioned concrete bridges which may b e prone to ‘brittle’ failure without warning. The corrosion protection of the post-tensioned steel cables, where they pass through joints between the segments, has been identified as a major factor affecting the long-term durability and consequent strength of this type of bridge. The identification of voids in grouted tendon ducts at vulnerable positions is recognized as an important step in the detection of such corrosion.Description of bridgeGeneral arrangementBesses o’ th’ Barn Bridge is a 160 m long, three span, segmental, post-tensionedconcrete railway bridge built in 1969. The main span of 90 m crosses over both the M62 motorway and A665 Bury to Prestwick Road. Minimum headroom is 5.18 m from the A665 and the M62 is cleared by approx 12.5 m.The superstructure consists of a central hollow trapezoidal concrete box section 6.7 m high and 4 m wide. The majority of the south and central spans are constructed using 1.27 m long pre-cast concrete trapezoidal box units, post-tensioned together. This box section supports the in site concrete transverse cantilever slabs at bottom flange level, which carry the rail tracks and ballast.The center and south span sections are of post-tensioned construction. These post-tensioned sections have five types of pre-stressing:1. Longitudinal tendons in grouted ducts within the top and bottom flanges.2. Longitudinal internal draped tendons located alongside the webs. These are deflected at internal diaphragm positions and are encased in in site concrete.3. Longitudinal macalloy bars in the transverse cantilever slabs in the central span .4. Vertical macalloy bars in the 229 mm wide webs to enhance shear capacity.5. Transverse macalloy bars through the bottom flange to support the transverse cantilever slabs.Segmental constructionThe pre-cast segmental system of construction used for the south and center span sections was an alternative method proposed by the contractor. Current thinking suggests that such a form of construction can lead to ‘brittle’ failure of the ent ire structure without warning due to corrosion of tendons across a construction joint,The original design concept had been for in site concrete construction.Inspection and assessmentInspectionInspection work was undertaken in a number of phases and was linked with the testing required for the structure. The initial inspections recorded a number of visible problems including:Defective waterproofing on the exposed surface of the top flange.Water trapped in the internal space of the hollow box with depths up to 300 mm.Various drainage problems at joints and abutments.Longitudinal cracking of the exposed soffit of the central span.Longitudinal cracking on sides of the top flange of the pre-stressed sections.Widespread sapling on some in site concrete surfaces with exposed rusting reinforcement.AssessmentThe subject of an earlier paper, the objectives of the assessment were:Estimate the present load-carrying capacity.Identify any structural deficiencies in the original design.Determine reasons for existing problems identified by the inspection.Conclusion to the inspection and assessmentFollowing the inspection and the analytical assessment one major element of doubt still existed. This concerned the condition of the embedded pre-stressing wires, strands, cables or bars. For the purpose of structural analysis these elements、had been assumed to be sound. However, due to the very high forces involved,、a risk to the structure, caused by corrosion to these primary elements, was identified.The initial recommendations which completed the first phase of the assessment were:1. Carry out detailed material testing to determine the condition of hidden structural elements, in particularthe grouted post-tensioned steel cables.2. Conduct concrete durability tests.3. Undertake repairs to defective waterproofing and surface defects in concrete.Testing proceduresNon-destructi v e radar testingDuring the first phase investigation at a joint between pre-cast deck segments the observation of a void in a post-tensioned cable duct gave rise to serious concern about corrosion and the integrity of the pre-stress. However, the extent of this problem was extremely difficult to determine. The bridge contains 93 joints with an average of 24 cables passing through each joint, i.e. there were approx. 2200 positions where investigations could be carried out. A typical section through such a joint is that the 24 draped tendons within the spine did not give rise to concern because these were protected by in site concrete poured without joints after the cables had been stressed.As it was clearly impractical to consider physically exposing all tendon/joint intersections, radar was used to investigate a large numbers of tendons and hence locate duct voids within a modest timescale. It was fortunate that the corrugated steel ducts around the tendons were discontinuous through the joints which allowed theradar to detect the tendons and voids. The problem, however, was still highly complex due to the high density of other steel elements which could interfere with the radar signals and the fact that the area of interest was at most 102 mm wide and embedded between 150 mm and 800 mm deep in thick concrete slabs.Trial radar investigations.Three companies were invited to visit the bridge and conduct a trial investigation. One company decided not to proceed. The remaining two were given 2 weeks to mobilize, test and report. Their results were then compared with physical explorations.To make the comparisons, observation holes were drilled vertically downwards into the ducts at a selection of 10 locations which included several where voids were predicted and several where the ducts were predicted to be fully grouted. A 25-mm diameter hole was required in order to facilitate use of the chosen horoscope. The results from the University of Edinburgh yielded an accuracy of around 60%.Main radar sur v ey, horoscope verification of v oids.Having completed a radar survey of the total structure, a baroscopic was then used to investigate all predicted voids and in more than 60% of cases this gave a clear confirmation of the radar findings. In several other cases some evidence of honeycombing in the in site stitch concrete above the duct was found.When viewing voids through the baroscopic, however, it proved impossible to determine their actual size or how far they extended along the tendon ducts although they only appeared to occupy less than the top 25% of the duct diameter. Most of these voids, in fact, were smaller than the diameter of the flexible baroscopic being used (approximately 9 mm) and were seen between the horizontal top surface of the grout and the curved upper limit of the duct. In a very few cases the tops of the pre-stressing strands were visible above the grout but no sign of any trapped water was seen. It was not possible, using the baroscopic, to see whether those cables were corroded.Digital radar testingThe test method involved exciting the joints using radio frequency radar antenna: 1 GHz, 900 MHz and 500 MHz. The highest frequency gives the highest resolution but has shallow depth penetration in the concrete. The lowest frequency gives the greatest depth penetration but yields lower resolution.The data collected on the radar sweeps were recorded on a GSSI SIR System 10.This system involves radar pulsing and recording. The data from the antenna is transformed from an analogue signal to a digital signal using a 16-bit analogue digital converter giving a very high resolution for subsequent data processing. The data is displayed on site on a high-resolution color monitor. Following visual inspection it is then stored digitally on a 2.3-gigabyte tape for subsequent analysis and signal processing. The tape first of all records a ‘header’ noting the digital radar settings together with the trace number prior to recording the actual data. When the data is played back, one is able to clearly identify all the relevant settings —making for accurate and reliable data reproduction.At particular locations along the traces, the trace was marked using a marker switch on the recording unit or the antenna.All the digital records were subsequently downloaded at the University’s NDT laboratory on to a micro-computer.(The raw data prior to processing consumed 35 megabytes of digital data.)Post-processing was undertaken using sophisticated signal processing software. Techniques available for the analysis include changing the color transform and changing the scales from linear to a skewed distribution in order to highlight、突出certain features. Also, the color transforms could be changed to highlight phase changes. In addition to these color transform facilities, sophisticated horizontal and vertical filtering procedures are available. Using a large screen monitor it is possible to display in split screens the raw data and the transformed processed data. Thus one is able to get an accurate indication of the processing which has taken place. The computer screen displays the time domain calibrations of the reflected signals on the vertical axis.A further facility of the software was the ability to display the individual radar pulses as time domain wiggle plots. This was a particularly valuable feature when looking at individual records in the vicinity of the tendons.Interpretation of findingsA full analysis of findings is given elsewhere, Essentially the digitized radar plots were transformed to color line scans and where double phase shifts were identified in the joints, then voiding was diagnosed.Conclusions1. An outline of the bridge research platform in Europe is given.2. The use of impulse radar has contributed considerably to the level of confidence in the assessment of the Besses o’ th’ Barn Rail Bridge.3. The radar investigations revealed extensive voiding within the post-tensioned cable ducts. However, no sign of corrosion on the stressing wires had been found except for the very first investigation.欧洲桥梁研究欧洲联盟共同的研究平台诞生于欧洲联盟。
桥梁工程中英文对照外文翻译文献
![桥梁工程中英文对照外文翻译文献](https://img.taocdn.com/s3/m/c638bd7227d3240c8447ef60.png)
桥梁工程中英文对照外文翻译文献(文档含英文原文和中文翻译)BRIDGE ENGINEERING AND AESTHETICSEvolvement of bridge Engineering,brief reviewAmong the early documented reviews of construction materials and structu re types are the books of Marcus Vitruvios Pollio in the first century B.C.The basic principles of statics were developed by the Greeks , and were exemplifi ed in works and applications by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueduc ts .The state of the art changed rapidly toward the end of the seventeenth cent ury when Leibnitz, Newton, and Bernoulli introduced mathematical formulatio ns. Published works by Lahire (1695)and Belidor (1792) about the theoretical a nalysis of structures provided the basis in the field of mechanics of materials .Kuzmanovic(1977) focuses on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood to steel .According to recent records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the Garoyne Canal at Grisoles, but r einforced concrete was not introduced in bridge construction until the beginnin g of this century . Prestressed concrete was first used in 1927.Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle ages . Thes e arches were half-circular , with flat arches beginning to dominate bridge wor k during the Renaissance period. This concept was markedly improved at the e nd of the eighteenth century and found structurally adequate to accommodate f uture railroad loads . In terms of analysis and use of materials , stone bridges have not changed much ,but the theoretical treatment was improved by introd ucing the pressure-line concept in the early 1670s(Lahire, 1695) . The arch the ory was documented in model tests where typical failure modes were considered (Frezier,1739).Culmann(1851) introduced the elastic center method for fixed-e nd arches, and showed that three redundant parameters can be found by the us e of three equations of coMPatibility.Wooden trusses were used in bridges during the sixteenth century when P alladio built triangular frames for bridge spans 10 feet long . This effort also f ocused on the three basic principles og bridge design : convenience(serviceabili ty) ,appearance , and endurance(strength) . several timber truss bridges were co nstructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in t he United States and Russia during the nineteenth century ,prompted by the ne ed to cross major rivers and by an abundance of suitable timber . Favorable e conomic considerations included initial low cost and fast construction .The transition from wooden bridges to steel types probably did not begin until about 1840 ,although the first documented use of iron in bridges was the chain bridge built in 1734 across the Oder River in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by Eng land in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first ir on arch truss bridge was built across the Erie Canal at Utica .The Impetus of AnalysisThe theory of structures ,developed mainly in the ninetheenth century,foc used on truss analysis, with the first book on bridges written in 1811. The Wa rren triangular truss was introduced in 1846 , supplemented by a method for c alculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-span bridges.In 1866, Culmann explained the principles of cantilever truss bridges, an d one year later the first cantilever bridge was built across the Main River in Hassfurt, Germany, with a center span of 425 feet (130m) . The first cantileve r bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the Fir st of Forth bridge , built between 1883 and 1893 , with span magnitudes of 1711 feet (521.5m).At about the same time , structural steel was introduced as a prime mater ial in bridge work , although its quality was often poor . Several early exampl es are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and t he Glasgow bridge in Missouri , all completed between 1874 and 1883.Among the analytical and design progress to be mentioned are the contrib utions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and the works by Clapeyron who introduced the three-moment equation s.The Impetus of New MaterialsSince the beginning of the twentieth century , concrete has taken its place as one of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its st ructural uses are almost unlimited . Wherever Portland cement and suitable agg regates are available , it can replace other materials for certain types of structu res, such as bridge substructure and foundation elements .In addition , the introduction of reinforced concrete in multispan frames at the beginning of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical metho ds of the nineteenth century .The importance of joint rotation was already dem onstrated by Manderla (1880) and Bendixen (1914) , who developed relationshi ps between joint moments and angular rotations from which the unknown mom ents can be obtained ,the so called slope-deflection method .More simplification s in frame analysis were made possible by the work of Calisev (1923) , who used successive approximations to reduce the system of equations to one simpl e expression for each iteration step . This approach was further refined and int egrated by Cross (1930) in what is known as the method of moment distributi on .One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-plastic range , also known as load factor or ultimate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Sa int-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War Ⅰ, mainly in Germany , with the center of activity shifting to England and the United States after World War Ⅱ.The probabilistic approa ch is a new design concept that is expected to replace the classical determinist ic methodology.A main step forward was the 1969 addition of the Federal Highway Adim inistration (F HWA)”Criteria for Reinforced Concrete Bridge Members “ that co vers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Specification, and was presented in a format that is readil y adaptable to the development of ultimate design specifications .According to this document , the proportioning of reinforced concrete members ( including c olumns ) may be limited by various stages of behavior : elastic , cracked , an d ultimate . Design axial loads , or design shears . Structural capacity is the r eaction phase , and all calculated modified strength values derived from theoret ical strengths are the capacity values , such as moment capacity ,axial load ca pacity ,or shear capacity .At serviceability states , investigations may also be n ecessary for deflections , maximum crack width , and fatigue .Bridge TypesA notable bridge type is the suspension bridge , with the first example bu ilt in the United States in 1796. Problems of dynamic stability were investigate d after the Tacoma bridge collapse , and this work led to significant theoretica l contributions Steinman ( 1929 ) summarizes about 250 suspension bridges bu ilt throughout the world between 1741 and 1928 .With the introduction of the interstate system and the need to provide stru ctures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete box girders ), steel beam and plate girders , steel box girders , composite const ruction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while interest in box sections remains strong .Bridge Appearance and AestheticsGrimm ( 1975 ) documents the first recorded legislative effort to control t he appearance of the built environment . This occurred in 1647 when the Cou ncil of New Amsterdam appointed three officials . In 1954 , the Supreme Cou rt of the United States held that it is within the power of the legislature to de termine that communities should be attractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of the federal government to identify and dev elop methods and procedures to ensure that presently unquantified environmenta l amentities and values are given appropriate consideration in decision making along with economic and technical aspects .Although in many civil engineering works aesthetics has been practiced al most intuitively , particularly in the past , bridge engineers have not ignored o r neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized aesthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities , and this direction is bot h theoretically and empirically oriented .Aesthetic control mechanisms are commonly integrated into the land-use re gulations and design standards . In addition to concern for aesthetics at the sta te level , federal concern focuses also on the effects of man-constructed enviro nment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgradin g of aesthetic quality in bridge superstructures and substructures can be seen in the evaluation structure types aimed at improving overall appearance .Lords and lording groupsThe loads to be considered in the design of substructures and bridge foun dations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .AASHTO loads . Section 3 of AASHTO specifications summarizes the loa ds and forces to be considered in the design of bridges (superstructure and sub structure ) . Briefly , these are dead load ,live load , iMPact or dynamic effec t of live load , wind load , and other forces such as longitudinal forces , cent rifugal force ,thermal forces , earth pressure , buoyancy , shrinkage and long t erm creep , rib shortening , erection stresses , ice and current pressure , collisi on force , and earthquake stresses .Besides these conventional loads that are ge nerally quantified , AASHTO also recognizes indirect load effects such as fricti on at expansion bearings and stresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct cate gories : permanent and transient .Permanent loadsDead Load : this includes the weight DC of all bridge components , appu rtenances and utilities, wearing surface DW nd future overlays , and earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .Transient LoadsVehicular Live Load (LL) Vehicle loading for short-span bridges :considera ble effort has been made in the United States and Canada to develop a live lo ad model that can represent the highway loading more realistically than the H or the HS AASHTO models . The current AASHTO model is still the applica ble loading.桥梁工程和桥梁美学桥梁工程的发展概况早在公元前1世纪,Marcus Vitrucios Pollio 的著作中就有关于建筑材料和结构类型的记载和评述。
桥梁工程英语词汇
![桥梁工程英语词汇](https://img.taocdn.com/s3/m/8b69dd6027284b73f242505b.png)
桥梁工程英语词汇结构控制structural controlstructure control结构控制: structural control结构控制: structural control结构控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制的: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: Optimum Theory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post 桥主梁: bridge girder主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube单墩肘形尾水管: one-pier elbow draught tube结构优化设计结构优化设计: optimal structure designing扩结构优化设计: Optimal Struc ture Designing 液压机结构优化设计软件包: HYSOP连续多跨多跨连续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber 销钉拼接板: pin splice裂缝crack crevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole 跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge连续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio 动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering 桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge悬索桥: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressing tendon|pre-stre ingtendon 抛物线型钢丝束(预应力配钢筋结构用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps 桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge 拱桥: Arch bridge|Puente en arco|Pont en arc 鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness 光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcement stirrup|hooping 箍筋柱: tied column|hooped column形箍筋: u stirrup u预应力组件预应力组件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch弹性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor标准值standard value标准值: standard value,|reference value作用标准值: characteristic value of an action 重力标准值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value 作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability 不可靠度: Unreliability高可靠度: High Reliability几何特征geometrical characteristic几何特征: geometrical characteristic配位几何特征: coordinated geometric feature 流域几何特征: basin geometric characteristics塑性plastic nature plasticity应力图stress diagram应力图: stress diagram|stress pattern 谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress 抗压应力: compressive stress|pressure load内压应力: internal pressure stress配筋率ratio of reinforcement reinforcement ratio reinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio 纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method 积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查,核对,抑制,控制,试验,裂缝,支票,账单,牌号,名牌: check应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress 应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration 非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure)bending momentflexural torque弯矩: bending moment|flexural moment|kN-m弯矩图: bending moment diagram|moment curve 双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分配法moment distributionmomentdistribution弯矩分配法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve 最终弯矩图: final bending moment diagram最大弯矩图: maximum bending moment diagram剪力shearing force剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel 剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel 抗剪力墙: shearwall剪力墙结构: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester 轴向力: axial force|normal force|beam框架结构frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname) beam of roof bridge桥梁bridge曲率curvature材料力学mechanics of materials结构力学structural mechanics结构力学: Structural Mechanics|theory of structures 重结构力学: barodynamics船舶结构力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity 截面弯曲刚度: flexural rigidity of section 弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构encased structures钢管混凝土结构: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: mainbar悬臂梁socle beam悬臂梁: cantilever beam|cantilever|outrigger 悬臂梁长: length of cantilever双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette 伪悬链线: pseudocatenary悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener 短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for连续梁through beam连续梁: continuous beam|through beam多跨连续梁: continuous beam on many supports 悬臂连续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace加劲梁节点: stiff girder connection支撑刚性梁,加劲梁,横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文学: Hydrologie|水文学|??? ??????古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance 抗风锚: weather anchor抗风性: wind resistance基础的basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction control survey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术咨询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement 总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesign preliminary plan技术设计technical design技术设计: technical design|technical project 技术设计员: Technical Designer|technician 技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital construction project桥台abutment bridge abutment基础foundation base basis结构形式structural style结构形式: Type of construction|form of structure 表结构形式: list structure form屋顶结构形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion 地震活动性: seismicity|seismic地震活动图: seismicity map支撑体系支撑体系: bracing system|support system 物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abstract引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp 引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge 装配式房屋: Prefabricated buildings装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance不耐久性: fugitiveness耐久性试验: endurance test|life test|durability test持久状况持久状况: persistent situation 短暂状况短暂状况: transient situation 偶然状况偶然状况: accidental situation永久作用永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用可变作用: variable action可变作用标准值: characteristic value of variable action 可变光阑作用: iris action偶然作用偶然作用: accidental action偶然同化(作用): accidental assimilation作用效应偶然组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用标准值作用标准值: characteristic value of an action地震作用标准值: characteristic value of earthquake action 可变作用标准值: characteristic value of variable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass 生物安全等级: Biosafety Level生物安全等级: Biosafety Level作用action activity actions actseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action 互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects 作用效应偶然组合: accidental combination for action effects结构重要性系数结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级公路等级: highway classification标准:公路等级代码: Code for highway classification标准:公路路面等级与面层类型代码: Code for classification and type of highway pavement顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics 水力的: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter 古河槽: old channel河槽线: channel axis河岸riversidestrand河岸: bank|riverside|river bank 河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion 河岸侵蚀河岸侵食: bank erosion河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane 快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway 一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts 木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct高架桥: Viadukt|Viaducto|高架桥高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge 洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designed speed|design rate设计速度,构造速度: desin speed|desin speed <haha最大阵风强度的设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parking strip 紧急停车阀: emergency stop valve减速gear down retardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value 求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle 离散最大值原理: discrete maximum principle极大值原理,最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path 自行车道专供自行车行驶的车道。
桥梁工程英文作文范文
![桥梁工程英文作文范文](https://img.taocdn.com/s3/m/2c702243854769eae009581b6bd97f192279bfa3.png)
桥梁工程英文作文范文英文:Bridge engineering is a fascinating field that requires a combination of technical knowledge, creativity, and problem-solving skills. As a bridge engineer, I am responsible for designing, building, and maintaining bridges that are safe, functional, and aesthetically pleasing.One of the most challenging aspects of bridge engineering is dealing with the forces that act on the structure. Bridges are constantly subjected to forces such as gravity, wind, and traffic, and it is crucial to design them in such a way that they can withstand these forces without collapsing or becoming damaged.Another important aspect of bridge engineering is ensuring that the bridge is accessible and meets the needs of the community it serves. This involves taking intoaccount factors such as traffic flow, pedestrian access, and environmental impact.In addition to technical skills, bridge engineers also need to have good communication and teamwork skills. They must be able to work effectively with other engineers, architects, and construction workers to ensure that the bridge is designed and built to the highest standards.Overall, bridge engineering is a challenging and rewarding field that requires a combination of technical knowledge, creativity, and problem-solving skills.中文:桥梁工程是一个迷人的领域,需要结合技术知识、创造力和解决问题的能力。
桥梁词汇
![桥梁词汇](https://img.taocdn.com/s3/m/37688a21dd36a32d737581dd.png)
1.桥位地形图(qiao wei di xing tu )topography map of bridge site2.桥位地质剖面图(qiao wei di zhi pou mian tu)geologic section drawing of bridge site 3.水文资料(shui wen zi liao )hydrologic data4.气象资料(qi xiang zi liao)meteorologic data5.水力计算(shui li ji suan)hydraulic computation6.设计流速(she ji liu su)design current velocity7.河床比降(he chuang bi jiang)river bed gradient8.糙率(cao lv) coefficient of roughness9.洪水流量(hong shui liu liang)flood discharge10.设计流量(she ji liu liang)design discharge11.设计洪水频率(she ji hong shui pin lv)design flood frequency12.汇水面积(hui shui mian ji) catchment area13.过水断面(guo shui duan mian)waterway section14.暴雨强度(bao yu qiang du)rainstorm intensity15.河床(he chuang)river bed16.最高水位(zui gao shui wei )highest water lever, HWL17.最低水位(zui di shui wei )lowest water lever, LWL18.常水位(chang shui wei )ordinary water lever, OWL19.枯水位(ku shui wei )low water lever20.设计水位(she ji shui wei )design water lever21.通航水位(tong hang shui wei )nevigable water lever, NWL22.桥前壅水(qiao qian yong shui )back water in front of the bridge23.河槽天然冲刷(he cao tian ran chong shua)natural scour of water24.桥下一般冲刷(qiao xia yi ban chong shua)general scour of bridge opening25.桥墩局部冲刷(qiao dun ju bu chong shua)local scour around pier26.冲刷系数(chong shua xi shu )coefficient of scouring27.漂浮物(piao fu wu)drifter28.调治构造物(tiao zhi gou zao wu )regulating structure29.河堤(he di)levec30.河床铺砌(he quang pu qi )river bed paving31.锥坡(zhui po )conical slope32.淤积(yu ji )silting33.桥位选择(qiao wei xuan ze)bridge site slection34.桥梁标准设计(qiao liang biao zhun she ji)standard design of bridge35.主桥(zhu qiao )main bridge36.引桥(yin qiao)approach bridge37.桥梁全长(qiao liang quan chang)total length of bridge38.跨径(kua jing )span39.桥梁建筑高度(qiao liang jian zhu gao du)construction height of bridge40.桥梁高度(qiao liang gao du)hight of bridge41.容许建筑高度(rong xu jian zhu gao du)allowable construction height of bridge 42.宽跨比(kua kua bi)wide-span ratio43.高跨比(gao kua bi)depth-span ratio44.剪跨比(jian kua bi)shear-span ratio45.桥面净空(qiao mian jing kong)clearance above bridge deck46.桥下净空(qiao xia jing kong)clearance underspan47.通航净空(tong hang jing kong )navigable clearance48.矢高(shi gao)rise of arc49.矢跨比(shi kua bi)rise-span ratio50.桥面纵坡(qiao mian zong po)deck profile grade51.桥面横坡(qiao mian heng po)deck transverse grade52.斜交角(xie jiao jiao)skew angle53.基础埋置深度(ji chu mai zhi shen du)embedment depth of foundation54.桥梁工程(qiao liang gong cheng)bridge engineering55.桥(qiao)bridge56.公路桥(gong lu qiao )highway bridge57.铁路桥(tie lu qiao )railway bridge58.公铁两用桥(gong tie liang yong qiao )bi-purposed bridge59.人行天桥(ren xing tian qiao)pedestrian overcrossing60.过人地道(guo ren di dao)passenger passway61.跨河桥(kua he qiao) river-crossing bridge62.跨线桥(kua xian qiao)flyover ,overpass bridge63.互通式立体交叉(hu tong shi li ti jiao cha)interchange64.高架桥(gao jia qiao)viaduct , trestle65.上承式桥(shang cheng shi qiao)deck bridge66.中承式桥(zhong cheng shi qiao)half-through bridge67.下承式桥(xia cheng shi qiao)through bridge68.正交桥(zheng jiao qiao)right bridge69.斜交桥(zheng jiao qiao)skew bridge70.弯桥(wan qiao)curved bridge71.坡桥(po qiao)bridge on slope72.匝道桥(za dao qiao)ramp bridge73.危桥(wei qiao)bridge in danger74.特大桥(te da qiao)grand bridge75.大桥(da qiao)grate bridge76.中桥(zhong qiao)medium bridge77.小桥(xiao qiao)small bridge78.涵洞(han dong)culvert79.漫水桥(man shui qiao)submersiber bride80.施工便桥(shi gong bian qiao)temporary bridge for construction81. 梁式桥:(liang shi qiao) beam bridge, girder bridge82. 拱式桥:(gong shi qiao) arch bridge83. 刚架桥:(gang jia qiao) rigid frame bridge84. 斜拉桥:(xie la qiao) cable stayed bridge85. 吊桥:(diao qiao) suspension bridge86. 组合结构桥:(zhu he jie gou qiao) combined structural bridge87. 钢筋混凝土桥:(gang jin hun ning tu qiao) reinforced concrete bridge88.预应力钢筋混凝土桥:(yu ying li gang jin hun ning tu qiao) prestressed concretebridge89.钢管混凝土桥: (gang guan hun ning tu qiao) steel pipe-encased concretebridge90. 钢桥: (gang qiao) steel bridge91.木桥: (mu qiao) timber bridge, wooden bridge92. 圬工桥: (wu gong qiao) masonry bridge93. 简支梁桥: (jian zhi lian qiao) simple-supported beam bridge94. 连续梁桥: (lian xu qiao) continuous beam bridge95. 悬臂梁桥: (xuan bi liang qiao) cantilever beam bridge96. 桁架拱桥: (lang jia gong qiao) trussed arch bridge97. 刚架拱桥: (gang jia gong qiao) rigid-framed arch bridge98. 系杆拱桥: (xi gan gong qiao) bowstring arch bridge ,tied arch bridge99. 石拱桥: (shi gong qiao) stone arch bridge100. T型梁桥: (T xing liang qiao) T-beam bridge101. 箱型梁桥: (xiang xing liang qiao) box-girder bridge102. 组合梁桥: (zhu he liang qiao) composite beam bridge103. 空腹拱桥: (kong fu gong qiao) open spandrel arch bridge104. 实腹拱桥: (shi fu gong qiao) filled spandrel arch bridge105. 无铰拱桥: (wu jiao gong qiao) hingless arch bridge106. 三铰拱桥: (san jiao gong qiao) three-hinged arch bridge107. 两铰拱桥: (liang jiao gong qiao) two-hinged arch bridge108. 单铰拱桥: (dan jiao gong qiao) single-hinged arch bridge110. 双曲拱桥: (shuang qu gong qiao) two-way curved arch bridge 111. 肋拱桥: (le gong qiao) ribbed arch bridge112. 板拱桥: (ban gong qiao) slab arch bridge113. 箱形拱桥: (xiang xing gong qiao) box-ribbed arch bridge114. T形钢构桥: (T xing gang gou qiao) T-shaped rigid frame bridge115. 斜腿刚构桥: (xie tui gong gou qiao) slant legged rigid frame bridge 116. 混凝土斜拉桥: (hun ning tu xie la qiao) concrete deck cable stayed bridge 117. 钢斜拉桥: (gang xie la qiao) steel deck cable stayed bridge118. 双面索斜拉桥: (shuang mian suo xie la qiao) double plane cable stayed bridge119.单面索斜拉桥: (dan mian suo xie la qiao) singe plane cable stayed bridge 120. 浮桥: (fu qiao) floating bridge121. 开启桥: (kai qi qiao) movable bridge122. 上部结构: (shang bu jie gong) superstructure123. 主梁: (zhu liang) main beam, main girder124. 拱梁: (gong liang) arch beam125.箱型梁: (xiang xing liang) box girder126. I型梁: (I xing liang) I-shaped beam127. T型梁: (T xing liang) T-shaped beam128. ∏型梁: (∏ xing liang) ∏-shaped beam129. 矩形梁: (ju xing liang) rectangular beam130. 空心板: (kong xing ban) hollow slab131.实心板: (shi xing ban) filled slab132. 挂梁: (gua liang) suspended beam133. 桥面板: (qiao mian ban) deck slab134. 组合梁: (zhu he liang) composite beam135. 微弯板: (wei wan ban) slight bending slab136. 肋腋板: (le ye ban) slab with haunched ribs137. 单向板: (dan xiang ban) one-way slab138. 双向板: (shuang xiang ban) two-way slab139. 悬臂板: (xuan bi ban) cantilever slab140. 桥面系: (qiao mian xi) bridge deck system141. 桥面连续构造: (qiao mian lian xu gong zhao) continuous slab-deck structure142. 桥面排水系统: (qiao mian pai shui xi tong) deck drainage system 143. 桥面铺装: (qiao mian pu zhuang) deck pavement144. 桥面伸缩装置:(qiao mian sheng suo zhuang zhi) deck expansion installation145. 人行道: (ren xing dao) pavement, sidewake146. 栏杆: (lan gang) railing147. 护栏: (hu lan) parapet148. 索塔: (suo ta) cable support tower149. 索鞍: (suo an) cable saddle150. 斜索: (xie suo) stayed cable110. 双曲拱桥: (shuang qu gong qiao) two-way curved arch bridge111. 肋拱桥: (le gong qiao) ribbed arch bridge112. 板拱桥: (ban gong qiao) slab arch bridge113. 箱形拱桥: (xiang xing gong qiao) box-ribbed arch bridge114. T形钢构桥: (T xing gang gou qiao) T-shaped rigid frame bridge115. 斜腿刚构桥: (xie tui gong gou qiao) slant legged rigid frame bridge 116. 混凝土斜拉桥: (hun ning tu xie la qiao) concrete deck cable stayed bridge 117. 钢斜拉桥: (gang xie la qiao) steel deck cable stayed bridge118. 双面索斜拉桥: (shuang mian suo xie la qiao) double plane cable stayed bridge119.单面索斜拉桥: (dan mian suo xie la qiao) singe plane cable stayed bridge 120. 浮桥: (fu qiao) floating bridge121. 开启桥: (kai qi qiao) movable bridge122. 上部结构: (shang bu jie gong) superstructure123. 主梁: (zhu liang) main beam, main girder124. 拱梁: (gong liang) arch beam125.箱型梁: (xiang xing liang) box girder126. I型梁: (I xing liang) I-shaped beam127. T型梁: (T xing liang) T-shaped beam128. ∏型梁: (∏ xing liang) ∏-shaped beam129. 矩形梁: (ju xing liang) rectangular beam130. 空心板: (kong xing ban) hollow slab131.实心板: (shi xing ban) filled slab132. 挂梁: (gua liang) suspended beam133. 桥面板: (qiao mian ban) deck slab134. 组合梁: (zhu he liang) composite beam135. 微弯板: (wei wan ban) slight bending slab136. 肋腋板: (le ye ban) slab with haunched ribs137. 单向板: (dan xiang ban) one-way slab138. 双向板: (shuang xiang ban) two-way slab139. 悬臂板: (xuan bi ban) cantilever slab140. 桥面系: (qiao mian xi) bridge deck system141. 桥面连续构造: (qiao mian lian xu gong zhao) continuous slab-deck structure142. 桥面排水系统: (qiao mian pai shui xi tong) deck drainage system143. 桥面铺装: (qiao mian pu zhuang) deck pavement144. 桥面伸缩装置:(qiao mian sheng suo zhuang zhi) deck expansion installation145. 人行道: (ren xing dao) pavement, sidewake146. 栏杆: (lan gang) railing147. 护栏: (hu lan) parapet148. 索塔: (suo ta) cable support tower149. 索鞍: (suo an) cable saddle150. 斜索: (xie suo) stayed cable151. 锚索: (miao suo) anchor cable152. 吊杆: (diao gan) suspender153.系杆: (xi gan) tie154. 锚跨: (mao kua) anchor span155. 锚锭: (mao ding) anchorage156. 过渡孔: (guo du kong) transitional span157. 承托: (cheng tuo)158. 顶板: (ding ban) top slab159. 底板: (di ban) bottom slab160. 腹板: (fu ban) web161. 主筋: (zhu jin) main bar162. 箍筋: (gu jin) ties163. 斜筋: (xie jin) diagonal reinforcement163:架立钢筋:(jia li gang jin)erection bar164:分布钢筋:(fen bu gang jin)distribution reinforcement165:加强钢筋:(jia qiang gang jin)reinforced bar166:牛腿:(niu tui)bracket167:剪力铰:(jian li jiao)sheering hinge169:定位钢筋:(ding wei gang jin)alignment bar170:拱圈:(gong quan)arch ring171:拱顶:(gong ding)arch crown172:拱座:(gong zuo)arch support176:护拱:(hu gong)back launching fillet of arch177:拱上建筑:(gong shang jian zu)spandrel structure178:腹拱:(fu gong)spandrel arch179:拱波:(gong bo)two way curved arch tile180:拱板:(gong ban)arch slab181:拱肋:(gong le)arch rib182:桥头引道:(qiao tou yin dao)bridge approach183:桥头搭板:(qiao tou da ban)bridge end transition slab184:下部结构:(xia bu jie gou)substructure185:桥墩:(qiao dun)pier186:桥台:(qiao tai)abutment187:基础:(ji chu)bridge foundation188:盖梁:(gai liang)bent cap189:耳墙:(er qiang)wing wall189’:翼墙:(yi qiang)wing wall190:单向推力墩:(dan xiang tui li dun)single thrust pier191:`辅助墩:(fu zhu dun)auxiliary pier192:防震挡块:(fang zhen dang kuai)anti-knock block(restrain block)193:破冰体:(po bing ti)ice apron194:U形桥台:(U xing qiao tai)U-abutment195:埋置式桥台:(mai zhi shi qiao tai)buried abutment196:组合式桥台:(zu he shi qiao tai)composite abutment197:扩大基础:(kuo da ji chu)spread foundation198:沉井基础:(chen jing ji chu)open casson foundation199:桩基础:(zhuang ji chu)pile foundation200:承台:(cheng tai)bearing platform(foundation slab)200’:高桩承台:(gao zhuang cheng tai)elevated pile footing201:低桩承台:(di zhuang cheng tai)pile footing202:摩擦桩:(mo ca zhuang)friction pile203:嵌岩桩:(qian yan zhuang)socketed pile(bearing pile)204:支座:(zhi zuo)bearing205:板式橡胶支座:(ban shi xiang jiao zhi zuo)laminated rubber bearing 206:盆式橡胶支座:(pen shi xiang jiao zhi zuo)potted rubber bearing207:设计荷载:(she ji he zai)design load208:永久荷载:(yong jiu he zai)permanent load209:可变荷载:(ke bian he zai)variable load210:偶然荷载:(ou ran he zai)accidental load211:开裂荷载:(kai lie he zai)cracking load212:破坏荷载:(po huai he zai)failure load213:均布荷载:(jun bu he zai)distributed load(uniform load)214:风荷载:(feng he zai)wind load215:地震荷载:(di zhen he zai)earthquake load(seismic force)216:离心力:(li xin li)centrifugal load217:冲击力:(chong ji li)impact force218:制动力:(zhi dong li)braking force219:撞击力:(zhuang ji li)collision force220:拱推力:(gong tui li)arch thrust221:荷载组合:(he zai zu he)loading combinations222:桥梁极限状态设计:(qiao liang ji xian zhuang tai she ji)limit state design of bridge 223:地震的基本烈度:(di zhen de ji ben lie du)basic earthquake intensity224:静定桥梁结构:(jing ding qiao liang jie gou)statically determinate bridge structure 225:超静定桥梁结构:(chao jing ding qiao liang jie gou)statically indeterminate bridge structure226:结构体系转换:(jie gou ti xi zhuan huan)structure system transform227:冲击系数:(chong ji xi shu)impact factor228:容许应力:(rong xu ying li)allowable stress229:极限应力:(ji xian ying li)ultimate stress230:刚度:(gang du)rigidity stiffness230’:疲劳:(pi lao)fatigue231:位移:(wei yi)displacement232:力矩:(li ju)bending moment233:剪力:(jian li)shear234:剪力滞效应:(jian li ahi xiao ying)shear lag effect235:影响线:(ying xiang xian)influence line236:荷载横向分布:(he zai heng xiang fen bu)transverse distribution of load237:杠杆原理法:(gang gan yuan li fa)lever principle238:偏心压力心:(pian xin ya li xin)eccentric compression239:铰接板梁法:(jiao jie ban liang fa)hinge connected beam method240:刚接板梁法:(gang jie ban liang fa)rigid connected beam method241:G----M法:(G—M fa)Guyon-Massonet method242:翘曲:(qiao qu)warp243:颤振:(chan zhen)flutter244:弛振:(chi zhen)galloping245:抖振:(dou zhen)buffeting246:连拱作用:(lian gong zuo yong)continuous arch method247:桥梁CAD:(qiao liang CAD)computer Aided Design for bridge248:预应力度:(yu ying li du)degree of prestress249:体内预应力:(ti nei yu ying li)prestress with bond250:体外预应力:(ti wai yu ying li)external prestress251:预应力损失:(yu ying li sun shi)loss of prestress252:锚具:(mao ju) anchorage devicem—method253:桩基计算m值法:(zhuang ji ji suan m zhi fa)design of pile foundation by 254:缆索吊装施工法:(lan suo diao zhuang shi gong fa)erection with cable way 255:悬臂施工法:(xuan bei shi gong fa)cast-in-place cantilever method 256:逐跨施工法:(zhu kua shi gong fa)span by span construction 257:顶推施工法:(ding tui shi gong fa)incremental launching method 258:拱架:(gong jia)scaffolding259:混凝土泵送:(hun ning tu beng song) concrete by pumping260:预拱度:(yu gong du)precamber261:先张法:(xian zhang fa)pretension method262:后张法:(hou zhang fa)post—tension method263:封锚:(feng mao)sealing –off and covering anchorage264:泥浆护壁钻孔法:(ni jiang zuan kong fa)slurry hole—boring method 265:围堰:(wei yan)cofferdam266:合拢:(he long)close up of bridge structure267:索力控制:(suo li kong zhi)cable force control268:桥梁结构安装控制:(qiao liang jie gou an zhuang kong zhi)bridge structural erection control269:桥梁管理系统:(qiao liang guan li xi tong)bridge management system 270:桥梁技术档案:(qiao liang ji shu dang an)bridge technical file 271:桥梁加固:(qiao liang jia gu)bridge strengthening272:桥梁水毁:(qiao liang shui hui)bridge disaster by floodpier and abutment273:桥梁墩台防撞:(qiao liang dun tai fang zhuang)collision prevention of 274:盖板涵:(gai ban han)slab culvert275:圆管涵:(yuan guan han)pipe culvert276:拱涵:(gong han)arch culvert277:箱涵:(xiang han)box culvert278:倒虹吸涵:(dao hong xi han)inverted siphon culvert279:涵洞进水口:(han dong jin shui kou)culvert inlet280:涵洞出水口:(han dong chu shui kou)culvert outlet281:渡槽:(du cao )aqueduct282:通道:(tong dao)channel283:隧道工程:(sui dao gong cheng)tunnel engineering284:隧道:(sui dao)tunnel285:洞门:(dong men)tunnel portal286:洞身:(dong shen)tunnel trunk287:隧道净空:(sui dao jing kong)clearance of tunnel288:围岩:(wei yan)surrounding rock289:围岩自承能力:(wei yan zi cheng neng li)surrounding rock selfsupporting capacity290:掘进方法:(jue jin fang fa)tunnel boring method291:竖井:(shu jing)shaft292:新澳法:(xin ao)New Austrian tunneling method293:矿山法:(kuang shan fa)mining method294:衬砌:(chen qi)tunnel lining295:支撑:(zhi cheng)temporary support296:喷锚支护:(pen mao zhi hu)shot concrete and rock bolt support 297:隧道通风:(sui dao tong feng)tunnel ventilation298:隧道报警装置:(sui dao bao jing zhuang zhi)tunnel warning installation 299:隧道瓦斯爆炸:(sui dao wa si bao zha)gas explosion in tunnel300:过隧道经历时间:(guo sui dao jing li shi jian)duration of tunnel passage 301:隧道防水:(sui dao fang shui)tunnel water proofing302:围岩稳定:(wei yan wen ding)stability of surrounding rock303:盾构:(dun gou)tunnel shield304:水底隧道:(shui di sui dao)subaqueous tunnel305:特长隧道:(te chang sui dao)super long tunnel306:长隧道:(chang sui dao)long tunnel307:中长隧道:(zhong chang sui dao)medium tunnel308:短隧道:(duan sui dao)short tunnel309:渡口:(du kou)ferry310:汽车轮渡:(qi che lun du)track ferry311:码头:(ma tou)wharf312:码头引道:(ma tou yin dao)approach to ferry313:码头引桥:(ma tou yin qiao)bridge approach to ferry314:门桥:(men qiao)portal frame315:防撞垫:(fang zhuang dian)bumper316:跳板:(tiao ban)gangboard317:渡口管理所:(du kou guan li)ferry bridge318:异型桥梁:(yi xing qiao liang)abnormal bridge319:桥梁结构承载能力鉴定:(qiao liang jie gou cheng zai neng li jian ding)320:静动载试验:(jing dong zai shi yan)static and dynamic load testing。
道路路桥工程中英文对照外文翻译文献
![道路路桥工程中英文对照外文翻译文献](https://img.taocdn.com/s3/m/179a83c34bfe04a1b0717fd5360cba1aa9118c57.png)
道路路桥工程中英文对照外文翻译文献中英文资料中英文资料外文翻译(文档含英文原文和中文翻译)原文:Asphalt Mixtures-Applications。
Theory and Principles1.ApplicationsXXX is the most common of its applications。
however。
and the onethat will be XXX.XXX “flexible” is used to distinguish these pavements from those made with Portland cement,which are classified as rigid pavements。
that is。
XXX it provides they key to the design approach which must be used XXX.XXX XXX down into high and low types,the type usually XXX product is used。
The low typesof pavement are made with the cutback。
or emulsion。
XXX type may have several names。
However。
XXX is similar for most low-type pavements and XXX mix。
forming the pavement.The high type of asphalt XXX中英文资料XXX grade.中英文资料Fig.·1 A modern XXX.Fig.·2 Asphalt con crete at the San Francisco XXX.They are used when high wheel loads and high volumes of traffic occur and are。
桥梁工程英语词汇
![桥梁工程英语词汇](https://img.taocdn.com/s3/m/78f89645f7ec4afe04a1df43.png)
结构控制structural controlstructure control结构控制: structural control結構控制: structural control结构控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制的: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: OptimumTheory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post桥主梁: bridge girder 主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube 单墩肘形尾水管: one-pier elbow draught tube结构优化设计结构优化设计: optimal structure designing 扩结构优化设计: Optimal Struc ture Designing液压机结构优化设计软件包: HYSOP连续多跨多跨连续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber销钉拼接板: pin splice裂缝crack crevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole 跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge 连续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio 动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge 懸索橋: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressedconcrete|prestre edconcrete预应力混凝土梁: prestressed concrete beam 预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressingtendon|pre-stre ingtendon抛物线型钢丝束(预应力配钢筋结构用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion 轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps桩承台: pile cap|platformonpiles 低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge拱橋: Arch bridge|Puente en arco|Pont en arc鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density 刚强度: stiffness|stiffne|westbank stiffness光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcementstirrup|hooping箍筋柱: tied column|hooped column 形箍筋: u stirrup u预应力元件预应力元件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch彈性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption 平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor标准值standard value标准值: standard value,|reference value 作用标准值: characteristic value of an action重力标准值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value 作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability 不可靠度: Unreliability高可靠度: High Reliability几何特征geometrical characteristic几何特征: geometrical characteristic 配位几何特征: coordinated geometric feature流域几何特征: basin geometric characteristics塑性plastic nature plasticity应力图stress diagram应力图: stress diagram|stress pattern 谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress抗压应力: compressive stress|pressureload内压应力: internal pressure stress配筋率ratio of reinforcement reinforcement ratioreinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查,核对,抑制,控制,试验,裂缝,支票,账单,牌号,名牌: check应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure) bending momentflexural torque弯矩: bending moment|flexural moment|kN-m 弯矩图: bending moment diagram|moment curve双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分配法moment distribution momentdistribution弯矩分配法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve最终弯矩图: final bending moment diagram 最大弯矩图: maximum bending momentdiagram剪力shearing force剪力: shearing force|shear force|shear 剪力墙: shear wall|shearing wall|shear panel剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams 绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel抗剪力墙: shearwall剪力墙结构: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester 轴向力: axial force|normal force|beam框架结构frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname) beam of roof bridge桥梁bridge曲率curvature材料力学mechanics of materials结构力学structural mechanics结构力学: Structural Mechanics|theory of structures重结构力学: barodynamics船舶结构力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构encased structures钢管混凝土结构: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimateload design设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel钢筋混凝土的主钢筋: mainbar悬臂梁socle beam悬臂梁: cantileverbeam|cantilever|outrigger悬臂梁长: length of cantilever 双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette伪悬链线: pseudocatenary 悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for连续梁through beam连续梁: continuous beam|through beam 多跨连续梁: continuous beam on many supports悬臂连续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection支撑刚性梁,加劲梁,横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文學: Hydrologie|水文学|??? ?????? 古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance抗风锚: weather anchor抗风性: wind resistance基础的basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction controlsurvey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术咨询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesign preliminary plan技术设计technical design技术设计: technical design|technical project技术设计员: TechnicalDesigner|technician技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design 施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital construction project桥台abutment bridge abutment基础foundation basebasis结构形式structural style结构形式: Type of construction|form of structure表结构形式: list structure form屋顶结构形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion地震活动性: seismicity|seismic 地震活动图: seismicity map支撑体系支撑体系: bracing system|support system 物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abstract引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp 引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge装配式房屋: Prefabricated buildings 装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance 不耐久性: fugitiveness耐久性试验: endurance test|lifetest|durability test持久状况持久状况: persistent situation 短暂状况短暂状况: transient situation 偶然状况偶然状况: accidental situation永久作用永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用可变作用: variable action可变作用标准值: characteristic value of variable action可变光阑作用: iris action偶然作用偶然作用: accidental action偶然同化(作用): accidental assimilation 作用效应偶然组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用标准值作用标准值: characteristic value of an action地震作用标准值: characteristic value ofearthquake action可变作用标准值: characteristic value ofvariable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass生物安全等级: Biosafety Level 生物安全等級: Biosafety Level作用actionactivity actionsactseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects作用效应偶然组合: accidental combination for action effects结构重要性系数结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级公路等级: highway classification标准:公路等级代码: Code for highway classification标准:公路路面等级与面层类型代码: Code for classification and type of highway pavement顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics水力的: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter 古河槽: old channel河槽线: channel axis河岸riverside strand河岸: bank|riverside|river bank 河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion河岸侵蚀河岸侵食: bank erosion 河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts 木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct高架橋: Viadukt|Viaducto|高架橋高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designedspeed|design rate设计速度,构造速度: desin speed|desin speed <haha最大阵风强度的设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parkingstrip紧急停车阀: emergency stop valve减速gear downretardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value 求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle离散最大值原理: discrete maximum principle极大值原理,最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path自行车道专供自行车行驶的车道。
桥梁工程英语词汇
![桥梁工程英语词汇](https://img.taocdn.com/s3/m/b9178cefb52acfc788ebc9ba.png)
structural control structure control 结构控制 : structural control 結構控制 : structural control 结构控制剂 : constitution controller 裂缝宽度容许值 : allowable value of crack width 装配式预制 : precast 装配式预制的 : precast-segmental 装配式预制混凝土环 : precast concrete segmental ring 安装预应力 : prestressed optimization 最优化 : Optimum Theory|optimization|ALARA 使最优化 : optimized 次最优化 : suboptimization 空心板梁 : hollow slab beam 主梁截面 : girder section 边、中跨径 : side span &middle spin girder 主梁 : girder|main beam|king post 结构控制裂缝宽度容许值装配式预制安装预应力最优化空心板梁主梁截面边、中跨径主梁桥主梁 : bridge girder 主梁翼 : main spar 单墩 : single pier 单墩尾水管 : single-pier draught tube 单墩肘形尾水管 : one-pier elbow draught tube 结构优化设计 : optimal structure designing 扩 结构优化设计 : Optimal Struc ture Designing 液压机结构优化设计软件包 : HYSOP 多跨连续梁 : continuous beam on many supports splice bar splice plate 拼接板 : splice bar|scab|splice plate 端头拼接板 : end matched lumber 销钉拼接板 : pin splice crack crevice to step across step over 跨越 : stride leap|across|spanning 单墩结构优化设计连续多跨拼接板裂缝跨越跨越杆 : cross-over pole|crossingpole 跨越点 : crossing point|crossover point rigid frame bridge 刚构桥 : rigid frame bridge 形刚构桥 : T-shaped rigid frame bridge 连续刚构桥 : continuous rigid frame bridge stiffness ratio ratio of rigidity 刚度比 : ratio of rigidity|stiffness ratio 动刚度比 : dynamic stiffenss ratio 刚度比 劲度比 : stiffnessratio uniform beam 等截面粱 : uniform beam|uniform cross-section beam bridge construction bridgework 桥梁工程 : bridgeworks|LUSAS FEA|Bridge Engineering 桥梁工程师 : Bridge SE 铁路桥梁工程 : railway bridge engineering 刚构桥刚度比等截面粱桥梁工程悬索桥预应力混凝土预应力钢筋束最小配筋率轴向拉力承台suspension bridge悬索桥: suspension bridge|su e io ridge 懸索橋: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge prestressed concrete 预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam 预应力混凝土管: prestressed concrete pipe 预应力钢筋束: pre-stressing tendon|pre-stre ingtendon 抛物线型钢丝束(预应力配钢筋结构用): parabolic cable minimum steel ratio axial tension axial tensile force 轴向拉力: axialtension|axial te ion 轴向拉力, 轴向拉伸: axial tension 轴向拉力轴向张力: axialtensileforce cushion cap 承台: bearing platform|cushioncap|pilecaps桩承台 : pile cap|platformonpiles 低桩承台 : low pile cap arch bridge 拱桥 : hump bridge|arch bridge|arched bridge 拱橋 : Arch bridge|Puente en arco|Pont en arc 鸠拱桥:Kh q u intensity strength 强度 : intensity|Strength|Density 刚强度 : stiffness|stiffne|westbank stiffness 光强度 : light intensity|intensity hooping 箍筋 : stirrup|reinforcement stirrup|hooping 箍筋柱 : tiedcolumn|hooped column 形箍筋 : u stirrup u预应力元件 : prestressed element 拱桥强度箍筋 预应力元件等效荷载模型承载能力极限状态正常使用极限状态弹性equivalent load等效荷载: equivalent load 等效荷载原理: principle of equivalent loads 等效负载等效荷载等值负载: equivalentload matrix model mould pattern 承载能力极限状态: ultimate limit states serviceability limit state 正常使用极限状态: serviceability limit state 正常使用极限状态验证: verification of serviceability limit states elasticity springiness spring give flexibility 弹性: elasticity|Flexibility|stretch彈性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA planecross-section assumption 平截面假定: planecross-section assumption intensity of tensiontensile strength safety factor standard value 标准值: standard value,|reference value 作用标准值:characteristic value of an action 重力标准值:gravity standard value of calculation design value设计值: design value|value|designed value 作用设计值: design value of an action 荷载设计值: 平截面假定design value of a load抗拉强度安全系数标准值设计值confidence levelreliability fiduciary level 可靠度 : Reliability|degree of reliability 不可靠度 : Unreliability 高可靠度 : High Reliability geometrical characteristic 几何特征 : geometrical characteristic 配位几何特征 : coordinated geometric feature 流域几何特征 : basin geometric characteristics plastic nature plasticity stress diagram 应力图 : stress diagram|stress pattern 谷式应力图 : Cremona's method 机身应力图 : fuselage stress diagram crushing stress 压应力 : compressive stress|compression stress 抗压应力 : compressive stress|pressure 可靠度 几何特征塑性应力图 压应力load内压应力 : internal pressure stress ratio of reinforcement reinforcement ratio reinforcement percentage 配筋率 : reinforcement ratio 平均配筋率 : balanced steel ratio 纵向配筋率 : longitudinal steel ratio finite element analysis 有限元分析 : FEA|finite element analysis (FEA)|ABAQUS 反有限元分析 : inverse finite element analysis 有限元分析软件 : HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN finite element method 有限元法 : FInite Element|finite element method 积有限元法 : CVFEM 线性有限元法 : Linear Finite Element Method 配筋率 有限元分析有限元法裂缝控制 : crack control 控制裂缝钢筋 : crack-control reinforcement 检查,核对,抑制,控制,试验,裂缝,支票, 账单,牌号,名牌 : check stress concentration 应力集中 : stress concentration 应力集中点 : hard spot|focal point of stress 应力集中器 : stress concentrators principal tensile stress 主拉应力 : principal tensile stress nonlinearity nonlinear oscillations nonlinear vibration 非线性振动 : nonlinear vibration 非线性振动理论 : theory of non linear vibration 非线性随机振动 : Nonlinear random vibration 裂缝控制 应力集中 主拉应力 非线性非线性振动flexural moment ment of flexion (moment of flexure) bending moment flexural torque 弯矩 : bending moment|flexural moment|kN-m 弯矩图 : bending moment diagram|moment curve 双弯矩 : bimoment center of moments moment center 弯矩中心 : center of moments|momentcenter moment distribution momentdistribution 弯矩分配法 : hardy cross method|cross method bending moment diagram moment curve moment diagram 弯矩图 : bending moment diagram|moment curve 最终弯矩图 : final bending moment diagram 最大弯矩图 : maximum bending moment 弯矩弯矩中心弯矩分配法弯矩图剪力弹性模量剪力图diagramshearing force 剪力: shearing force|shear force|shear 剪力墙: shear wall|shearingwall|shear panel 剪力钉: shear nails|SHEAR CONCRETE STUD elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio shear diagram剪力图: shear diagram|shearing force diagram 剪力和弯矩图: Shear and Moment Diagrams 绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagramsshear wall剪力墙 : shear wall|shearing wall|shear panel 抗剪力墙 : shearwall 剪力墙结构 : shear wall structure轴力 : shaft force|axial force 螺栓轴力测试仪 : Boltshaft force tester 轴向力 : axial force|normal force|beam frame construction 等参数单元 等参元 : isoparametricelement 板单元 : plate unit 托板单元 : pallet unit 骨板骨单元 : lamella/lamellaeosteon (surname) beam of roof bridge bridge curvature mechanics of materials structural mechanics 结构力学 : Structural Mechanics|theory of structures 剪力墙 轴力框架结构等参单元板单元梁桥梁曲率材料力学结构力学弯曲刚度钢管混凝土结构极限荷载极限荷载设计重结构力学: barodynamics 船舶结构力学: Structual Mechamics for Ships flexural rigidity bending rigidity 弯曲刚度: bending stiffness|flexural rigidity 截面弯曲刚度: flexural rigidity of section 弯曲刚度,抗弯劲度: bending stiffness encased structures 钢管混凝土结构: encased structures ultimate load 极限荷载: ultimate load 极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load limit load design ultimate load analysis ultimate load design 极限荷载设计: limit load design|ultimate板壳力学本构模型主钢筋悬臂梁load design 设计极限荷载: designlimitloadDLL|design ultimate loadmechanics of board shell 板壳力学: Plate Mechanics 板壳非线性力学: Nonlinear Mechanics of Plate and Shell 本构模型: constitutive model 体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface main reinforcing steel main reinforcement 主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: mainbar socle beam 悬臂梁: cantilever beam|cantilever|outrigger 悬臂梁长: length of cantilever 双悬臂梁: TDCBcatenary 悬链线 : Catenary,|catenary wire|chainette 伪悬链线 : pseudocatenary 悬链线长 : catenary length ribbed stiffener 加劲肋 : stiffening rib|stiffener|ribbed stiffener 短加劲肋 : short stiffener 支承加劲肋 : bearing stiffener technology standard 水文 : Hydrology 水文学:hydrology|hydroaraphy| < 水文图 : hydrograph|hydrological maps invite public bidding (v) submit a bid bid for through beam 连续梁 : continuous beam|through beam 多跨连续梁 : continuous beam on many supports 悬链线 加劲肋 技术标准水文 招标 投标 连续梁加劲梁水文学桥梁抗震抗风基础的桥梁控制测量悬臂连续梁: gerber beamstiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection 支撑刚性梁,加劲梁,横撑: buttress brace hydrology水文学:hydrology|hydroaraphy|<水文學: Hydrologie| 水文学|??? ?????? 古水文学: paleohydrology桥梁抗震加固: bridge aseismatic strengthening wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance抗风锚: weather anchor 抗风性: wind resistancebasalbridge construction control survey 桥梁控制测量: bridge construction control桥梁施工总体设计初步设计技术设计survey桥梁施工控制综合程序系统: FWD 桥梁最佳施工指南: Bridge Best Practice Guidelines 桥梁工程施工技术咨询: Bridge Construction Engineering Service overall design integrated design 总体设计: Global|overall design|general arrangement 总体设计概念: totaldesignconcept 工厂总体设计图: general layout scheme predesign preliminary plan technical design 技术设计: technicaldesign|technical project 技术设计员: Technical Designer|technician 技术设计图: technical drawingconstruction documents design 施工图设计 : construction documents design 施工图设计阶段 : construction documents design phase 基本建设项目施工图设计 : design of working drawing of a capital construction project abutment bridge abutment foundation base basis structural style 结构形式 : Type of construction|form of structure 表结构形式 : list structure form 屋顶结构形式 : roof form earthquake earthquake activity seismic activity seismic motion seismicity 地震活动 : Seismic activity|seismic motion施工图设计 桥台 基础 结构形式 地震 地震活动地震活动性 : seismicity|seismic 地震活动图 : seismicity map 支撑体系 : bracing system|support system 物流企业安全平台支撑体系 : SSOSP 公路施工手册 - 桥涵 : Optimization of Road Traffic Organization-Abstract approach road ramp way approach 引道 : approach|approach road 引道坡 : approach ramp|a roachramp 引道版 : Approach slab 装配式桥 : fabricated bridge|precast bridge 装配式房屋 : Prefabricated buildings 装配式钢体 : fabricated steel body wear 耐久性 : durability|permanence|endurance 不耐久性 : fugitiveness 耐久性试验 : endurance test|life 支撑体系 公路桥涵 引道 装配式 耐久性test|durability test持久状况 : persistent situation 短暂状况 : transient situation 偶然状况 : accidental situation 永久作用 : permanent action 永久作用标准值 : characteristic value of permanent action 可变作用 : variable action 可变作用标准值 : characteristic value of variable action 可变光阑作用 : iris action 偶然作用 : accidental action 偶然同化(作用) : accidental assimilation 作用效应偶然组合 : accidental combination for action effects 作用代表值 : representative value of an action 作用标准值 : characteristic value of an action 地震作用标准值 : characteristic value of 持久状况短暂状况偶然状况永久作用可变作用偶然作用作用代表值作用标准值earthquake action 可变作用标准值 : characteristic value of variable action 作用频遇值 Frequent value of an action safe class 安全等级 : safety class|Security Level|safeclass 生物安全等级 : Biosafety Level 生物安全等級 : Biosafety Level action activity actions acts effect to play a role design reference period 设计基准期 : design reference period 作用准永久值 : quasi - permanentvalueofanaction 作用效应 : effects of actions|effect of an action 互作用效应 : interaction effect 作用频遇值安全等级作用设计基准期作用准永久值作用效应作用效应设计值分项系数作用效应组合结构重要性系数桥涵质量作用效应: mass action effect作用效应设计值Design value of an action effect 分项系数: partial safety factor|partialfactor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance 作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects 作用效应偶然组合: accidental combination for action effects结构重要性系数Coefficient for importance of a structure 桥涵跟桥梁比较类似,主要区别在于: 单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级 : highway classification 标准 : 公路等级代码 : Code for highway classification 标准 : 公路路面等级与面层类型代码 : Code forclassification and type of highway pavement fair current 设计洪水频率 : designed flood frequency water power water conservancy irrigation works 水力 : hydraulic power|water power|water stress 水力学 : Hydraulics|hydromechanics|fluid mechanics 水力的 : hydraulic|hydrodynamic|hyd river channel 河槽 : stream channel|river channel|gutter 古河槽 : old channel 河槽线 : channel axis riverside河岸 strand 公路等级顺流设计洪水频率水力河槽河岸 : bank|riverside|river bank 河岸林 : riparian forest 河岸权 : riparian right stream bank erosion 河岸侵蚀 : bank erosion|stream bank erosion 河岸侵蚀 河岸侵食 : bank erosion 河岸侵蚀 , 堤岸冲刷 : bank erosion 高架桥桥墩 : viaduct pier 高潮时桥梁净空高度 : bridge clearance lane 行车道 : carriageway|traffic lane|Through Lane 快行车道 : fast lane 西行车道 : westbound carriageway A road arterial road arterial highway 一级公路 : A road arterial road arterial highway 一级公路网 : primaryhighwaysystem 河岸侵蚀 高架桥桥墩 桥梁净空 行车道 一级公路二级公路涵洞河床河滩高级公路高架桥b roadsecondary road 二级公路: B road, secondary road culvert 涵洞: culvert 梁涵洞: Beam Culverts 木涵洞: timber culvert riverbed runway 河床: river bed|bed|stream bed 冰河床: glacier bed 型河床: oxbow|horseshoe bend|meander loop flood plain river beach 河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area high-type highway 高级公路: high-typehighway trestle viaduct高架桥: viaduct|overhead viaduct高架橋 : Viadukt|Viaducto| 高架橋 高架桥面 : elevated deck volume of flood flood discharge flooddischarge 洪水流量 : flood discharge|flood flow|peak discharge 洪水流量预报 : flooddischargeforecast 平均年洪水流量 : average annual flood design speed 设计速度 : design speed|designed speed|design rate 设计速度,构造速度 : desin speed|desin speed <haha 最大阵风强度的设计速度 : VB Design Speed for Maximum Gust Intension span emergency shutdown (cut-off) emergency cut-off 紧急停车 : abort|panic stop|emergency stop 紧急停车带 : lay-by|emergency parking strip 洪水流量 设计速度 跨度 紧急停车减速车道路缘带路肩紧急停车阀: emergency stop valve gear downretardmentspeed-downdecelerationslowdown traffic lane side trip marginal strip margin verge 路缘带: marginal strip|side strip|margin verge shoulder of earth body 路肩:shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulderminimum value 最小值 : minimum|Min|least value 求最小值 : minimization 找出最小值 : min max. principle of the maximum maximum principle maximal principle 最大值原理 : maximum principle,|maximal principle 离散最大值原理 : discrete maximum principle 极大值原理,最大值原理 : maximumprinciple 车道宽度 : lane-width cycle-track 自行车道 : bicycle path|cycle path|cycle track 旗津环岛海景观光自行车道 : Cijin Oceanview Bike Path 自行车道 专供自行车行驶的车道。
桥梁工程英语词汇
![桥梁工程英语词汇](https://img.taocdn.com/s3/m/14051cfead51f01dc281f18f.png)
结构控制structural controlstructure control结构控制: structural control結構控制: structural control结构控制剂: constitution controller裂缝宽度容许值裂缝宽度容许值: allowable value of crack width装配式预制装配式预制: precast装配式预制的: precast-segmental装配式预制混凝土环: precast concrete segmental ring安装预应力安装预应力: prestressed最优化optimization最优化: Optimum Theory|optimization|ALARA 使最优化: optimized次最优化: suboptimization空心板梁空心板梁: hollow slab beam主梁截面主梁截面: girder section边、中跨径边、中跨径: side span &middle spin主梁girder主梁: girder|main beam|king post 桥主梁: bridge girder主梁翼: main spar单墩单墩: single pier单墩尾水管: single-pier draught tube单墩肘形尾水管: one-pier elbow draught tube结构优化设计结构优化设计: optimal structure designing扩结构优化设计: Optimal Struc ture Designing 液压机结构优化设计软件包: HYSOP连续多跨多跨连续梁: continuous beam on many supports拼接板splice barsplice plate拼接板: splice bar|scab|splice plate 端头拼接板: end matched lumber销钉拼接板: pin splice裂缝crack crevice跨越to step acrossstep over跨越: stride leap|across|spanning跨越杆: cross-over pole|crossingpole 跨越点: crossing point|crossover point刚构桥rigid frame bridge刚构桥: rigid frame bridge形刚构桥: T-shaped rigid frame bridge连续刚构桥: continuous rigid frame bridge刚度比stiffness ratioratio of rigidity刚度比: ratio of rigidity|stiffness ratio 动刚度比: dynamic stiffenss ratio刚度比劲度比: stiffnessratio等截面粱uniform beam等截面粱: uniform beam|uniform cross-section beam桥梁工程bridge constructionbridgework桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering 桥梁工程师: Bridge SE铁路桥梁工程: railway bridge engineering悬索桥suspension bridge悬索桥: suspension bridge|su e io ridge 懸索橋: Suspension bridge|Puente colgante 加劲悬索桥: stiffenedsuspensionbridge预应力混凝土prestressed concrete预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe预应力钢筋束预应力钢筋束: pre-stressing tendon|pre-stre ingtendon 抛物线型钢丝束(预应力配钢筋结构用): parabolic cable最小配筋率minimum steel ratio轴向拉力axial tensionaxial tensile force轴向拉力: axial tension|axial te ion 轴向拉力, 轴向拉伸: axial tension轴向拉力轴向张力: axialtensileforce承台cushion cap承台: bearing platform|cushioncap|pile caps 桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥arch bridge拱桥: hump bridge|arch bridge|arched bridge 拱橋: Arch bridge|Puente en arco|Pont en arc 鸠拱桥: Khājū强度intensitystrength强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness 光强度: light intensity|intensity箍筋hooping箍筋: stirrup|reinforcement stirrup|hooping 箍筋柱: tied column|hooped column形箍筋: u stirrup u预应力元件预应力元件: prestressed element等效荷载equivalent load等效荷载: equivalent load等效荷载原理: principle of equivalent loads 等效负载等效荷载等值负载: equivalentload模型matrix model mould pattern承载能力极限状态承载能力极限状态: ultimate limit states正常使用极限状态serviceability limit state正常使用极限状态: serviceability limit state正常使用极限状态验证: verification of serviceability limit states弹性elasticityspringinessspringgiveflexibility弹性: elasticity|Flexibility|stretch 彈性: Elastic|Elasticidad|弾性弹性体: elastomer|elastic body|SPUA平截面假定plane cross-section assumption平截面假定: plane cross-section assumption抗拉强度intensity of tension tensile strength安全系数safety factor标准值standard value标准值: standard value,|reference value作用标准值: characteristic value of an action 重力标准值: gravity standard设计值value of calculationdesign value设计值: design value|value|designed value 作用设计值: design value of an action荷载设计值: design value of a load可靠度confidence levelreliabilityfiduciary level可靠度: Reliability|degree of reliability 不可靠度: Unreliability高可靠度: High Reliability几何特征geometrical characteristic几何特征: geometrical characteristic配位几何特征: coordinated geometric feature 流域几何特征: basin geometric characteristics塑性plastic nature plasticity应力图stress diagram应力图: stress diagram|stress pattern 谷式应力图: Cremona's method机身应力图: fuselage stress diagram压应力crushing stress压应力: compressive stress|compression stress 抗压应力: compressive stress|pressure load内压应力: internal pressure stress配筋率ratio of reinforcement reinforcement ratioreinforcement percentage配筋率: reinforcement ratio平均配筋率: balanced steel ratio纵向配筋率: longitudinal steel ratio有限元分析finite element analysis有限元分析: FEA|finite element analysis (FEA)|ABAQUS 反有限元分析: inverse finite element analysis有限元分析软件: HKS ABAQUS|MSC/NASTRAN MSC/NASTRAN有限元法finite element method有限元法: FInite Element|finite element method 积有限元法: CVFEM线性有限元法: Linear Finite Element Method裂缝控制裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement检查,核对,抑制,控制,试验,裂缝,支票,账单,牌号,名牌: check应力集中stress concentration应力集中: stress concentration应力集中点: hard spot|focal point of stress 应力集中器: stress concentrators主拉应力principal tensile stress主拉应力: principal tensile stress非线性nonlinearity非线性振动nonlinear oscillationsnonlinear vibration非线性振动: nonlinear vibration非线性振动理论: theory of non linear vibration 非线性随机振动: Nonlinear random vibration弯矩flexural momentment of flexion (moment of flexure) bending momentflexural torque弯矩: bending moment|flexural moment|kN-m 弯矩图: bending moment diagram|moment curve 双弯矩: bimoment弯矩中心center of momentsmoment center弯矩中心: center of moments|momentcenter弯矩分配法moment distributionmomentdistribution弯矩分配法: hardy cross method|cross method弯矩图bending moment diagrammoment curvemoment diagram弯矩图: bending moment diagram|moment curve 最终弯矩图: final bending moment diagram最大弯矩图: maximum bending moment diagram剪力shearing force剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel 剪力钉: shear nails|SHEAR CONCRETE STUD弹性模量elasticity modulus young's modulus elastic modulus modulus of elasticity elastic ratio剪力图shear diagram剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams绘制剪力和弯矩图的图解法: Graphical Method for Constructing Shear and Moment Diagrams剪力墙shear wall剪力墙: shear wall|shearing wall|shear panel 抗剪力墙: shearwall剪力墙结构: shear wall structure轴力轴力: shaft force|axial force螺栓轴力测试仪: Bolt shaft force tester 轴向力: axial force|normal force|beam框架结构frame construction等参单元等参数单元等参元: isoparametricelement板单元板单元: plate unit托板单元: pallet unit骨板骨单元: lamella/lamellaeosteon梁(surname) beam of roof bridge桥梁bridge曲率curvature材料力学mechanics of materials结构力学structural mechanics结构力学: Structural Mechanics|theory of structures 重结构力学: barodynamics船舶结构力学: Structual Mechamics for Ships弯曲刚度flexural rigiditybending rigidity弯曲刚度: bending stiffness|flexural rigidity 截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构encased structures钢管混凝土结构: encased structures极限荷载ultimate load极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load极限荷载设计limit load designultimate load analysisultimate load design极限荷载设计: limit load design|ultimate load design 设计极限荷载: designlimitloadDLL|design ultimate load板壳力学mechanics of board shell板壳力学: Plate Mechanics板壳非线性力学: Nonlinear Mechanics of Plate and Shell本构模型本构模型: constitutive model体积本构模型: bulk constitutive equation 本构模型屈服面: yield surface主钢筋main reinforcing steelmain reinforcement主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: mainbar悬臂梁socle beam悬臂梁: cantilever beam|cantilever|outrigger 悬臂梁长: length of cantilever双悬臂梁: TDCB悬链线catenary悬链线: Catenary,|catenary wire|chainette 伪悬链线: pseudocatenary悬链线长: catenary length加劲肋ribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener 短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文水文: Hydrology水文学: hydrology|hydroaraphy|すいもんがく水文图: hydrograph|hydrological maps招标invite public bidding投标(v) submit a bid bid for连续梁through beam连续梁: continuous beam|through beam多跨连续梁: continuous beam on many supports 悬臂连续梁: gerber beam加劲梁stiff girder加劲梁: stiffening girder|buttress brace 加劲梁节点: stiff girder connection支撑刚性梁,加劲梁,横撑: buttress brace水文学hydrology水文学: hydrology|hydroaraphy|すいもんがく水文學: Hydrologie|水文学|??? ??????古水文学: paleohydrology桥梁抗震桥梁抗震加固: bridge aseismatic strengthening抗风wind resistance抗风: Withstand Wind|Wtstan Wn|wind resistance 抗风锚: weather anchor抗风性: wind resistance基础的basal桥梁控制测量bridge construction control survey桥梁控制测量: bridge construction control survey桥梁施工桥梁施工控制综合程序系统: FWD桥梁最佳施工指南: Bridge Best Practice Guidelines桥梁工程施工技术咨询: Bridge Construction Engineering Service总体设计overall designintegrated design总体设计: Global|overall design|general arrangement 总体设计概念: totaldesignconcept工厂总体设计图: general layout scheme初步设计predesign preliminary plan技术设计technical design技术设计: technical design|technical project 技术设计员: Technical Designer|technician技术设计图: technical drawing施工图设计construction documents design施工图设计: construction documents design施工图设计阶段: construction documents design phase基本建设项目施工图设计: design of working drawing of a capital construction project桥台abutment bridge abutment基础foundation basebasis结构形式structural style结构形式: Type of construction|form of structure 表结构形式: list structure form屋顶结构形式: roof form地震earthquake地震活动earthquake activityseismic activityseismic motionseismicity地震活动: Seismic activity|seismic motion 地震活动性: seismicity|seismic地震活动图: seismicity map支撑体系支撑体系: bracing system|support system 物流企业安全平台支撑体系: SSOSP公路桥涵公路施工手册-桥涵: Optimization of Road Traffic Organization-Abstract引道approach roadramp wayapproach引道: approach|approach road引道坡: approach ramp|a roachramp 引道版: Approach slab装配式装配式桥: fabricated bridge|precast bridge 装配式房屋: Prefabricated buildings装配式钢体: fabricated steel body耐久性wear耐久性: durability|permanence|endurance不耐久性: fugitiveness耐久性试验: endurance test|life test|durability test持久状况持久状况: persistent situation 短暂状况短暂状况: transient situation 偶然状况偶然状况: accidental situation永久作用永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用可变作用: variable action可变作用标准值: characteristic value of variable action 可变光阑作用: iris action偶然作用偶然作用: accidental action偶然同化(作用): accidental assimilation作用效应偶然组合: accidental combination for action effects作用代表值作用代表值: representative value of an action作用标准值作用标准值: characteristic value of an action地震作用标准值: characteristic value of earthquake action 可变作用标准值: characteristic value of variable action作用频遇值作用频遇值 Frequent value of an action安全等级safe class安全等级: safety class|Security Level|safeclass 生物安全等级: Biosafety Level生物安全等級: Biosafety Level作用actionactivity actionsactseffectto play a role设计基准期design reference period设计基准期: design reference period作用准永久值作用准永久值: quasi-permanentvalueofanaction作用效应作用效应: effects of actions|effect of an action 互作用效应: interaction effect质量作用效应: mass action effect作用效应设计值作用效应设计值 Design value of an action effect分项系数分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合作用效应组合: combination for action effects作用效应基本组合: fundamental combination for action effects 作用效应偶然组合: accidental combination for action effects结构重要性系数结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁公路等级公路等级: highway classification标准:公路等级代码: Code for highway classification标准:公路路面等级与面层类型代码: Code for classification and type of highway pavement顺流fair current设计洪水频率设计洪水频率: designed flood frequency水力water powerwater conservancyirrigation works水力: hydraulic power|water power|water stress水力学: Hydraulics|hydromechanics|fluid mechanics 水力的: hydraulic|hydrodynamic|hyd河槽river channel河槽: stream channel|river channel|gutter 古河槽: old channel河槽线: channel axis河岸riversidestrand河岸: bank|riverside|river bank 河岸林: riparian forest河岸权: riparian right河岸侵蚀stream bank erosion河岸侵蚀: bank erosion|stream bank erosion 河岸侵蚀河岸侵食: bank erosion河岸侵蚀, 堤岸冲刷: bank erosion高架桥桥墩高架桥桥墩: viaduct pier桥梁净空高潮时桥梁净空高度: bridge clearance行车道lane行车道: carriageway|traffic lane|Through Lane 快行车道: fast lane西行车道: westbound carriageway一级公路A roadarterial roadarterial highway一级公路: A road arterial road arterial highway 一级公路网: primaryhighwaysystem二级公路b roadsecondary road二级公路: B road, secondary road涵洞culvert涵洞: culvert梁涵洞: Beam Culverts 木涵洞: timber culvert河床riverbedrunway河床: river bed|bed|stream bed冰河床: glacier bed型河床: oxbow|horseshoe bend|meander loop河滩flood plainriver beach河滩: river shoal|beach|river flat 河滩地: flood land|overflow land 河滩区: riffle area高级公路high-type highway高级公路: high-typehighway高架桥trestleviaduct高架桥: viaduct|overhead viaduct 高架橋: Viadukt|Viaducto|高架橋高架桥面: elevated deck洪水流量volume of floodflood dischargeflooddischarge洪水流量: flood discharge|flood flow|peak discharge 洪水流量预报: flooddischargeforecast平均年洪水流量: average annual flood设计速度design speed设计速度: design speed|designed speed|design rate设计速度,构造速度: desin speed|desin speed <haha最大阵风强度的设计速度: VB Design Speed for Maximum Gust Intension跨度span紧急停车emergency shutdown (cut-off)emergency cut-off紧急停车: abort|panic stop|emergency stop 紧急停车带: lay-by|emergency parking strip 紧急停车阀: emergency stop valve减速gear downretardment speed-down deceleration slowdown车道traffic lane路缘带side tripmarginal stripmargin verge路缘带: marginal strip|side strip|margin verge路肩shoulder of earth body路肩: shoulder|verge|shoulder of road 硬路肩: hard shoulder|hardened verge 软路肩: Soft Shoulder最小值minimum value最小值: minimum|Min|least value 求最小值: minimization找出最小值: min最大值max.最大值原理principle of the maximummaximum principlemaximal principle最大值原理: maximum principle,|maximal principle 离散最大值原理: discrete maximum principle极大值原理,最大值原理: maximum principle车道宽度车道宽度: lane-width自行车道cycle-track自行车道: bicycle path|cycle path|cycle track旗津环岛海景观光自行车道: Cijin Oceanview Bike Path 自行车道专供自行车行驶的车道。
桥梁工程中英文对照外文翻译文献
![桥梁工程中英文对照外文翻译文献](https://img.taocdn.com/s3/m/c638bd7227d3240c8447ef60.png)
桥梁工程中英文对照外文翻译文献(文档含英文原文和中文翻译)BRIDGE ENGINEERING AND AESTHETICSEvolvement of bridge Engineering,brief reviewAmong the early documented reviews of construction materials and structu re types are the books of Marcus Vitruvios Pollio in the first century B.C.The basic principles of statics were developed by the Greeks , and were exemplifi ed in works and applications by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueduc ts .The state of the art changed rapidly toward the end of the seventeenth cent ury when Leibnitz, Newton, and Bernoulli introduced mathematical formulatio ns. Published works by Lahire (1695)and Belidor (1792) about the theoretical a nalysis of structures provided the basis in the field of mechanics of materials .Kuzmanovic(1977) focuses on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood to steel .According to recent records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the Garoyne Canal at Grisoles, but r einforced concrete was not introduced in bridge construction until the beginnin g of this century . Prestressed concrete was first used in 1927.Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle ages . Thes e arches were half-circular , with flat arches beginning to dominate bridge wor k during the Renaissance period. This concept was markedly improved at the e nd of the eighteenth century and found structurally adequate to accommodate f uture railroad loads . In terms of analysis and use of materials , stone bridges have not changed much ,but the theoretical treatment was improved by introd ucing the pressure-line concept in the early 1670s(Lahire, 1695) . The arch the ory was documented in model tests where typical failure modes were considered (Frezier,1739).Culmann(1851) introduced the elastic center method for fixed-e nd arches, and showed that three redundant parameters can be found by the us e of three equations of coMPatibility.Wooden trusses were used in bridges during the sixteenth century when P alladio built triangular frames for bridge spans 10 feet long . This effort also f ocused on the three basic principles og bridge design : convenience(serviceabili ty) ,appearance , and endurance(strength) . several timber truss bridges were co nstructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in t he United States and Russia during the nineteenth century ,prompted by the ne ed to cross major rivers and by an abundance of suitable timber . Favorable e conomic considerations included initial low cost and fast construction .The transition from wooden bridges to steel types probably did not begin until about 1840 ,although the first documented use of iron in bridges was the chain bridge built in 1734 across the Oder River in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by Eng land in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first ir on arch truss bridge was built across the Erie Canal at Utica .The Impetus of AnalysisThe theory of structures ,developed mainly in the ninetheenth century,foc used on truss analysis, with the first book on bridges written in 1811. The Wa rren triangular truss was introduced in 1846 , supplemented by a method for c alculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-span bridges.In 1866, Culmann explained the principles of cantilever truss bridges, an d one year later the first cantilever bridge was built across the Main River in Hassfurt, Germany, with a center span of 425 feet (130m) . The first cantileve r bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the Fir st of Forth bridge , built between 1883 and 1893 , with span magnitudes of 1711 feet (521.5m).At about the same time , structural steel was introduced as a prime mater ial in bridge work , although its quality was often poor . Several early exampl es are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and t he Glasgow bridge in Missouri , all completed between 1874 and 1883.Among the analytical and design progress to be mentioned are the contrib utions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and the works by Clapeyron who introduced the three-moment equation s.The Impetus of New MaterialsSince the beginning of the twentieth century , concrete has taken its place as one of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its st ructural uses are almost unlimited . Wherever Portland cement and suitable agg regates are available , it can replace other materials for certain types of structu res, such as bridge substructure and foundation elements .In addition , the introduction of reinforced concrete in multispan frames at the beginning of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical metho ds of the nineteenth century .The importance of joint rotation was already dem onstrated by Manderla (1880) and Bendixen (1914) , who developed relationshi ps between joint moments and angular rotations from which the unknown mom ents can be obtained ,the so called slope-deflection method .More simplification s in frame analysis were made possible by the work of Calisev (1923) , who used successive approximations to reduce the system of equations to one simpl e expression for each iteration step . This approach was further refined and int egrated by Cross (1930) in what is known as the method of moment distributi on .One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-plastic range , also known as load factor or ultimate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Sa int-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War Ⅰ, mainly in Germany , with the center of activity shifting to England and the United States after World War Ⅱ.The probabilistic approa ch is a new design concept that is expected to replace the classical determinist ic methodology.A main step forward was the 1969 addition of the Federal Highway Adim inistration (F HWA)”Criteria for Reinforced Concrete Bridge Members “ that co vers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Specification, and was presented in a format that is readil y adaptable to the development of ultimate design specifications .According to this document , the proportioning of reinforced concrete members ( including c olumns ) may be limited by various stages of behavior : elastic , cracked , an d ultimate . Design axial loads , or design shears . Structural capacity is the r eaction phase , and all calculated modified strength values derived from theoret ical strengths are the capacity values , such as moment capacity ,axial load ca pacity ,or shear capacity .At serviceability states , investigations may also be n ecessary for deflections , maximum crack width , and fatigue .Bridge TypesA notable bridge type is the suspension bridge , with the first example bu ilt in the United States in 1796. Problems of dynamic stability were investigate d after the Tacoma bridge collapse , and this work led to significant theoretica l contributions Steinman ( 1929 ) summarizes about 250 suspension bridges bu ilt throughout the world between 1741 and 1928 .With the introduction of the interstate system and the need to provide stru ctures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete box girders ), steel beam and plate girders , steel box girders , composite const ruction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while interest in box sections remains strong .Bridge Appearance and AestheticsGrimm ( 1975 ) documents the first recorded legislative effort to control t he appearance of the built environment . This occurred in 1647 when the Cou ncil of New Amsterdam appointed three officials . In 1954 , the Supreme Cou rt of the United States held that it is within the power of the legislature to de termine that communities should be attractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of the federal government to identify and dev elop methods and procedures to ensure that presently unquantified environmenta l amentities and values are given appropriate consideration in decision making along with economic and technical aspects .Although in many civil engineering works aesthetics has been practiced al most intuitively , particularly in the past , bridge engineers have not ignored o r neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized aesthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities , and this direction is bot h theoretically and empirically oriented .Aesthetic control mechanisms are commonly integrated into the land-use re gulations and design standards . In addition to concern for aesthetics at the sta te level , federal concern focuses also on the effects of man-constructed enviro nment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgradin g of aesthetic quality in bridge superstructures and substructures can be seen in the evaluation structure types aimed at improving overall appearance .Lords and lording groupsThe loads to be considered in the design of substructures and bridge foun dations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .AASHTO loads . Section 3 of AASHTO specifications summarizes the loa ds and forces to be considered in the design of bridges (superstructure and sub structure ) . Briefly , these are dead load ,live load , iMPact or dynamic effec t of live load , wind load , and other forces such as longitudinal forces , cent rifugal force ,thermal forces , earth pressure , buoyancy , shrinkage and long t erm creep , rib shortening , erection stresses , ice and current pressure , collisi on force , and earthquake stresses .Besides these conventional loads that are ge nerally quantified , AASHTO also recognizes indirect load effects such as fricti on at expansion bearings and stresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct cate gories : permanent and transient .Permanent loadsDead Load : this includes the weight DC of all bridge components , appu rtenances and utilities, wearing surface DW nd future overlays , and earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .Transient LoadsVehicular Live Load (LL) Vehicle loading for short-span bridges :considera ble effort has been made in the United States and Canada to develop a live lo ad model that can represent the highway loading more realistically than the H or the HS AASHTO models . The current AASHTO model is still the applica ble loading.桥梁工程和桥梁美学桥梁工程的发展概况早在公元前1世纪,Marcus Vitrucios Pollio 的著作中就有关于建筑材料和结构类型的记载和评述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流水对桥的影响
一个在水域管理方面的专家最近告诉威尔士议会,随着气候的变化带来更多的雨水,英国河流上大量的旧桥都成为了一个问题。
罗德里克拉克就有关一些旧桥是否该被拆除以减少洪水造成的灾害,交通中断甚至是死亡做了报道。
在英国几乎没有比在夏日时光里一条河流在一座古老的石拱桥下慵懒的流动更为平静的画面了。
虽然在时间来到十一月份的时候,这条河流可能会因为流动的河水冲刷桥而看上去没有那么的和善。
过去,在科学技术的支持下,许多跨河的桥梁都不只有单一的跨度,这些桥跨是适合于那个历史时期的降雨模式。
但是随着气候的变化使洪水事件变得常见,这些旧桥加剧了使河岸决堤的危险——同时,这些桥本身也面临着倒塌的危险。
可能已经有强迫拆迁一些古老桥梁而用单跨结构取而代之的方案。
这种方案的价钱不会便宜,或者同时,在应对洪水和伤亡事故方面,效果也不怎么样。
一位来自加的夫大学水力方面的教授罗格福尔克纳说,这些问题在威尔士,苏格兰以及英国的西南西北地区是有特别重要的意义的。
大不列颠西部比东部有更多的雨水,而且它的丘陵地形为许多河流提供短促的集水。
但是即使在加的夫,大多数塔夫的桥梁还是多跨结构,有多个拱门。
“这是很多老桥梁不利之处之一”,他说道,“你有很多相对的短跨跨越相对狭窄的河流。
在英国,几乎有很少的河流能让我们不得不把它们上方修筑的桥梁划入单跨结构。
”
在高水位水流流过时,对于那些历史跨度的中间桥墩造成了两个问题。
“它们减少了交叉领域的区流面积流动。
节流使它们的流动造成回水影响——它们会导致水积聚上游,”最近给威尔士议会成员做了关于洪水报告的福尔克纳说道。
“第二,假如当你有一些东西比如说一辆汽车,一颗树,或者是其它一些碎屑物被冲进河流时,这些东西会被桥墩阻拦。
就举2004年伯斯卡斯尔的洪水为例,就是桥下的那些碎屑物引发的洪水。
但是如果你是单跨结果的桥梁,这些碎片将不太可能被捕获,就不会造成上游堵塞的结果。
”
软件可以用来展示这些旧桥在这些环境中所受的影响。
他模拟了汽车撞上桥墩时的效果。
他确信这些证据能更好的帮助权威专家们设计一个拆除部分旧桥而以一些少阻碍性跨度的桥梁取代的方案。
但是他预见到了来自当地的反对声。
“英国人民通常对改变事物很抗拒,但是假如我们要减小洪水带来的危险性,我们就必须正视这些问题。
”
英国遗产协会的雷尼霍克,接受了历史悠久的桥梁防洪风险上的弊端,但是他补充到:“许多有历史的桥梁对当地的独特风格做出了重大贡献,一些东西一旦失去就再难以代替补回。
我们看到了群众比以往更多的拥护和激情来守护造就了这个他们生活
工作的地方的东西。
拆除应该是万不得已才做的决定。
”
如果对旧桥加固或者提高它们对洪水的适应力价格太高,英国遗产协会将会更乐意在沿着原先历史桥梁的边上修筑新桥。
“这些历史桥梁其后将会降低到或者是通行一些当地的轻便交通或者是只供步行。
这项举措可能最终不是为了保护旧桥被拆除,而是由于旧桥结构的不适合带来的社会经济损失将会被降到最低。
”英国注册过的桥梁一共有6470座,其中的5556座都要追溯到前1840年。
2008年的10月,登比郡县会议拨款近300,000美元用于Pont Telpyn 桥的旧桥加固,那是座还附带着7.9m宽的小路的桥梁。
这项历史桥梁保护工作意味着在进行加固工作的同时要保持桥梁的原貌不变,需要采用不锈钢为核心,通过结构钻孔灌浆。
能提供此技术的只有一家承建商。
这条河曾经部分转移。
在一次夏季洪水时,桥跨下的临时支撑绊住了一颗大树和其它一些碎屑物,而且一个桥墩基础遭受了严重的冲刷毁坏。
这座桥不得不暂时封闭,关闭交通。
最终的总损失可能达到了623,000美元。
在洪水灾害过后,威尔士遗产保护人Cadw就建议,如果维修无法估量,任何重建措施都得重新恢复原始的石拱桥。
“对于在改善的线路上修建一座现代结构的桥梁的机会对我们并不适合,”登比郡县桥梁负责人鲍勃汉弗莱斯这样告诉委员会成员。
这似乎是对Cadw坚持维修而不是取代意见的挑战。
而他也承认,这可能会摧毁权威们良好的工作关系。
霍克对此评论到:“使用先进技术来确保维持旧桥的面貌的花费是否得当很大程度上取决于这些桥本身的情况。
比如说这座桥的历史遗产含义,它的用途,当地委员会的观点以及当地权威机构对它的情况分析。
每座桥都必须单独评定,根据评定结果,如果加固可行的话,采用最合适的方法对其进行加固。
”
然而,福尔克纳却提到,在有些时候,比修建新桥更花费钱的项目是为了防止在洪水事件时大型物体流入河流中而采取的措施。
“在伯斯卡斯尔,他们本可以在沿河边设置些防护措施,这样首先就能保证汽车不被冲到河里,”福尔克纳说。
在多山郊外地区,暴风雨甚至能够让大树全都冲到河里。
砍伐树木的地方很可能要减少进入河流的碎片体积,福尔克纳补充道。
增多的洪水事件影响了旧桥结构的完整性。
河水中的桥墩在急流的时候会产生漩涡。
“就是因为这些漩涡造成了对上游的冲刷,而且同时,这些漩涡也会侵蚀桥的底部基础。
老一些的桥梁由于最初在修建的时候比现在的桥少些复杂的下部结构,这将会让它们受到更多的影响。
我们现在就将看到这种修建方式的失败。
”
2008年10月,在工人们意识到危险的到来并逃走后的一些时间后,施罗普下令拆除Sheinton 桥。
在后期的洪水检查期间,一些严重的冲刷被发现后,人们开始了整治。
去年十一月,在英国西北部Worthington的北边桥被拆除时,一名警察在指挥交通从洪水毁坏的地方疏散撤离时牺牲了。
Worthington事件中毁坏的Calva桥持续关闭交通,不可使用。
当地居民不得不行走很长的绕行路才能到达当地一些地方,这其中包括了在河对岸的学校。
铁路运输局和交通运输部门迅速建立了一个新的车站,他们使用火车使各部分地方重新恢复联系。
这时就有观察者质疑,在公路桥梁都被河流冲击破坏了的时候,为什么铁路桥没有受到影响?
我们或许能从一个更大的桥梁灾难中得到答案。
1987年10月,位于威尔士铁路线中心的Glanrhyd桥,在下了一场持续时间很长的大雨后被冲毁。
警报还没有来得及响起,一辆早班火车就驶入了被毁地段,接着掉入了河中。
四个人死于这场灾难。
随后,一座单跨钢结构桥就取代了五跨的维多利亚桥,这座新桥在1958年采用了最新的钢结构上部结构。
“在那座铁路桥和其它一些铁路桥出现意外后,铁路权威们就有关桥梁冲刷方面做了很多研究工作,”福尔克纳说道。
“英国铁路和铁路网局就他们的桥梁做了很多的研究工作来加固他们。
”但是这些铁路桥依然会受到洪水的危害。
十一月的时候,在洪水毁坏了Crane河上一座有100年历史的桥后,穿过伦敦西部Feltham的一条主线被关闭。
为了确保在十天之内使该地区的服务设施恢复,铁路局迅速安插了一条受牵制的路线进入这里。
这里有一部分旧桥是由政府机构负责的,但是主要是由当地这方面的权威们在管理。
当地环境部门的负责人说这些部门急需对受洪水危害的桥做出一些领导性战略的决策。
当一些碎屑物阻挡了河水的流动,或是打算新建新桥时,环境部门都得参与进来管理。
但是,并没有证据能够确定这些桥会使洪水加剧。
“在部分方案中,重修旧桥有它的好处,就是限定了河流的流动,”环境部门的负责人说道。
“你可以看看下游的情况就知道。
这些水倘若加快流速会对当地产生更大的影响。
”。