材料力学性能第一章a
材料力学性能-第一章-应力应变曲线和弹性变形
2021年10月24日 第一章 单向静载下材料的力学性能 星期日 纯弹性型
大多数玻璃、陶瓷、 岩石、低温下的金属
弹性-均匀塑性型
许多金属和合金、部 分陶瓷和非晶态高聚物
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
低温和高应变 速率下的fcc金属。 其塑性变形常常是 通过孪生实现的。 当孪生速率超过夹 头运动速率时出现 此种类型曲线。
弹性-不均匀塑性型
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
弹性-不均匀塑 性-均匀塑性型
弹性-不均匀塑 性-均匀塑性型
一些bcc的铁基合金 和若干有色合金。
一些结晶态的高聚 物和未经拉伸的非晶 态高聚物
2021年10月24日 第一章 单向静载下材料的力学性能 星期日 同一种材料在不同拉伸条件下其应 力-应变曲线也会不同。比如,退火低 碳钢在低温下脆性大大增加,其拉伸曲 线就只有弹性变形部分。
表1-2 几种常用材料的比弹性模量
材料
铜 钼 铁 钛 铝 铍 氧化铝 碳化硅
比弹性模量/×108cm 1.3 2.7 2.6 2.7 2.7 16.8 10.5 17.5
2021年10月24日 第一章 单向静载下材料的力学性能 星期日 三、弹性比功 表示金属材料吸收弹性变形功的能力。
用金属材料开始塑性 σ
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
影响因素
弹性变形是原子间距在外力作用
下可逆变化的结果,因而弹性模量E与
原子间作用力和原子间距都有关系。原 子间作用力取决于原子本性和晶格类
型,故E也取决于原子本性与晶格类
型。
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
材料力学性能
材料力学性能
§1- 2 弹性变形
3、说明: ——弹性变形的力学性能指标
1) Pmax一般远大于Pp、Pe(三个数量级);
实际金属在外力远低于Pmax时就产生了塑性变形甚至断裂。
2) P与Δr = r - rO并非正比关系; 而实际金属拉伸时其Pe、Pp均较小(远小于Pmax),此时P与Δr近 似直线,故弹性强度指标有比例极限σp与弹性极限σe之分,且 σp <σe σp一般用于计量弹簧设计; σe一般用于工程构件中的弹簧钢设计
3)弹性变形随应力的变化速度为声速。
材料力学性能
§1- 2 弹性变形
——弹性变形的力学性能指标
二、弹性模量:
表征材料(在弹性变形阶段)对弹性变形的抗力.
1、定义:
拉:σ= Eε
E:弹性模量(杨氐)
扭:剪切应力τ= Gγ G:切变模量
E、G越大,则材料的抗力越大,或变形越小。
弹性模量是组织不敏感因素指标,仅与原子间作用力有关.
原子间作用力:吸引力、相斥力;且二者均与原子间
的相互距离(2r)有关
吸引力:原子核中质子(正离子)与其它原子的电子
云之间的作用力:P1∝1/r²
相斥力:离子之间及电子之间的作用力:P2∝-1/r4
材料力学性能
则有: P = P1+ P2 = A/r²-Ar0²/r4 其中: P1= A/r²为引力项, P2=-Ar0²/r4 为斥力项
滑移:在形变温度不低的情况下产生于滑移系多的晶系,对变
形量的贡献大(>90%);
孪生:产生于滑移系少的晶系,且须冲击应力(来不及传递开)、
温度较低等条件下才发生,对变形量的贡献小
材料力学性能-第1章
(1)防止失效
失效形式:过量变形、断裂、磨损、腐蚀 (2)减少经济损失 美国:1982年为1190亿(占GDP4%) 研究认为:采用新技术,可减少1/3损失 2、评价材料和相关制备工艺 3、合理使用材料
兰州理工大学材料科学与工程学院 徐建林
二、研究内容和研究方法
1、研究内容:结合材料的实际服役条件,研究 材料在外力作用下力学性能变化的情况。 2、研究方法 (1)简单到复杂——研究典型工况、典型试样 A、光滑试样:基本力学性能的测定,失效机理 与判据的研究;
(五)、材料力学性能表征
1、材料软硬程度的表征。
2、材料脆性的表征。
3、材料抵抗外力能力表征。 4、材料变形能力的表征。 5、含缺陷材料抗断裂能力的表征。 6、材料抵抗多次受力能力的表征。
7、新材料及特种材料性能的表征。
8、特殊条件下材料性能的表征。 兰州理工大学材料科学与工程学院 徐建林
(六)、意义
(1)分类: 静载荷: 如机器重量对基础的作用。 如齿轮传动。
动载荷:
交变载荷(随时间做周期变化); 冲击载荷(物体的运动在瞬时突
变所引起的载荷);如锻打。
兰州理工大学材料科学与工程学院 徐建林
(2)零件在静载荷下变形的基本形式
变形:构件在工作时在外力作用下其几何 形状和尺寸将发生改变的现象。 ①.拉伸和压缩:
兰州理工大学材料科学与工程学院 徐建林
材料的基本性能
1 、 使用性能:物理性能(光、电、磁……) 力学性能 (强度、塑性、硬度……)
2、 加工性能 (可制造性)
热加工:铸、锻、焊、热处理……
冷加工:车、铣、磨……
特种加工:电火花、激光、离子…… 兰州理工大学材料科学与工程学院 徐建林
材料力学性能习题及解答库
第一章习题答案一、解说以下名词1、弹性比功:又称为弹性比能、应变比能,表示金属资料汲取弹性变形功的能力。
2、滞弹性:在弹性范围内迅速加载或卸载后,随时间延长产生附带弹性应变的现象。
3、循环韧性:金属资料在交变载荷下汲取不行逆变形功的能力,称为金属的循环韧性。
4、包申格效应:先加载致少许塑变,卸载,而后在再次加载时,出现σ e 高升或降低的现象。
5、解理刻面:大概以晶粒大小为单位的解理面称为解理刻面。
6、塑性、脆性和韧性:塑性是指资料在断裂前发生不行逆永久(塑性)变形的能力。
韧性:指资料断裂前汲取塑性变形功和断裂功的能力,或指资料抵挡裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花式:当一些小的台阶汇聚为在的台阶时,其表现为河流状花式。
9、解理面:晶体在外力作用下严格沿着必定晶体学平面破裂,这些平面称为解理面。
10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,必定是脆断,且较为严重,为最初级。
穿晶断裂裂纹穿过晶内,能够是韧性断裂,也可能是脆性断裂。
11、韧脆转变:指金属资料的脆性和韧性是金属资料在不同条件下表现的力学行为或力学状态,在必定条件下,它们是能够相互转变的,这样的转变称为韧脆转变。
二、说明以下力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100% 弹性变形所需的应力。
2、σr、σ、σ s:σ r:表示规定节余伸长应力,试样卸除拉伸力后,其标距部分的节余伸长达到规定的原始标距百分比时的应力。
σ:表示规定节余伸长率为%时的应力。
σs:表征资料的折服点。
3、σ b:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。
4、 n: 应变硬化指数,它反应了金属资料抵挡连续塑性变形的能力,是表征金属资料应变硬化行为的性能指标。
5、δ、δ gt 、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。
材料力学性能知到章节答案智慧树2023年西安工业大学
参考答案:
越宽
35.典型疲劳断口具有3个特征区分别为()。
参考答案:
疲劳裂纹扩展区
;疲劳源
;瞬断区
36.疲劳条带和贝纹线均属于疲劳断口的微观特征形貌。()
参考答案:
错
37.同种材料不同应力状态下,表现出的应力~寿命曲线是不同的,相应的疲劳极限也不相同。一般而言,对称弯曲疲劳极限()对称拉压疲劳极限。
参考答案:
错
26.线弹性断裂力学研究方法之一是应力应变分析方法,与之相对应的是()判据。
参考答案:
K
27.要测量金属材料的断裂韧性(断裂韧度)KIC,中国国家标准中规定了四种试样,下列中不属于这四种试样的是()。
参考答案:
标准四点弯曲试样
28.奥氏体钢的KIC比马氏体钢的高。)
参考答案:
对
29.对于过共析钢而言,如果沿晶界析出二次渗碳体的数量逐渐增多,则该材料的KIC()。
参考答案:
晶粒大小
;金相组织
;加载速度
第四章测试
23.裂纹扩展的基本形式有()。
参考答案:
滑开型
;张开型
;撕开型
24.某材料的KIC=50MPa·m^-1/2,承受1000MPa的拉应力,假设K=1.2σ(πa)^1/2,该试样的临界裂纹尺寸是()。
参考答案:
1.1mm
25.应力场强度因子,综合反映了外加应力和裂纹长度、裂纹形状对裂纹尖端应力场强度影响,是材料本身固有的力学性能。()
参考答案:
错
59.两表面完全分开,形成液体与液体之间的摩擦是流体摩擦。()
参考答案:
材料力学性能-第一章-弹性的不完整性
在弹性范围内快速加载或卸 载后,随时间延长产生附加弹 性应变的现象称为滞弹性。
时间
应力
A
B
O
ea
c d
H
应变
b
图1-7. 滞弹性示意图
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
影响因素 材料成分;组织;实验条件;
材料的组织越不均匀,滞弹性越明显。如钢 淬火或塑性变形后,增加了组织的不均匀性,滞 弹性倾向增大。
如图1-9所示,设Tk和 Tk+1为自由振动相邻振幅 的大小,则循环韧性:
ln
Tk Tk 1
图1-9. 自由振动衰减曲线
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
循环韧性的意义:材料的循环韧性越高,则机 件依靠材料自身的消振能力越好。因此,高的 循环韧性对于降低机械噪声,抑制高速机械振 动,防止共振导致疲劳断裂是非常重要的。飞 机螺旋桨、气轮机叶片需要高δ;而追求音响效 果的元件如音叉、簧片等要低δ;灰铸铁的δ 大,常用来作机床的床身、发动机的缸体和支 架等。
p和t是在试样加载时直接从应力-应 变曲线上测量的,而r则要求卸载测量。由
于卸载法测定比较困难,而且效率低,而 加载中测试半径效率高,而且易于实现测 量的自动化,所以在材料屈服抗力评定中
更趋于采用p和t。而t在测试上比p方便, 所以,在大规模工业生产中,一般采用t的
测定方法提高效率。
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
在仪表和精密机械中,选用重要传 感元件的材料时,需要考虑滞弹性问 题,如长期受载的测力弹簧、薄膜传感 件等,如选用的材料滞弹性比较明显, 会使仪表精度不足甚至无法使用。还有 经过较直的工件放置一段时间以后又会 弯曲,就是由于滞弹性造成的。
材料力学性能01-04
1.弹性模量:E 2.强度:p、e、s、b 3.塑性:k、k
塑性材料在拉伸时的力学性能: 对于没有明显屈 服阶段的塑性材料, 用名义屈服极限Rp0.2来 表示。
R p 0.2
o
0.2%
0
两个塑性指标: l1 l0 A 100% 断面收缩率: Z A0 A1 100% 伸长率: l0 A0
5.压缩性能试验
(MPa)
400
低碳钢压缩应 力应变曲线
E(b)
C(s上) (e) B 200 D(s下) A(p)
f1(f)
低碳钢拉伸应 力应变曲线
g
E=tg O O1 O2 0.1 0.2
b
灰铸铁的 压缩曲线
b
= 45o
剪应力引起 断裂
灰铸铁的 拉伸曲线O引起破坏的有关因素: 1) 塑性材料拉伸: 沿45°滑移线、屈服,
塑性材料和脆性材料力学性能比较:
塑性材料
延伸率
脆性材料
延伸率
δ > 5%
δ < 5%
断裂前有很大塑性变形 抗压能力与抗拉能力相近 可承受冲击载荷,适合于 锻压和冷加工
断裂前变形很小 抗压能力远大于抗拉能力 适合于做基础构件或外壳
材料力学性能
哈尔滨工业大学材料学院 朱景川
第一章 材料静载力学性能试验
表示一定应力状态下材料发生塑性变形的难易程度
3.扭转性能试验 (1)扭转试验方法:GB/T 10128-1988
试样:圆柱或圆管
扭转曲线
(2)扭转应力状态
扭转应力状态特点:
(3)扭转性能指标 T 切 力 应 : W
切 变 应 :
第一章工程材料的力学性能
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW
材料力学性能
材料⼒学性能第⼀章⼀.静载拉伸实验拉伸试样⼀般为光滑圆柱试样或板状试样。
若采⽤光滑圆柱试样,试样⼯作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。
⼆.⼯程应⼒:载荷除以试件的原始截⾯积。
σ=F/A0⼯程应变:伸长量除以原始标距长度。
ε=ΔL/L0低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。
三.低碳钢拉伸⼒学性能1.弹性阶段(Ob)(1)直线段(Oa):线弹性阶段,E=σ/ε(弹性模量,⽐例常数)σp—⽐例极限(2)⾮直线段(ab):⾮线弹性阶段σe—弹性极限2. 屈服阶段(bc)屈服现象:当应⼒超过b点后,应⼒不再增加,但应变继续增加,此现象称为屈服。
σs—屈服强度(下屈服点),屈服强度为重要的强度指标。
3.强化阶段(ce)材料抵抗变形的能⼒⼜继续增加,即随试件继续变形,外⼒也必须增⼤,此现象称为材料强化。
σb—抗拉强度,材料断裂前能承受的最⼤应⼒4.局部变形阶段(颈缩)(ef)试件局部范围横向尺⼨急剧缩⼩,称为颈缩。
四.主要⼒学性能指标弹性极限(σe):弹性极限即指⾦属材料抵抗这⼀限度的外⼒的能⼒屈服强度(σs):抵抗微量塑性变形的应⼒五.铸铁拉伸⼒学性能特点:(1)较低应⼒下被拉断(2)⽆屈服,⽆颈缩(3)延伸率低(4)σb—强度极限(5)抗压不抗拉讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。
实际使⽤时怎么办?塑性材料:σs 、σr0.2脆性材料:σb屈强⽐:σs /σb讨论2:屈强⽐σs /σb有何意义?屈强⽐s / b值越⼤,材料强度的有效利⽤率越⾼,但零件的安全可靠性降低。
六.弹性变形及其实质定义:当外⼒去除后,能恢复到原来形状和尺⼨的变形。
特点:单调、可逆、变形量很⼩(<0.5~1.0%)2E 21a 2e e e e σεσ==七.弹性模量1、物理意义:材料对弹性变形的抗⼒。
材料力学性能
材料⼒学性能第⼀章:绪论⼀、需要掌握的概念材料⼒学性能的定义、弹性变形、线弹性、滞弹性、弹性后效、弹性模量、泊松⽐、弹性⽐功、体弹性模量⼆、需要重点掌握的内容 1、弹性模量的物理本质以及影响弹性模量的因素; 2、掌握根据原⼦间势能函数推倒简单结构材料弹性模量的⽅法; 3、弹性⽐功的计算,已知材料的应⼒应变曲线能求出材料卸载前和卸载后的弹性⽐功。
材料⼒学性能的定义 是指材料(⾦属和⾮⾦属等)及由其所加⼯成的⼯件在外⼒(拉、压、弯曲、扭转、剪切、切削等)作⽤下⾬加⼯、成型、使役、实效等过程中表现出来的性能(弹塑性、强韧性、疲劳、断裂及寿命等)。
这些性能通常受到的环境(湿度、温度、压⼒、⽓氛等)的影响。
强度和塑性和结构材料永恒的主题!弹性变形 是指材料的形状和尺⼨在外⼒去除后完全恢复原样的⾏为。
线弹性 是指材料的应⼒和应变成正⽐例关系。
就是上图中弹性变形⾥前⾯的⼀段直线部分。
杨⽒模量(拉伸模量、弹性模量) 我们刚刚谈到了线弹性,在单轴拉伸的条件下,其斜率就是杨⽒模量(E)。
它是⽤来衡量材料刚度的材料系数(显然杨⽒模量越⼤,那么刚度越⼤)。
杨⽒模量的物理本质 样式模量在给定环境(如温度)和测试条件下(如应变速率)下,晶体材料的杨⽒模量通常是常数。
杨⽒模量是原⼦价键强度的直接反应。
共价键结合的材料杨⽒模量最⾼,分⼦键最低,⾦属居中。
对同⼀晶体,其杨⽒模量可能随着晶体⽅向的不同⽽不同,俗称各向异性。
模量和熔点成正⽐例关系。
影响杨⽒模量的因素内部因素 --- 原⼦半径 过渡⾦属的弹性模量较⼤,并且当d层电⼦数为6时模量最⼤。
外部因素1. 温度:温度升⾼、原⼦间距增⼤,原⼦间的结合⼒减弱。
因此,通常来说,杨⽒模量随着温度的上升⽽下降。
2. 加载速率:⼯程技术中的加载速率⼀般不会影响⾦属的弹性模量。
3. 冷变形:冷变形通常会稍稍降低⾦属的弹性模量,如钢在冷变形之后,其表观样式模量会下降4% - 6%。
泊松⽐简单来说,泊松⽐就是单轴拉伸或压缩时材料横向应变和轴向应变⽐值的负数。
1材料的力学性能(答案)
第一章材料的力学性能一、选择题1、fsd表示( B )A、钢筋抗压强度设计值;B、钢筋抗拉强度设计值;C、钢筋抗拉强度标准值2、C30混凝土中的“ 30”表示(A )A、混凝土的立方体抗压强度标准值fcu,k 30MP a .?B、混凝土的轴心抗压强度标准值fck 30MP a .?C、混凝土的轴心抗拉强度标准值ftk 30MP a3、混凝土的强度等级以(A )表示A、混凝土的立方体抗压强度标准值fcu,k;B、混凝土的轴心抗压强度标准值fck;C、混凝土的轴心抗拉强度标准值ftk4、测定混凝土的立方体抗压强度标准值fcu ,k,采用的标准试件为( A )A、150mm 150mm 150mm ;B、450mm 150mm 150mm ;450mm 450mm 450mmC、5、测定混凝土的轴心抗压强度时,试件涂油和不涂油相比,( B ) 的测定值大。
A、涂油;B不涂油;C、一样大6、钢筋混凝土构件的混凝土的强度等级不应低于( A ) 。
A、C20;B、C25;C、C307、钢筋混凝土构件中的最大的粘结力出现在( A ) 。
A、离端头较近处;B、靠近钢筋尾部;C、钢筋的中间的部位8、预应力混凝土构件所采用的混凝土的强度等级不应低于( C) 。
A、C20;B、C30;C、C40二、问答题1、检验钢筋的质量主要有哪几项指标?答:对软钢有屈服强度、极限强度、伸长率、冷弯性能。
对硬钢有极限强度、伸长率、冷弯性能。
2、什么是钢筋的屈强比?它反映了什么问题?答:屈强比为钢筋的屈服强度与极限强度的比值。
它反映结构可靠性的潜力及材料的利用率。
3、如何确定混凝土的立方体抗压强度标准值?它与试块尺寸的关系如何?答:按标准方法制作、养护的边长为150mm勺立方体在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。
试件尺寸越小,抗压强度值越高。
4、为什么要有混凝土棱柱体抗压强度这个力学指标?它与混凝土立方体抗压强度有什么关系?答:钢筋混凝土受压构件中棱柱体多于立方体,所以棱柱体抗压强度比立方体抗压强度能更好地反映受压构件中混凝土的实际强度。
工程材料学-材料的力学性能培训课件
1. 布氏硬度( Brinell-hardness )
布氏硬度计
用于测定硬度不高的 金属材料。主要有铸 铁、有色金属、低合 金结构钢、结构调质 钢等。
1. 布氏硬度( Brinell-hardness )
测定原理:
用一定大小的载荷P,把直 径为D的淬火钢球压入被测金 属的表面,保持一定的时间后 卸除载荷,用金属压痕的表面 积,除载荷所得的商值即为布 氏硬度值。
比强度 30~37 23~36 90~111
3. 塑性指标:
塑性变形: 不可恢复的永久变形。塑性是表征材料断
裂前具有塑性变形的能力。
断后伸长率δ(δ5、δ10):
断后试样标距伸长量与原始标距之比的百分率,
即: LK L0 100%
L0
δ < 2 ~ 5% 属脆性材科
δ≈ 5 ~ 10% 属韧性材料
1.2.1 拉伸试验
3.均匀塑形变形阶段(曲线de段)
在此阶段中,试样的一部分产生塑性变形,虽 然这一部分截面减小,使此处承受负荷能力下 降。但由于变形强化的作用而阻止塑性变形在 此处继续发展,使变形推移到试样的其它部位。 这样、变形和强化交替进行,就使试样各部位 产生了宏观上均匀的塑性变形。曲线上的d点是 屈服阶段结束点也是加工硬化开始点。
1.2.1 拉伸试验
1.弹性变形阶段(曲线ob段)
在弹性变形阶段内的oa段,试样的伸长与外力 成正比例直线关系,即每增加一定外力,就对 应一定的伸长量,因此,oa段也称为线弹性变 形阶段。一旦外力超过曲线上的a点时,正比例 关系就破坏了。而该点对应的外力Fp称为比例 变形的极限外力。ab段为弹性变形的非线性阶 段,此阶段很短,一般不容易观察到。
1. 弹性指标:
结构设计原理-第一章-材料的力学性能-习题及答案
结构设计原理-第一章-材料的力学性能-习题及答案第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为_______________和____________ 。
2、对无明显屈服点的钢筋,通常取相当于残余应变为_______ 时的应力作为假定的屈服点,即______________ o3、碳素钢可分为______ 、_______ 和_______ 。
随着含碳量的增加,钢筋的强度_______ 、塑性。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为____________ 。
4、钢筋混凝土结构对钢筋性能的要求主要是_______ 、_________ 、5、钢筋和混凝土是不同的材料,两者能够共同工作是因为6光面钢筋的粘结力由__________ 、 _________ 、________ 三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越___________ 、直径越_____ 、混凝土强度越________ ,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括_______ 和__________ 两部分。
____________ 部分越大,表明变形能力越________ ,_________ 越好。
9、混凝土的延性随强度等级的提高而_______ 。
同一强度等级的混凝土,随着加荷速度的减小,延性有所__________ ,最大压应力值随加荷速度的减小而________ 。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力________ ,钢筋的应力______ 。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力________ ,钢筋的应力________ 。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力__________ ,钢筋的应力________ 。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
第一章 材料的力学性能
第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。
材料力学性能(第一章)
第一章 金属在单向静拉伸载荷下的力学性能 弹性变形及其物理本质
外力引起原子间距的变化,即位移,在宏观上即弹性变形。 外力引起原子间距的变化,即位移,在宏观上即弹性变形。 弹性性能与特征是原子间结合力的宏观表现, 弹性性能与特征是原子间结合力的宏观表现,本质上决定于晶体的电子结 构,而不依赖于其显微组织。 而不依赖于其显微组织。 引 力
单向受力时, 单向受力时,
εx =
1 σx E
εy = 由此可见 , 即使在单轴加 载条件下, 载条件下 , 材料不仅有受拉方 向上的伸长变形, 还有垂直于 向上的伸长变形 , 还有 垂直于 受拉方向的横向收缩变形。 受拉方向的横向收缩变形。
第一章 金属在单向静拉伸载荷下的力学性能 弹性模量
第一章 金属在单向静拉伸载荷下的力学性能
对于不连续屈服的材料,如低碳钢, 对于不连续屈服的材料,如低碳钢,则存在上屈服点和 下屈服点,一般以下屈服点作为材料的屈服强度。 下屈服点,一般以下屈服点作为材料的屈服强度。
σ ys =
py A0
--材料的极限承受能力 抗拉强度 --材料的极限承受能力
σ b = Pb / A0
材料的概念
材料的定义: 材料的定义
肖纪美先生的观点:材料是人类社会能接受的, 肖纪美先生的观点:材料是人类社会能接受的, 经济地制造有用器件的物质。 经济地制造有用器件的物质。
材料的性能
1、 使用性能:物理性能(光、电、磁……) 、 使用性能:物理性能( ) 力学性能 (强度、塑性、硬度……) 强度、塑性、硬度 ) 2、 加工性能 (可制造性) 、 可制造性) 热加工:铸、锻、焊、热处理…… 热加工: 热处理 冷加工: 冷加工:车、铣、磨…… 特种加工:电火花、激光、离子 特种加工:电火花、激光、离子……
《材料力学性能》课程习题集
《材料力学性能》课程习题集材料力学性能第一章习题1.解释下列名词:(1)弹性比功;(2)包申格效应;(3)解理面;(4)塑性、脆性和韧性;(5)解理台阶;(6)河流花样;(7)穿晶断裂和沿晶断裂。
2.常用的标准试样有5倍试样和10倍试样,其延伸率分别用σ5和σ10表示,说明为什么σ5>σ10。
3.某汽车弹簧,在未装满载时已变形到最大位置,缺载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
4、金属的弹性模量主要取决于什么为什么说它是一个对结构不敏感的力学性能5、今有45、40Cr、35CrMo钢和灰铸铁几种材料,你选择那种材料作为机床机身?为什么?6、什么是包辛格效应,如何解释,它有什么实际意义7、产生颈缩的应力条件是什么要抑制颈缩的发生有哪些方法8、为什么材料的塑性要以延伸率这两个指标来度量它们在工程上各有什么实际意义9、试用位错理论解释:粗晶粒不仅屈服强度低,断裂塑性也低;而细晶粒不仅使材料的屈服强度提高,断裂塑性也提高。
10、延性断口有几部分组成?其形成过程如何?11、板材宏观脆性断口的主要特征是什么?如何根据断口特征寻找断裂源?12、简述延性断裂过程中基体和第二相的作用,其形态对材料韧性水平有何关系。
13、由Hall-Petch关系式和解理断裂表达式讨论晶粒尺寸细化在强韧化中的作用。
14、为什么材料发生脆断要先有局部的塑性变形试从理论上给予解释,并从试验上举出一两个实验结果证明上述的论点是正确的。
n15.试证明对可用Hollmon关系S=Kε描述其真应力-真应变关系的材料,其条件抗拉强n度σb=Ke式中e=2.71816.一直径为2.5mm,长为200mm的杆,在载荷2000N作用下,直径缩小为2.2mm,试计算:(1)杆的最终长度;(2)在该载荷作用下的真应力S与真应变εe;(3)在该载荷作用下的条件应力σ与条件应变δ。
材料力学性能
材料力学性能复习第一章:1、最基本力学性能指标:屈服强度,抗拉强度,断后伸长率,断面收缩率弹性变形阶段的力学性能3其中,为弹性阶段,为屈服阶段,为强化阶段,为局部变形阶段●拉伸应力-应变曲线金属材料拉伸曲线四阶段---弹性变形屈服塑性变形断裂2、退火低碳钢在拉伸力作用下的变形过程可分为:弹性变形、不均匀屈服塑性变形、均匀塑性变形和不均匀集中塑性变形和断裂。
3、弹性变形:材料在外力作用下产生变形,当外力取消后,能完全恢复原来形状的变形称为弹性变形。
4、胡克定律:P3在应力低于比例极限的情况下,固体中的应力ζ与应变ε成正比,即ζ=Εε,式中E为常数,称为弹性模量。
在正应力下ζ=Εε在切应力下(手写输入):5、弹性模量(数)材料在弹性变形阶段内,正应力和对应的正应变的比值,6、弹性模量的特点表征金属材料对弹性变形的抗力,其值越大,则在相同应力下产生的弹性变形就越小。
7、原子间作用力决定于金属原子本性和晶格类型,故弹性模量也主要决定于金属原子本性和晶格类型。
8、比例极限:拉伸曲线中OE段,材料在不偏离应力与应变正比关系(胡克定律)条件下所能承受的最大应力9、弹性极限:材料做拉伸实验时,应力与应变将呈现一函数关系,而当应力达到某一值,材料将不会自行恢复原状,此一应力值,称为弹性极限10、弹性比功:弹性比功又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力,一般可用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
其与弹性极限和最大弹性应变的关系如下:a=ζε/2=ζ*ζ/2E a——弹性比功;ζ——弹性极限;ε——最大弹性应变。
可见金属材料的弹性极限取决于其弹性模量和弹性极限。
由于弹性模量是组织不敏感性能,因此,对于一般金属材料,只有提高弹性极限的方法才能提高弹性比功。
11、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
12、包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
庞大的侧苯基;丁腈橡胶有极性较强的侧氰基,因
而它们的链段运动时内摩擦阻力较大。
内耗较大的橡胶,吸收冲击能量较大,回弹性
就 较差 。
18
第三节
内 耗 与 温 度 有 关
非理想弹性与内耗
内耗峰
高聚物的变形和内耗与温度的关系
19
第三节
内 耗 与 振 动 频 率 有 关
非理想弹性与内耗
高 弹 性 区
黏弹区
进行的切变过程。 思考:何为滑移系?哪些面可做滑移面 ?fcc,bcc, hcp的滑移系有几个?室温与高温下有何区别? 滑移系的多少与金属的塑性好坏有何关系?
0 0 sin
常用力学损耗角正切tanδ来表示内耗的大小。
16
第三节
非理想弹性与内耗
测量δ角比较复杂,通常采用振动试样自由 振动振幅衰减的自然对数值 来表示内耗 的大小
Tk ln Tk 1
Tk和Tk+1表示自由振动
相邻振幅的大小。
17
第三节
非理想弹性与内耗
对于高聚物而言,内耗的大小与本身的结构有关。 顺丁橡胶内耗较小,因为它的分子链上没有取代基 团,链段运动的内摩擦阻力较小; 丁苯橡胶和丁腈橡胶的内耗比较大,因为丁苯胶有
26
第四节 塑性变形及其性能指标
材料的塑性变形是微观结构的相邻部分产生 永久性位移,并不引起材料破裂的现象。材 料的种类和性质不同,其塑性变形机理也不 相同。
27
第四节 塑性变形及其性能指标
一、塑性变形的机理
1 金属材料的塑性变形
金属常见的塑性变形机理为——滑移+孪生
滑移是在切应力作用下,沿着滑移面和滑移方向
刚 性 区
高聚物的内耗与频率的关系
20
第三节
非理想弹性与内耗
工程应用:
音叉在真空中做弹性振动,但是由于内耗的
作用,振幅逐渐衰减,最后停止(乐器的制 作) 。利用材料的内耗性高,消振性好,有 利于防止共振导致疲劳断裂(机床床身材料 的选择) 。
21
第三节
非理想弹性与内耗
五、包申格效应
产生了少量塑性变形的材料(残余应变<4%),再 同向加载则弹性极限(屈服强度)升高;反向加载 则弹性极限(屈服强度)降低的现象。
一、滞弹性(弹性后效)
特点:在弹性应力范围内,与所加应力 对应一个初始应变,在保持应力时,产 生附加应变。 应力加载条件:瞬间加载或卸载
主要影响因素:材料成分、组织的均匀
性、温度、应力状态。
4
第三节
非理想弹性与内耗
滞弹性有利之处: 消振性,例如:铸铁作为机床支座; 1Cr13钢做汽轮机叶片。 不利之处: 精密仪表中的弹簧,油压表,气压表中的 测力弹簧要求灵敏地反应指针数的变化, 不允许有滞弹性。
应力与时间的关系
7
第三节
非理想弹性与内耗
蠕变变形
恒应力下的蠕变 加载一恒定弹性范围的 应力后,有一初始应变
值,但应力保持不变,
应变缓慢增加到某一恒
定值,如图b。
应变与时间的关系
8
第三节
非理想弹性与内耗
1
1
0
2
2
t
滞弹性
粘弹性
9
第三节
非理想弹性与内耗
三、伪弹性
伪弹性是指在一定温度下,当应力达 到一定水平后,金属或合金将产生应 力诱发马氏体相变,伴随应力诱发马 氏体相变产生大幅度(~60%)弹性 变形现象。大大超过正常弹性变形。 应用:形状记忆合金。
10
第三节
非理想弹性与内耗
伪弹性示意图
11
第三节
非理想弹性与内耗
四、内耗
理想弹性行为, 循环变形过程没 有能量损失
0 ε
12
第三节
非理想弹性与内耗
加载和卸载时 的应力应变曲 线不重合形成 一封闭回线 ----- 弹性滞后环
13
第三节
非理想弹性与内耗
弹性滞后环说明加载时材料吸收的 变形功(能)大于卸载时材料释放 的变形功,有一部分变形功被材料 吸收,称为内耗(又叫消振性), 用回线的面积大小度量。
14
第三节
非理想弹性与内耗
内耗的计算:
(t ) 0 sin t (t ) 0 sin(t )
循环应力-应变与时间的关系
15
第三节
非理想弹性与内耗
W (t )d (t ) 0 0
2 / 0
sin t cos(t )dt
第三节
非理想弹性与内耗
理想弹性(完全弹性)— 应力和应变服
从胡克定律,满足:
1 应力对于应变的响应是线性的; 2 应力和应变同相位; 3 应变是应力的单值函数。
1
第三节
非理想弹性与内耗
非理想弹性(弹性不完整性) 应力-应变非线性响应、不同位相、应变非
应力的单值函数。
包括滞弹性;粘弹性;伪弹性;包申格效应
等几种类型。
实际上绝大部分固体材料都表现出非理想弹
性性质,工程中的材料按理想弹性处理只是一种
近似处理。
2
第三节
非理想弹性与内耗
一、滞弹性(弹性后效) 材料在快速加载或卸 载后,随时间的延长 而产生附加弹性应变 的性能。其应力-应 变曲线与时间的关系 如图所示。
滞弹性示意图
3
பைடு நூலகம் 第三节
非理想弹性与内耗
24
第三节
非理想弹性与内耗
包申格效应与金属材料中位错运动所受的阻力变化 有关。因为经过正向变形后,晶内位错最后总是停 留在障碍密度较高处,一旦有反向变形,则位错很 容易克服曾经扫过的障碍密度较低处。
林位错对位错运动的影响
25
第三节
非理想弹性与内耗
消除包申格效应的方法:预先进行较大的 塑性变形,或在第二次受力前先使金属材 料于回复或再结晶温度下退火,如钢在 400~500℃,铜合金在250~270℃退火。
5
第三节
非理想弹性与内耗
二、粘弹性
定义:粘弹性是指材料在外力作用下,
弹性和粘性两种变形机理同时存在的力学
行为。(针对高分子材料)
特征:应变对应力的效应不是瞬时完
成的,有一个弛豫过程,但卸载后,应变
恢复到初始值。
6
第三节
非理想弹性与内耗
应力松弛
应力与应变的关系与时间 有关,可分为: 恒应变下的应力松弛 加载一恒定弹性范围的应 变后,有一初始应力值, 但应变保持不变,应力缓 慢下降到某一恒定值,如 图 a。
240
1
2´
301
85
4 ε
0 2
178
退火轧制黄铜
287
3
22
第三节
非理想弹性与内耗
包申格应变是度量
包申格效应的定量
指标。它是指在给 定应力下,拉伸卸 载后第二次再拉伸 与拉伸卸载后再压
缩两曲线之间的应
变差。
23
第三节
非理想弹性与内耗
工程意义: 不利:经拉伸变形成型的构件要考虑其承受 压缩载荷的能力,以免使微量塑性变形抗力 下降造成危害。特别是承受应变疲劳载荷作 用的机件,呈现循环软化现象。 有利:如薄板反向弯曲成型,拉拔的钢棒经 辊压校直等。