19.1.1变量与函数(第一课时)(优质公开课)
19.1.1 变量与函数 教案1
第19章《19.1.1变量与函数》第一课时[活动一]活动内容设计:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x 张,票房收入y元.•怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.教师活动:引导学生通过合理、正确的思维方法探索出变化规律.学生活动:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.活动结论:1.早场电影票房收入:150×10=1500(元)日场电影票房收入:205×10=2050(元)晚场电影票房收入:310×10=3100(元)关系式:y=10x2.挂1kg重物时弹簧长度:1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm)挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10[师]通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,•弹簧长度L都是变量.而票价10元,弹簧原长10 cm……都是常量.Ⅲ.随堂练习1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h•变化关系式,并指出其中常量与变量.Ⅳ.课时小结本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.1.确定事物变化中的变量与常量.第19章《19.1.1变量与函数》第二课时教学准备ppt教学过程设计(含各环节中的教师活动和学生活动以及设计意图)教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课[师]我们首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.[生]活动一两个问题都有两个变量.问题(1)中,•经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;•日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10时,则L=15,当m=20时,则L=20.[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为r=S.问题(2)中,我们可以根据题意,每确定一个矩形的一边长,•即可得出另一边长,再计算出矩形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,•年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与yx 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.这两个键,且每个x•的值2.从表中两行数据中不难看出第三、四按键是1都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1[师]通过以后活动,我们对函数意义认识更深刻了,并完善掌握了函数关系式确定的方法.为了进一步学好函数,我们再来完成一个问题.[活动二]活动内容设计:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?设计意图:通过这一活动,加深函数意义理解,熟练掌握函数关系式确立的办法.学会确定自变量的取值范围,并能通过关系式解决一些简单问题.教师活动:注意学生在活动中对函数意义的认识水平,引导其总结归纳自变量取值范围的方法.学生活动:通过活动,感知体会函数意义,学会确立函数关系式及自变量取值范围,并能掌握其一般方法.活动过程及结果:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,。
《变量与函数》一次函数PPT优质课件(第1课时)
矩形的周长10m与它的边长x,y之间的关系式是————————; 其中变化的量是—————;不变化的量是————————.
2(x+y)=10
x,y
10
数值发生变化的量
B
链接中考
1.某人持续以a米/分的速度用t分钟时间跑了s米,其中常量是 ,变量是 .
2.s米的路程,不同的人以不同的速度a米/分各需跑的时间为t分,其中常量是 ,变量是 .
3.根据上面的叙述,写出一句关于常量与变量的结论: .
19.1 函数19.1.1 变量与函数第1课时
人教版 数学 八年级 下册
- .
行星在宇宙中的位置随时间而变化
万物皆变
气温随海拔而变化
汽车行驶里程随行驶时间而变化
像这样在某一个过程中,有些量固定不变,有些量不断改变.为了更深刻地认识和了解这些变化现象中所隐含的变化规律,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.
关系式中常量与变量的识别
指出下列关系式中的变量与常量:
(1) y = 5x -6;
(2) ;
(3) y= 4x2+5x-7;
(4) C = 2πr.
解:(1)5和-6是常量,x和y是变量.
(2)6是常量,x、y是变量.
(3)4、5、-7是常量,x、y是变量.
(4)2,π是常量,C、r是变量.
某人要在规定的时间内加工100个零件,则工作量W与时间t之间的关系中,下列说法正确的是( )A. 数100和W,t都是变量B. 数100和W都是常量C. W和t是变量D. 数100和t都是常量,
【公开课】19.1.1变量与函数(第一课时)公开课教案
公开课教案
第 7 周星期五第 5 节 20 年 4 月 8 日执教:授课班级:初二五班
2.如图,已知菱形ABCD 的对角线AC 长为4,BD 的长在变化,设BD 的长为x,则菱形的面积为y=21×4×x
3.国内平信邮资(外埠,100克内)简表:
信件质量m/克 O<m ≤20 20<m ≤40 40<m ≤60 邮资y/元
O.80
1.60
2.40
注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法。
五、总结归纳 1.常量与变量的概念 2.函数的定义 3.函数的三种表示方式
注:通过总结归纳,完善学生已有的知识结构。
六、布置作业
P.81习题1 P71,练习
教学反思 学生通过本课的学习品尝到成功的体验和乐趣。
课堂气氛活跃,学生的参与度高,
教学效果显著。
19.1.1变量与函数.1.1常量与变量ppt公开课课件
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
2021年人教版八年级数学下册第十九章《19.1.1 变量与函数(1)》公开课课件.ppt
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/92021/1/9Saturday, January 09, 2021
• 10、人的志向通常和他们的能力成正比例。2021/1/92021/1/92021/1/91/9/2021 3:34:30 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/92021/1/92021/1/9Jan-219-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/92021/1/92021/1/9Saturday, January 09, 2021 • 13、志不立,天下无可成之事。2021/1/92021/1/92021/1/92021/1/91/9/2021
在实际问题中,函数的自变量取值范围往往是有限 制的,在限制的范围内,函数才有实际意义;超出这个 范围,函数没有实际意义,我们把这种自变量可以取的 数值范围叫函数的自变量取值范围.
练一练
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗?
(1)等腰三角形的面积为12,底边长为 x,底边上 的高为 y,y 随着 x 的变化而变化;
时间t/s 0 10 20 30 油温w/℃ 10 25 40 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
变量与函数(第一课时)(优质公开课)
练一练:下列问题中的变量y是不是x的函数 ?
(1) y = 2x是Βιβλιοθήκη (2) y+2x=3
是
(3) y= x (x≥0)
是
(4) y=x2
是
(5) y2=x
不是
(6) y x
是
(7) y x
不是
(8) y=±x+5
不是
(9) y=x2+3z
不是
1、在下列关系中,y不是x的函数的是( B)
A. y x 0
瓶子或罐头盒等物体常如下图那样 堆放,试确定瓶子总数y与层数x之间函数 的关系式.
x12 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
瓶子总数y 与层数x之间的关系式:
y 1 x( x 1) 2
本节课学到哪些知识?
变量与函数
(1)在一个变化过程 中
数值不发生变化的量 常量 数值发生变化的量 变量
所以汽车行驶200km时,油箱中还有油30L.
1、这些是否是函数?请说明理由.
练
① | y |= x+1,
一
② y= x2+4x+12 ③ y2 = x
练
2、三角形的周长是 y cm ,三边分别为 9cm、11cm、xcm.
(1)求y与x的函数关系式; (2)求自变量x的取值范围.
瓶子或罐头盒等物体常如下图那样 堆放,试确定瓶子总数y与层数x之间的关 系式.
解: y =23 -0.007x
变量是 x 、y
常量是 23、0.007
例:指出下面各个问题中,哪些量是 变量,哪些量是常量?
(1)如果直角三角形中一锐角的度数
初中数学人教版《变量与函数》优质公开课1
(1)请写出弹簧的总长y(cm)与所挂物体的质量x(kg)之间的函数关系式; (2)当所挂物体的质量是10 kg时,弹簧的总长是多少? 解:(1)y=x+12 (2)当x=10时,y=17,故弹簧的总长是17 cm
17.某学校组织学生到离校6 km的光明科技馆去参观,学生小明因事没能
乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的
17.某学校组织学生到离校6 km的光明科技馆去参观,学生小明因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下表:
A.s=120-30t(0≤t≤4)
13.小亮利用计算机设计了计算程序,输入和输出的数据如下:
那么当输入的数据是 8 时,输出的数据是( C )
A.681
18.木材加工厂堆放木料的方式按如图所示堆放,随着层数的增加,物体
总数也会变化. (1)根据变化规律填写下表: (2)求出y与n的函数关系式;
层数n 物体总数y
1234… …
(3)当物体堆放的层数为10时,物体总数为多少?
解:(1)1,3,6,10 (2)y=n(n2+1) (3)55
合作探究
新知 函数的概念
1.函数 一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值 与其对应,那么我们就说x是自变量,y是x的函数.
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
③看每当变量确定一个值时,另外一个变量是否都有唯一
B.683
C.685
D.687
输入 1
2
3
4
5
…
输出
人教版初中数学八年级下册《19.1变量与函数》第一课时公开课教学课件
时间t
请思考:
时间t
自变量
气温y
因变量
y t t 变量
随着
的变化而变化。当给定变量 的一个
y 值时,就可以相应地得到变量
的一个唯一确定 的值。
归纳总结
问题1: s = 300t
问题2:
时间t/min 0 1 2 3 4 5 630 1860 1890 1920 1950 1980 2010 …
} 求出的值唯一确定吗? 原始高度1800m
h=1800+30t 速度30m/min
常量
自变量 因变量
} 时间t
高度h
变量
h t t 变量 随着 的变化而变化。当给定变量 的一个
h 值时,就可以相应地得到变量
的一个唯一确定 的值。
问题3: 下图是芜湖市今年5月9日的整点天气预报:
气温y
时间t
请思考:
我们把t叫做自变量,s叫做因变量。
问题2: 如图,用热气球探测高空气象
当t = 0min, h为1800m
当t =1min, h为1830m
当t =2min, h为1860m
当t =3min, h为1890m
设热气球从海拔1800m处的某地升空,在一段时间内,它 匀速上升,它上升过程中到达的海拔高度h m与上升时间t min 的关系记录如下表:
速度v
} 时间t
路程s
没有变化的量 变化的量
常量 变量
3. 在这个变化过程中,有几个变量?
4. 随着时间t的变化,路程s有变化吗? 5. 当时间t取定一个值比如t=2时,对应路程s的值是多少?
是唯一确定的吗?
s t t 变量 随着 的变化而变化。当给定变量 的一 s 个值时,就可以相应地得到变量 的一个唯一确定 的值
最新人教版初中数学八年级下册19.1.1《变量与函数》优质课教案
《19.1.1变量与函数》本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律. 1.了解变量与常量的意义;2.体会运动变化过程中的数量变化.3.进一步体会运动变化过程中的数量变化;4.从典型实例中抽象概括出函数的概念,了解函数的概念.5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;6.能确定简单实际问题中函数的自变量取值范围;7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.1. 了解变量与常量的意义,充分体会运动变化过程中量的变化.2. 概括并理解函数概念中的对应关系.3. 用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围. 多媒体:PPT 课件、电子白板第一课时一、初步感知统领全章:1.观察图片,体会变化:【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,云图随时间变化而变化,汽车行驶的路程随时间变化而变化……在你的周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在.为了研究这些运动变化现象中变量间的依赖关系,数学中逐渐形成了函数概念.人们通过研究函数及其性质,更深入地认识现实世界中许多运动变化的规律.本章中,我们将从初步认识变量和函数开始,重点学习一类最基本的函数——一次函数.2.如图,小球在斜坡上滚动,请观察这一运动变化过程,你注意到了什么变化?变化的量有哪些?不变的量有哪些?变换的量:小球在斜坡上滚动的路程s;小球离起点的水平距离x;小球离水平面的高度y;小球滚动的时间t.不变的量:斜坡的高度,斜坡的长度,斜坡的水平长度等.二、细心体会感受新知:1.先请思考下面几个问题:(1)汽车以60km/h的速度匀速行驶,行驶的时间是t h,行驶的路程为s km,填写下表,s的值随t的值得变化而变化吗?(2)每张电影票的售价为10 元,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元?设一场电影售出x 张票,票房收入为y 元,y的值随x的值的变化而变化吗?(3)你见过水中涟漪吗?如图,圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的变化而变化吗?(4)用10 m长的用10 m长的绳子围一个矩形,当矩形的一边长 x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分别为多少?y的值随x的值的变化而变化吗?2.变量和常量:这些问题反映了不同事物的变化过程,其中有些量的数值是变化的,有些量的数值是始终不变的.变量:在一个变化过程中,数值发生变化的量为变量;常量:在一个变化过程中,数值始终不变的量为常量.三、运用新知解决问题1.练习:指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/升,加油x L,车主加油付油费y 元;(2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数为n;(3)用长为40 cm 的绳子围矩形,围成的矩形一边长为x cm,其面积为S cm2.解:(1)常量为汽油的价格7.4,变量为加油量L和油费y;(2)常量为这本书的总页数200,变量为平均每天所看的页数n和阅读天数t;(3)常量为矩形的周长40,变量为矩形的一边长x和面积S.2. 你能举出一个变化过程的例子,并说出其中的变量和常量吗?试一试!想一想:你能确定下列变化过程中的变量吗?(1)小敏长高了;(2)在汤中加水,汤变淡了;(3)小狗越来越可爱了.四、巩固训练形成能力:1. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中变量是( )A.物体B.速度C.时间和速度D.重量和空气2.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是常量3.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=12ah,当a为定长时,在此式中()A.S,h是变量,12,a是常量B.S,h,a是变量,12,是常量C.S,h是变量,12,S是常量D.S是变量,12,a,h是常量4. 用20 cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系式是___,其中常量是___,变量是____.5.地壳的厚度约为8~40千米.地表以下不太深的地方,温度可按y=35x+t 计算,其中x(千米)是深度, t(℃)是地球表面温度,y(℃)是地表下x千米处的温度.(1)在这个关系式中,哪些量是变量,哪些量是常量?(2)若地球的表面温度是t=35℃, 当x=30千米时,求y的值.五、课堂小结:(1)什么叫变量?什么叫常量?(2)举一个运动变化的例子并指出其变量和常量.(3)你认为变化过程中的变量之间会有联系吗?第二课时一、观察思考分析变化:问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系?(1)汽车以60km/h 的速度匀速行驶,行驶的时间为th,行驶的路程为skm;(2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ;(4)用10m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y.[活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同.建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系.【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应.二、观察思考再次概括:问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系.(1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数 y 吗?(2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗?问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义:一般地,在一个变化过程中,如果有两个变量 x 与y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值.三、初步应用巩固知识:练习1 下列问题中,一个变量是否是另一个变量的函数?请说明理由.(1)向一水池每分钟注水0.1m3,注水量 y(单位:m3)随注水时间 x(单位:min)的变化而变化;(2)改变正方形的边长 x,正方形的面积 S 随之变化;(3)秀水村的耕地面积是106m2,这个村人均占有耕地面积 y(单位:m2)随这个村人数 n 的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 随 x 的变化而变化.练习2 下面的我国人口数统计表中,人口数y 是年份x 的函数吗?为什么?练习3 下图是一只蚂蚁在竖直的墙面上的爬行图,请问:蚂蚁离地高度 h 是离起点的水平距离 t 的函数吗?为什么?【追问】蚂蚁离起点的水平距离 t 是离地高度 h 的函数吗?为什么?练习4 你能举出一个函数的实例吗?四、课堂小结:第三课时一、问题重现加深认识:1.函数解析式和自变量的取值范围.问题1 回顾函数定义,用含有自变量的式子表示下列函数关系,并确定自变量的取值范围.(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km;(2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ;(4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y.解:(1)s=60t(t>0);(2)y=10x(x≥0且x为整数);(3)S=πr²(r>0);(4)y=5-x(0<x<5).[归纳](1)用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的解析式.(2)在实际问题中,函数的自变量取值范围往往是有限制的,在限制的范围内,函数才有实际意义;超出这个范围,函数没有实际意义,我们把这种自变量可以取的数值范围叫函数的自变量取值范围.练习:求下列函数中自变量x的取值范围:(1)y=3x-1;(2)y=2x2+7;(3)y=1x+2;(4)y=x-2.[解析] 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x取任意实数,3x-1与2x2+7都有意义;而在(3)中,x=-2时,1x+2没有意义;在(4)中,x<2时,x-2没有意义.解:(1)x的取值范围是任意实数;(2)x的取值范围是任意实数;(3)x的取值范围是x≠-2;(4)x的取值范围是x≥2.2.列表法和图像法表示函数问题 2 下面两个例子中,函数关系还能用解析式表示吗?它们分别是用什么形式表示函数关系的?(1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数 y ;(2)如图是北京某天的气温变化图,对于每一个时刻,都有唯一确定的气温与之对应,【归纳】有的函数关系并不能用解析式表示出来,还有两种表示函数关系的方法:列表法和图像法.二、例题探究问题深入:例1 [教材P73例1] 汽车油箱中有汽油50 L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1 L/km.(1)写出表示y与x的函数关系的式子;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油箱中还有多少汽油?解:(1)y与x的函数关系式为y=50-0.1x.(2)因油量y>0,故0.1x≤50,∴自变量x的取值范围是0≤x≤500.(3)把x=200代入y=50-0.1x,得y=50-0.1×200=30.汽车行驶200km时,油箱中还有30L汽油.练习:如图19-1-:搭1条小鱼需要8根火柴,每多搭1条小鱼就要增加6根火柴,随着小鱼条数的增加,火柴的根数也随着增加.搭小鱼所需火柴的根数S、所搭小鱼的条数n,如果是请写出S与n的函数关系式,并写出自变量n的取值范围;如果不是,请说明理由.三、当堂练习:1.下列问题中,一个变量是否是另一个变量的函数?请说明理由.(1)向一水池每分钟注水0.1 m3,注水量y(单位:m3)随注水时间x(单位:min)的变化而变化;(2)改变正方形的边长x,正方形的面积S随之变化;(3)某村的耕地面积是106 m2,这个村人均占有耕地面积y(单位:m2)随这个村人数n的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为x,它的坐标记为y,y随x的变化而变化.2.你能用含自变量的式子表示下列函数,并说出自变量的取值范围吗?(1)等腰三角形的面积为12,底边长为x,底边上的高为y,y随着x的变化而变化;(2)把边长为10 cm的正方形纸板的四个角都截去一个边长为x的小正方形,做成一个无盖的长方体,该长方体的体积V(单位:cm3)随x(单位:cm)的变化而变化.3.下面的我国人口数统计表中,人口数y是年份x的函数吗?为什么?四、课堂小结:略。
19.1.1变量与函数(第一课时)
20
10
O O
2
s r
2
30
O
cm 当圆的半径为10cm时面积= 10 100
2 20 当圆的半径为20cm时面积= 2 当圆的半径为30cm时面积= 30
400 cm 900 cm
2
2
2
圆的面积s随圆的半径r的变化而变化
分别写出下列关系式并指出下列各关系 式中的变量与常量:
2 cm (1)三角形的一边长5cm,它的面积S( )与这
边上的高h(cm)的关系式是
(2)若直角三角形中的一个锐角的度数为 角 y (度)与 x 间的关系式是;
x ,则另一个锐
(3)若某种报纸的单价为 a 元,表示 x 购买这种报纸的 份数,则购买报纸的总价 y (元)与 x 间的关系是
数式表示另一个变量
过程与方法: 经历观察、分析、思考等数学活动过程,发展合情推理,
有条理地阐述自己的观点
情感目标: 在探索的过程中,感知数学即生活,培养学生参
与数学活动的积极性和良好的学习态度。
教学重点、难点 :
重点: 难点:
认识变量和常量,用式子表示变量间关系 用含一个变量的式子表示另一个变量
说 教 法 与 学 法
上述变化过程中出现的量,
s 60t
数值不断 变化的量
y 10x
s圆 r
数值始终 不变的量
2
你认为可以怎样分类?
变量:在一个变化过程中,数值发生变化的量为变量.
常量: 在一个变化过程中,数值始终不变的量为常量.
辨一辨
指出下列变化过程中的变量和常量: (1)某市的自来水价为4元/t,现要抽取若干户居民调查水费支
2021年人教版八年级数学下册第十九章《 19-1-1变量与函数(1)》公开课课件.ppt
。2021年1月9日星期六2021/1/92021/1/92021/1/9
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/92021/1/92021/1/91/9/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/92021/1/9January 9, 2021
•
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/92021/1/92021/1/92021/1/9
谢谢观看
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
60 120 180 240 300 请说明你的道理 路程 = 速度×时间
S = 60t 试用含的 t 式子表示 s
19.1.1 变量与函数
第十九章 一次函数
问题二
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元?
早场票房收入 = 10×150 = 1500 (元) 日场票房收入 = 10×205 = 2050 (元) 晚场票房收入 = 10×310 = 3100 (元) 请说明道理: 票房收入 = 售价×售票张数 若设一场电影售出票 x 张,票房收入为 y 元,
y = 10x 怎样用含 x 的式子表示 y ?
问题三 八年级 数学
第十九章 一次 函数
圆的半径r分别为10cm、20cm、30cm时,圆的面 积s分别为多少?S的值随r的值的变化而变化吗?
圆的面积=兀×半径的平方
?
10cm
10c m2?20cmrs问题四
用10 m 长的绳子围成长方形,长方形的长为 3m时面积为多少? 当长方形的长为3时,面积 =3×(10-2×3)÷2 = 6 各组讨论:改变长方形的长,观察长方形的面积怎样变化? 设长方形的边长为 x m,面积为S m2,怎样用含x的式子表示 s ?
19.1.1变量与函数(1)教学设计【精品教案】
《19.1.1 变量与函数(1)》教学设计一、教学目标知识与技能1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.过程与方法经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.情感、态度与价值观引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.二、教学重难点【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.三、教学过程设计活动一:情境感知,新课导入万物皆变,大到天体、小到分子都处在不停的运动变化之中,如何从数学的角度来刻画这些运动变化并寻找规律呢?数学上常用变量与函数来刻画各种运动变化.【师生活动】学生说出自己的看法.教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.【设计意图】由学生经历的事情提问题,能引起学生的好奇心.活动二:问题探究,新知领悟(一)变量与常量的概念问题1:汽车以60 km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h 1 2 3 4 5s/km【师生活动】学生填表,并思考.教师引导学生交流:1.根据题意填写下表:t/h 1 2 3 4 5s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.4.这是个行程问题,发现:随着时间t的变化,汽车行走的路程S_____________________.【设计意图】挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题2:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?【师生活动】学生分析问题,并同桌交流.教师引导解析.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元; 第二场售出205张票,则第二场电影的票房收入为元; 第三场售出310张票,则第三场电影的票房收入为元. 2.在以上这个过程中,变化的量是_________,不变化的量是______.3.试用含x的式子表示y._______4.这个问题反映了票房收入____随售票张数_____的变化过程.【设计意图】通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10 cm,20 cm,30 cm时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?【师生活动】学生活动填表,并讨论.教师引导学生交流.1.填表:半径r(cm) 10 20 30圆面积S(cm2)2.圆面积S与圆的半径R之间的关系式是;其中变化的量是;不变化的量是.3.这个问题反映了________随______的变化过程.【设计意图】挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题4:用10 m长的绳子围成一个矩形,当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?【师生活动】学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10 m的一半,即5 m.若矩形一边长为3 m,则它的邻边长为5-3=2(m).若矩形一边长为3.5 m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4 m,则它的邻边长为5-4=1(m).若矩形一边长为4.5 m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.【设计意图】在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?【师生活动】学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60 km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.【设计意图】通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.练习1 指出下列问题中的变量和常量:(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为xt,月应交水费为y元.(2)某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为tmin,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.【解答】(1)变量是x,y;常量是4.(2)变量是t,w;常量是0.2, 30.(3)变量是r,C;常量是π.(4)变量是x,y;常量是10.活动三:典例分析,知识理解例1 填空(1)某位教师为学生购买数学辅导书,书的单价是4元,则总金额y (元)与学生数n(个)的关系式是。
19.1.1变量与函数(第1课时)-公开课-优质课(人教版教学设计精品)
19.1.1变量与函数(第1课时)-公开课-优质课(人教版教学设计精品)19.1.1变量与函数(第1课时)一、内容和内容解析1.内容变量与常量概念.2.内容解析函数研究的是变量之间的对应关系,变量是函数概念的基础.变量是在某个变化过程中数值发生变化的量;相对地,在某个变化过程中数值始终不变的量叫常量.变量总是与某个变化过程联系在一起,因此,学习变量与常量,必须要在运动变化过程中进行.变量是为函数概念服务的.从逻辑关系讲,先有变量,再有函数,然后才有函数的表示方法(解析法、列表法和图象法).因此,确定变量与常量是在分析变化过程中进行的,而不是在函数解析式中寻找.函数概念的核心是变化和对应关系,理解函数概念需要有足够的变化过程的体会.综上所述,本课的教学重点:体会运动变化过程,了解变量和常量的含义.二、目标和目标解析1.目标(1)了解变量与常量的意义.(2)体会运动变化过程中的数量变化.2.目标解析(1)了解变量与常量的意义,要求知道变量和常量的特征,能指出具体变化过程中的变量和常量.(2)体会运动变化过程中的数量变化,要求通过考察实例,认识自然界和生活中存在着大量的运动变化现象,认识到研究这些运动变化过程的必要性,知道要用数学方法研究这些变化过程,需要分析变化过程中的数量变化,并在观察的基础上概括变量与常量的概念.三、教学问题诊断分析运动变化现象广泛地存在于自然界和生活实际中,学生具有比较丰富的生活经验.但从数学角度对变化过程进行研究,把一系列变化的数值都看作一个量,这还是第一次,这会给学生带来观念上的冲突.在先前的学习中,学生学习的是单个的数与数之间的关系,而变量本质上涉及一个数集,其中包含了很多数.用运动变化的观点分析变化过程中的数量变化,并结合实例体会变量所涉及的数集的含义,在此基础上概括和认识变量,这是学习的难点.1。
人教版八年级数学下册变量与函数优质教学设计教案
人教版八年级数学下册变量与函数教案2023年4月第十九章一次函数19.1 函数19.1.1 变量与函数课时1 变量与常量教学目标【知识与技能】借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。
初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。
【过程与方法】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。
【情感态度与价值观】从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。
学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。
教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点正方形与矩形、菱形的关系及正方形的性质与判定的灵活运用..教学准备多媒体课件一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。
例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。
再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。
这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。
教学过程:二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。
A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。
19.1.1《变量与函数(1)》【课件】
知识应用
6、指出下列问题中的变量和常量,及它们之间的关系式
(2)瓶子或罐头盒等物体常如下图那样堆放。
层数x 1 2
瓶子总数y 1 3
3…
x
6 … 1+2+3+ …y 1 x( x 1) 2
知识小结
1. 常量和变量的概念 2. 常量与变量不是绝对的,而是对于一个
4、章引言中的一张图表和图象反映了什么量随什么量变化而变化? 分别是用什么方式反映它们的变化规律的?
问题1:在事物的运动变化中,一个量随另一个量的变化而变化的现 象大量存在,请你再举出一个具有这种特征的相关例子加以说明。
行星在宇宙中的位置随时间而变化
问题1:在事物的运动变化中,一个量随另一个量的变化而变化的现 象大量存在,请你再举出一个具有这种特征的相关例子加以说明。
问题引入
4、用10m长绳子围成一个矩形,当矩形的一边长x为3m,3.5m,4m,4.5m 时,它的相邻的边长y分别为 2 、 1.5 、 1 、 0.5 m。
(1)这个过程中,变化的量是_________,不变化
的量是_____ .
(2)试用含x的式子表示y,y= __________.
(3)这个问题反映了矩形的
变量:服装每天的售价x(元/件)和当日的销售量y(件) 当日的销售量y随服装每天的售价x的变化而变化。
知识应用
6、指出下列问题中的变量和常量,及它们之间的关系式 (1)在计算器上按照下面的程序进行操作:
输入x(任意一个数)
按键 × 2 显示y(计算结果)
+ 5=
x 1 3 -4 0 101
y
7
11 -3 5 207
形的一边长x,矩形的邻边长y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瓶子或罐头盒等物体常如下图那样 堆放,试确定瓶子总数y与层数x之间函数 的关系式.
x
y
1
1
2
1+2
3
1+2+3
…
x
1+2+3+ …+x
…
瓶子总数y 与层数x之间的关系式:
1 y x ( x 1) 2
本节课学到哪些知识?
变量与函数
(1)在一个变化过程 中
数值不发生变化的量 常量
数值发生变化的量 变量
函数值等于10.5 ,当x=2时,函数 2 面积S(cm ) y=10+0.5x 的函数值等于 1116 9 21 6
24
应用迁移:
1、填写表格并回答问题:
x
y=x2
1
1
2
4
3
9416源自(1)对于x的每一个值,y都有唯一的值与之对应吗? 是 (2)y是x的函数吗?为什么? 是,因为y的值是唯一的。 2、填写下表并回答问题: x y2=x 1 ±1 4 ±2 9 ±3 16 ±4
(1) 行程问题:s=60t
t是自变量 ,
s是t的函数
你能发现函数 (2) 票房收入问题 : y=10x x 是自变量 , y是x的函数 函数是变量例如y=10+0.5x,y 与函数值有什 是随x的变化而变化的量,y是x 么区别吗? 的函数,函数值是一个变量所 取的某个具体的数值.一个 函数可能有许多不同的函数 9 8 7 长x(cm) 值,例如当x=1时,函数y=10+0.5x的
S=60t
y=10x
l
=0.5m+10
1.每个式子中各有几个变量? 都有两个变量;
S R
2
2.当其中一个变量取定一个值时,另一个变 量的取值是否唯一确定?
其中的一个变量取定一个值,另一个变量 的值也有唯一确定的对应值。
函数概念 一般地,在一个变化过程中,如果有两个变量
(假定为x和y),对于x的每一个确定的值,y都
大千世界万物皆变
行星在宇宙中的位置随时间而变化; 人体细胞的个数随年龄而变化; 气温随海拔而变化; 汽车行驶里程随行驶时间而变化;
……
提出问题,创设情景
一辆汽车以60千米/小时的速度匀速行驶, 行驶里程为S千米,行使时间为t小时. 1.请同学们根据题意填写下表:
t
S
1
60
2
120
3
180
4
240
变量是 x 、y
常量是 23、0.007
例:指出下面各个问题中,哪些量是 变量,哪些量是常量?
(1)如果直角三角形中一锐角的度数
为 ,另一个锐角的度数为 ,试 用含 的式子表示 .
解: = 900 -
变量是 、
常量是 90
变量与函数
再来观察刚才得出的几个关系式:
5
300
2.在以上这个过程中, 变化的量是 里程S千米与时间t时 . 没变化的量是 速度60千米/小时 . 3.试用含t的式子表示S S=60t .
活动一
1. 每张电影票售价为10元,如果 第一场售出票150张,第二场售出 票205张,第三场售出310张. 三场 电影的票房收入各多少元?设一场 电影售票x张,票房收入y元。怎样 用含x的式子表示 y ?
解:
长x米
宽 (5-x) 米 面积 s 米2
4
1 4
3
2 6
2.5
2.5 6.25
. 5-x) S= x (
例: 一个三角形的底边为5,高h可以任意伸缩,三角 5 形的面积也随之发生了变化. h 解:(1)面积s随高h变化的关系式s = , 2 5 h 其中常量是 2 ,变量是 h和s , 是自变 量, s 是 h 的函数; 7.5 (2)当h=3时,面积s=______, 25 ; (3)当h=10时,面积s=______
(1) 第一场电影票收入:150×10=1500元
第二场电影票收入:205×10=2050元 第三场电影票收入:310×10=3100元
(2) 关系式为:y=10x
2.在一根弹簧的下端悬挂重物,改变并记录重 物的质量,观察并记录弹簧长度的变化,探索 它们的变化规律。如果弹簧原长10cm,每1kg 的重物使弹簧伸长0.5cm,怎样用含有重物质 量m的的式子表示受力后弹簧的长度l?
探究:
挂1kg重物时弹簧的长度:1×0.5+10=10.5(cm) 挂2kg重物时弹簧的长度:2×0.5+10=11(cm) 挂3kg重物时弹簧的长度:3×0.5+10=11.5(cm)
结论: 关系式为: l =0.5m+10
3. 小明到商店买练习簿,每本单价2元, 购买的总数 x(本)与总金额 y(元)的 关系式,可以表示为:
(1) y = 2x
(2) y+2x=3
(3) y= x (4) y=x2 (5) y2=x ( 6) y x ( 7) y x (8) y=±x+5 (9) y=x2+3z (x≥0)
是 是
是
是 不是 是
不是 不是 不是
1、在下列关系中,y不是x的函数的是( B )
A. y x 0
1、这些是否是函数?请说明理由. ① | y |= x+1,
② y= x2+4x+12
③ y2 = x 2、三角形的周长是 y cm ,三边分别为 9cm、11cm、xcm. (1)求y与x的函数关系式; (2)求自变量x的取值范围.
练 一 练
瓶子或罐头盒等物体常如下图那样 堆放,试确定瓶子总数y与层数x之间的关 系式.
(2)函数的定义:(包括y值的存在性和唯一性)
一般地,在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与 其对应,那么我们就说x是自变量,y是x的函数。
(3)函数值的定义: 如果当x=a时y=b,那么b叫做当自变量的值为a时的 函数值
注意:此处的 变化中的圆面积S与半径r的大小密切相关,完成下图 r 1 2 3 4 S 2是一种运算
π 4π
9π 16π … πr2
圆面积S与圆的半径r之间的
2 S= πr 关系式是———————————;
… r
π 其中常量是—————————— ;
S, r 变量是—————————— .
活动三
y = 2x
其中y随x的变化而变化
在上述活动中,我们要想寻求事物变化过程 的规律,首先需要确定在这个过程中哪些量是 变化的,而哪些量又是不变的。
定义:
在一个变化过程中,我们称数值发生变化 的量为变量 那些数值始终不变的量称之为常量.
例如: 售出票数x、票房收入y;重物质量m、 弹簧长度l都是变量. 而票价10元,弹簧原长10cm……都是常量.
1.用10cm长的绳子围成矩形,试改变矩形的长、 宽,观察矩形的面积怎样变化,试举出三组长、 宽的值。计算相应矩形的面积的值,然后探索 它们的变化规律:设矩形的长度为xcm,面积 2 为S cm ,怎样用含x的式子表示S?
1
1.用10cm长的绳子围成矩形,试改变矩形的长、 宽,观察矩形的面积怎样变化,试举出三组长、 宽的值。计算相应矩形的面积的值,然后探索 它们的变化规律:设矩形的长度为xcm,面积 2 为S cm ,怎样用含x的式子表示S?
4、下列哪个图中的曲线表示 y 是 x 的函数?
(1)、(2)、(3)
函数概念的辨析
4、下列关于变量x和y的关系式:(1)y=x, (2)2x2-y=0,(3)x=y2,(4)2x-y2=0, B 其中y是x的函数的有( ) A、 1个 B、 2个 C、 3个 D、 4个
例3。一辆汽车的油箱中现有汽油50L,如果不再加油, 那么油箱中的油量y(单位:L)随行驶里程x(单位: km)的增加而减少,平均耗油量为0.1L/km。 (1)写出表示y与x的函数关系的式子; (2)指出自变量x的取值范围; (3)汽车行驶200km时,油箱中还有多少汽油? (1)y=50-0.1x; (2)从里程x考虑,里程x不能为负数 ∴x≥0 从油箱里的油量y考虑,油量y不小于0不能超过50 0≤y≤50 即0≤ 50-0.1x ≤50 ∴0≤x≤500 ∴自变量x的取值范围是0≤x≤500 (3)当x=200时,y=50-0.1×200=30 所以汽车行驶200km时,油箱中还有油30L.
1、一辆汽车以40千米/小时的速度行驶, 写出行驶路程s(千米)与行驶时间t(时) 的关系式。 变量 t
S = 40t
S 40
变量 常量
2、一辆汽车要行驶50千米的路程,写出行 驶速度v(千米/小时)与行驶时间t(小时) 之间的关系式 t 变量
50 V= t
V 50
变量 常量
活动二
下面问题中变化的量和不变的量: (3)圆形水波慢慢地扩大,在这一过程中,当圆的 半径r 分别为1 cm,2 cm,3 cm 时,圆的面积S 分别 为多少?在这个过程中,哪些量是变化的?
日常生活和自然界中函数的事例很多,你能举一个吗?
二、指出下面各个问题中,哪些量是 变量,哪些量是常量? 购买这种报纸的份数, y(元)表示买报纸
(2)如果某种报纸的单价为 a 元,x 表示 的式子表示 x
的总价,试用含
解:
y ax
x、y
y .
变量是
常量是
a
随堂练习
1.若球体体积为V,半径为R,则V=
V R 其中变量是 、 ,常量是
4 33 R 3
3
4 . 3
2.汽车开始行使时油箱内有油40升,如果每 小时耗油5升,则油箱内余油量Q升与行使 时间t小时的关系是 Q=40-5t . 并指出 其中的常量是40、5 ,变量是 Q、t