幂函数的图像和性质
幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法
![幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法](https://img.taocdn.com/s3/m/c601c6750166f5335a8102d276a20029bc646362.png)
幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。
幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。
幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。
幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。
②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。
2.3 幂函数图像与性质
![2.3 幂函数图像与性质](https://img.taocdn.com/s3/m/80a551b10508763231121294.png)
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6
意
2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2
幂函数图像和性质
![幂函数图像和性质](https://img.taocdn.com/s3/m/91488f53cf84b9d528ea7a6d.png)
x0
减减
奇
(0, 0)
y0
(0, ) (0, )
减函数
减减
偶
y轴 (1,1) 一二
无 无
(1,1)
一三
(1,1)
一三
(1,1)
一
(-2,4)
4
y=x3 (2,4) y=x2 y=x (4,2)
1
3
1、所有幂函数在(0,+∞) 上都有定义,并且图象 都通过点(1,1). 2、在第一象限内, α >0,在(0,+∞)上为增函数; α <0,在(0,+∞)上为减函数. 3、α为奇数时,幂函数为奇 函数, α为偶数时,幂函数为偶 函数.
例3 若 m 4
1 2
3 2m ,
1 2
1 2
则求m的取值范围.
解: 幂函数f ( x) x 的定义域是(0, ) 且在定义域上是减函数, 0 3 2m m 4 1 3 m ,即为m的取值范围. 3 2
小结: 幂函数的性质:
不要等失去的时候才知道珍惜;不要等 后悔的时候才知道做错;不要等争吵的 时候才知道和解;不要等错过的时候才 知道回头;不要等成绩出来的时候才知 道后悔;人生是有限的,不要留下太多 的等待,时间最宝贵;把握好现在的时 光,让生命活得更精彩!
一般地,我们把形如 y x 的函数 称为幂函数,
a
其中 x 是自变量, a 是常数; 注意:幂函数与指数函数的区别.
幂函数的定义域、值域、奇偶性和单调性, 随常数α取值的不同而不同.
1.所有幂函数的图象都通过点(1,1); 2.当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数.
幂函数图像及性质总结
![幂函数图像及性质总结](https://img.taocdn.com/s3/m/ead9d054a88271fe910ef12d2af90242a995ab41.png)
幂函数图像及性质总结幂函数是高中数学中的一个重要概念,它是指形式为f(x)=ax^k的函数,其中a 为非零实数,k为实数。
幂函数在数学中具有广泛的应用,在图像的研究中,掌握幂函数的图像及其性质是非常重要的。
首先,我们来看幂函数的图像特点。
当k为正数时,幂函数的图像呈现出“增长”或“递减”的趋势。
当k>1时,曲线会明显上升,形成类似于指数函数的图像特征。
而当0<k<1时,曲线则会下降,但下降的速率逐渐减慢。
特别地,当k=1时,幂函数成为一次函数,即f(x)=ax,其图像为一条直线。
此外,当k为负数时,幂函数的图像则出现在第二、第四象限,并且具有对称轴。
接下来,我们来讨论幂函数的性质。
首先,我们来看函数的定义域和值域。
由于幂函数的底数a不能为零,函数的定义域为除以0的集合,即R-{0}。
而幂函数的值域则依赖于指数k的正负情况。
当k为正数时,函数的值域为正实数集(0,+∞)。
当k为负数时,函数的值域为(0, +∞)的实数集。
由于底数a的正负情况也会影响函数的关系,故在具体分析时需要考虑a的取值范围。
其次,我们来讨论幂函数的奇偶性。
当指数k为偶数时,幂函数f(x)=ax^k是一个偶函数,即满足f(x)=f(-x)。
这是因为对于任意x∈R,有(-x)^k=x^k,从而f(x)=ax^k=f(-x)。
相应地,当指数k为奇数时,幂函数f(x)=ax^k是一个奇函数,即满足f(x)=-f(-x)。
这是因为对于任意x∈R,有(-x)^k=-x^k,从而f(x)=ax^k=-ax^k=-f(-x)。
进一步地,我们来讨论幂函数的增减性和极值点。
当指数k为正数时,幂函数在定义域上是递增的。
当a>1时,函数的增长速度更快;当0<a<1时,函数的增长速度更慢。
而当指数k为负数时,幂函数在定义域上是递减的。
在图像上,幂函数具有一个最小值或最大值,该点称为极值点。
当k为偶数时,函数的极值点出现在定义域的最小值点,当k为奇数时,函数的极值点出现在定义域的最大值点。
幂函数图象及其性质
![幂函数图象及其性质](https://img.taocdn.com/s3/m/85fe22160029bd64783e2ce5.png)
1.7
,∴ 1 1.52
1
1.7 2
( 2 ) ∵ y x3 在 R 上 是 增 函 数 , 1.2 1.25 , ∴
(1.2)3 (1.25)3
( 3 ) ∵ y x1 在 (0,) 上 是 减 函 数 , 5.25 5.26 , ∴
Where there is a will,there is a way.
幂函数 y=xα 有下列性质:(1)单调性:当 α
>0 时,函数在(0,+∞)上单调递增;当 α<0
时,函数在(0,+∞)上单调递减.(2)奇偶性:幂
函数中既有奇函数,又有偶函数,也有非奇非偶
函数,可以用函数奇偶性的定义进行判断.
例
3.已知幂函数
y
( xm2 2m3
mZ
)的图象与
x
轴、
y 轴都无交点,且关于原点对称,求 m 的值.
B.y x3
C.y 2x
D.y x1
答案:C
例 2.已知函数 f x m2 m 1 x5m3 ,当 m 为何值时, f x: (1)是幂函数;(2)是幂函数,且是 0, 上的 增函数;(3)是正比例函数;(4)是反比例函数;
(5)是二次函数;
简解:(1)m 2 或 m 1(2)m 1(3)m 4(4)m 2
幂函数图象及其性质
幂函数图象及其性质
幂函数的图像与性质
1、幂函数的定义 形如 y=xα(a∈R)的函数称为幂函数,其中 x
是自变量,α为常数
注:幂函数与指数函数有本质区别在于自变量的
位置不同,幂函数的自变量在底数位置,而指数
函数的自变量在指数位置。
例题、(1). 下列函数中不是幂函数的是( )
A.y x
幂函数图像
![幂函数图像](https://img.taocdn.com/s3/m/5beb1d8ed4d8d15abe234efd.png)
y=x3 R R 奇 增
(1,1)
yx
1 2
y=x-1
| R且x 0 xx y|y R且y 0
定义域 值域 奇偶性 单调性
[0,+∞) [0,+∞) 非奇非 偶 增
(1,1)
奇 (0,+∞)减 (-∞,0)减
(1,1)
公共点 (1,1)
幂函数的性质:
幂函数的定义域、奇偶性、单调性,因函数式 中α的不同而各异. 1.所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1); 2.如果α >0,则幂函数的图象过点(0,0),(1,1) α >1 并在(0,+∞)上为增函数; 3.如果α <0,则幂函数的图象过点(1,1),并在 α <0 (0,+∞)上为减函数;
1 1
2
4
6
8
6
1.6 2.5 3.3 4
4
(8.4)
2
(4,2.5) (1,1)
-10
-5
o
5
10
x
-2
10
y
8
x y
0 0
1 1
2
4
6
8
6
1.6 2.5 3.3 4
4
(8.4)
2
(4,2.5) (1,1)
-10
-5
o
5
10
x
-2
例2:讨论函数 y x 的定义域,作出
2 3
探 究 与 发 现
O
X
画出函数在第一象限的图象后,再根据函数 的奇偶性,画出函数在其他象限还有的图象
练习: 如图所示,曲线是幂函数 y = xk 在第一象限
幂函数图像与性质
![幂函数图像与性质](https://img.taocdn.com/s3/m/5120a88dc0c708a1284ac850ad02de80d4d806f0.png)
例 1.证明幂 f(x函 ) 数 x在 [0, )上是增 . 函
证 : 任 x 1 明 ,x 2 [ 取 0 , ) 且 , x 1 x 2 , 则
f(x1)f(x2)x1x2
(
x1
x2)( x1 x1 x2
x2)
x1 x2 x1 x2
如果α<0,则幂函数
α<0
在(0,+∞)上为减函数。
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8 ((23)) 0.20.-32 与 0.3-20.3
2.5 5 与 2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 <
5.3(02.8)y=x0.3在(0,∞)内是增函
数
∵(30).y2=<x0-.23/5∴在0(.02,0∞.3)内<0是.3减0.3函数
单调性:
在{x x 0}上是奇函数
在(0,)上是减函数
在(,0)上是减函数
x y=x3
y=x1/2
… -2 -1 0 … - -1 0 … 8/ / 0
y 8 6 4
2
-3 -2 -1 0 1 -2 -4 -6 -8
12 18 12 y= x3
23 4
3 4… 27 64 …
3 2…
1
y=x 2
增函数
在(0,+∞) 上是增函数
在( -∞,0), (0, +∞)上 是减函数
公共点
(1,1)
y x2
(-2,4)
y x3
4
幂函数的图像与性质
![幂函数的图像与性质](https://img.taocdn.com/s3/m/f2f2f0e929ea81c758f5f61fb7360b4c2e3f2ae3.png)
幂函数的图像与性质幂函数是一类常见的数学函数,它的表达形式为y = x^n,其中x是自变量,n是常数指数。
在本文中,我们将探讨幂函数的图像以及它的一些基本性质。
一、幂函数图像的特点幂函数的图像是由指数n的不同取值而呈现出多种形态。
下面我们将分别讨论指数为正偶数、正奇数、负偶数和负奇数时的情况。
1. 指数为正偶数时(n > 0且n为偶数)当指数为正偶数时,幂函数的图像呈现出关于y轴对称的特点。
以y = x^2为例,当x取正负值时,y值都为正,且当x取0时,y值为0。
图像在原点处有一个最小值点,随着x的逐渐增大或减小,y也逐渐增大,但增长速度逐渐减慢。
2. 指数为正奇数时(n > 0且n为奇数)当指数为正奇数时,幂函数的图像呈现出关于原点对称的特点。
以y = x^3为例,当x取正值时,y值为正;当x取负值时,y值为负。
图像在原点处有一个零点,当x逐渐增大或减小时,y也随之增大或减小,但增长速度较快。
3. 指数为负偶数时(n < 0且n为偶数)当指数为负偶数时,幂函数的图像呈现出关于x轴对称的特点。
以y = x^-2为例,当x取正值时,y值小于1;当x取0时,y值无定义;当x取负值时,y值同样小于1。
图像在x轴上有一个渐近线y=0,当x逐渐增大或减小时,y的绝对值逐渐减小。
4. 指数为负奇数时(n < 0且n为奇数)当指数为负奇数时,幂函数的图像呈现出关于原点对称的特点。
以y = x^-3为例,当x取正值时,y值大于1;当x取负值时,y值小于-1。
图像在原点处有一个零点,当x逐渐增大或减小时,y的绝对值逐渐增大。
二、幂函数的基本性质除了图像的特点,幂函数还有一些其他的基本性质。
下面我们将介绍其中的两个重要性质。
1. 幂函数的增减性根据幂函数的指数正负,我们可以判断幂函数的增减性。
当指数为正时,幂函数是递增函数,随着自变量的增大,函数值也随之增大;当指数为负时,幂函数是递减函数,随着自变量的增大,函数值却减小。
高中数学一轮复习课件幂函数的图像和性质
![高中数学一轮复习课件幂函数的图像和性质](https://img.taocdn.com/s3/m/b02ff99b32d4b14e852458fb770bf78a65293aa1.png)
总结归纳
及时总结归纳学习过程中 的重点和难点,形成自己 的学习笔记和心得体会, 便于回顾和复习。
保持良好作息和心态,积极备战高考
合理安排时间
保证充足的睡眠和合理的饮食, 保持良好的身体状态和精神状态
。
调整心态
保持积极乐观的心态,相信自己 能够通过努力取得好成绩。遇到 困难时,及时调整情绪,寻求帮
助和支持。
高中数学一轮复习课件 幂函数的图像和性质
汇报人:XXX 2024-01-22
目录
• 幂函数基本概念与性质 • 幂函数图像特征与绘制方法 • 幂函数在解决实际问题中应用 • 幂函数与其他类型函数关系研究 • 高考真题回顾与解题技巧总结 • 复习策略与备考建议
幂函数基本概念与
01
性质
幂函数定义及表达式
加强练习和反思总结是提高解题能力的关键。通过大量的练习可以加深对知识点的 理解和记忆;通过反思总结可以发现自己的不足之处并加以改进。
复习策略与备考建
06
议
制定个性化复习计划,明确目标
分析自身情况
根据自己的数学基础、学习能力 和时间安排,制定适合自己的复
习计划。
明确复习目标
确定自己在幂函数的图像和性质方 面的学习目标,例如掌握基本概念 、理解图像特征、熟练运用性质等 。
03
幂函数与一次、二次函数的比较
虽然幂函数、一次函数和二次函数在形式上有所不同,但它们之间有着
密切的联系。在解决某些问题时,可以通过转化思想将它们相互转化,
从而简化问题的求解过程。
幂函数与指数、对数函数关系探讨
幂函数与指数函数
指数函数的底数a可以看作是幂函数的指数n,而指数函数的指数x则可以看作是幂函数的 自变量。因此,指数函数和幂函数在形式上具有一定的相似性。
幂函数图像与性质
![幂函数图像与性质](https://img.taocdn.com/s3/m/bd43078e2dc58bd63186bceb19e8b8f67c1cef24.png)
幂函数的周期性
幂函数性质:周 期性是指函数在 一定周期内重复
出现的性质。
幂函数周期:幂 函数的周期与其 指数有关,当指 数为正整数时, 幂函数具有周期
性。
周期计算:幂函 数的周期可以通 过将指数除以自 变量来计算,得 到的结果即为函
数的周期。
周期性特点:幂 函数的周期性具 有一些特点,例 如当指数为偶数 时,函数图像关 于y轴对称;当 指数为奇数时, 函数图像关于原
感谢观看
汇报人:XX
左到右下降
幂函数应用: 在数学、物理、 工程等领域有
广泛应用
幂函数定义域和值域
值域:y>0
定义域:x属于R
定义:幂函数f(x)=x^a, 其中a为实数
性质:幂函数图像在第一象 限,随着a的增大,函数图
像从右上至左下逐渐上升
02
幂函数图像
幂函数图像特点
幂函数图像在第 一象限内单调递 增
幂函数图像在第 二象限内单调递 减
幂函数图像在y 轴两侧对称
幂函数图像在x 轴上无交点
幂函数图像与x轴关系
当a>0时,幂函数图像与x轴有交 点
当a=0时,幂函数图像与x轴只有 一个交点
添加标题
添加标题
添加标题
添加标题
当a<0时,幂函数图像与x轴无交 点
幂函数图像与x轴交点的个数和位 置与a的取值有关
幂函数图像与y轴关系
当x>0时,幂函数图像位于 第一象限
04
幂函数的应用
幂函数在数学领域的应用
幂函数在微积分中的应用 幂函数在求解方程中的应用 幂函数在概率论中的应用 幂函数在复数分析中的应用
幂函数在物理领域的应用
力学:描述物体的运动规律,如加速度与速度的关系。 光学:解释光的干涉和衍射现象,如杨氏双缝干涉实验。 电磁学:解释电磁波的传播规律,如无线电信号的传输。 量子力学:描述微观粒子的运动状态,如波函数的形式。
幂函数的图像与性质
![幂函数的图像与性质](https://img.taocdn.com/s3/m/a4b972230740be1e650e9adf.png)
提高训练
例3.若m 4
1 2
3 2m , 则求 m的取值范围 .
1 2
解: 幂函数f ( x) x 的定义域是(0,) 且在定义域上是减函数 , 0 3 2m m 4 1 3 m ,即为m的取值范围 . 3 2
1 2
重点三、幂函数性质应用:
a<0
a=0
a>1
(2)y=x0.3在(0,∞)内是增函数 ∵0.2<0.3∴ 0.20.3 <0.30.3 (3)y=x-2/5在(0,∞)内是减函数 ∵2.5<2.7∴ 2.5-2/5>2.7-2/5
a=1
0<a<1
a=0
2.3 幂函数(2)(77-78页)
y x ( R)
例4 用不等号填空:
> (1)5.1-2 ____ 5.9-2; > 1.73.5 ____ 1.73; ( 2) > 0。 (3)若3a>2a,则a ____ > (4)1.30.5 ____ 0.51.3;
0
1
=1
0 1
(1) 若能化为同指数,则用幂函数的单调性; (2) 若能化为同底数,则用指数函数的单调性; (3) 当不能直接进行比较时,可数形结合找一个 中间数, 比较大小.
m 2
从而有 f ( x) x +∞)内是减函数.
3
是幂函数,且在区间(0,
提高训练
已知函数 f ( x) m 3m 3x 是幂函 数,并且是偶函数,求m的值。
2 m2 2
解:因为f ( x) m 3m 3 x
2
m2 2
是幂函数
幂函数图像和性质
![幂函数图像和性质](https://img.taocdn.com/s3/m/e17b4d75a26925c52cc5bfc8.png)
yx
2
yx
3
yx
1 2
R R
增函数
[0, )
先减后增
R
R R
增函数
[0, )
[0, )
增函数
奇偶性
对称性 过定点 象限分布
奇
(0, 0) (1,1)
偶
(0, 0) (1,1)
奇
(0, 0)
(0, 0) (1,1)
无 无
(0, 0) (1,1)
(0, 0)
y轴
一三
一二
一三
一
yx
1
yx
2
yx
3
yx
1 2
图 像
定义域
值域 单调性 奇偶性 对称性 过定点 象限分
y0
x0
奇
(0, 0)
(0, ) (0, )
先增后减
x0
减减
奇
(0, 0)
y0
(0, ) (0, )
减函数
减减
偶
y轴 (1,1) 一二
无 无
(1,1)
一三
(1,1)
一三
(1,1)
一
一般地,我们把形如 y x 的函数 称为幂函数,
a
其中 x 是自变量, a 是常数; 注意:幂函数与指数函数的区别.
指数函数的自变量在 的位置上
幂函数的自变量在 的位置上 指数函数中参数a的取值范围是 a 0且a 1 幂函数中参数a的取值范围是 a R
yx
图像
定义域 值域 单调性
幂函数的图像与性质
![幂函数的图像与性质](https://img.taocdn.com/s3/m/bd3893c70875f46527d3240c844769eae009a388.png)
幂函数的图像与性质幂函数的图像与性质是指,如果将一个函数定义为f(x)=ax,其中a是一个正常数,那么这个函数就叫做幂函数。
注意,这里的x不必要是整数,可以是任意实数值。
一般来说,如果a>0,则函数的图形表示为一条递增的直线;如果a<0,则函数的图形表示为一条递减的直线;如果a=1,则函数的图形表示为一条水平直线。
在函数的图形中,如果a>1,则函数的图形表示为一条右上斜线,即函数的导数增加得越来越快;如果a<1,则函数的图形表示为一条左下斜线,即函数的导数减少得越来越快;如果a=1,则函数的图形表示为一条水平直线,即函数的导数保持不变。
在函数的性质方面,幂函数的表达式可以写成y=ax,其中a是一个实数,x是一个实数变量,y是一个实数函数。
事实上,它是一个特殊的多项式函数,可以用指数形式表示,即y=ax=e^(lna)x=exlnax。
如果a>0,则此函数在定义域中是递增函数;如果a<0,则此函数在定义域中是递减函数;如果a=1,则此函数在定义域中是一条水平线。
另外,幂函数的导函数为y'=axlnax,其中a、x均为实数,而y'为函数y的导函数。
此外,幂函数的图形也会因其中的参数a的值的大小而有所不同。
如果a>1,则函数的图形表示为一条右上斜线,即函数的导数增加得越来越快;如果a<1,则函数的图形表示为一条左下斜线,即函数的导数减少得越来越快;如果a=1,则函数的图形表示为一条水平直线,即函数的导数保持不变。
综上所述,幂函数的图形与性质取决于参数a的值,它是一个特殊的多项式函数,其导函数为y'=axlnax,其中a、x均为实数,而y'为函数y的导函数。
幂函数的图像和性质
![幂函数的图像和性质](https://img.taocdn.com/s3/m/9bcabf72001ca300a6c30c22590102020640f242.png)
幂函数的图像和性质(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!幂函数的图像和性质概念一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
幂函数图像与性质(有的有,有的没有)
![幂函数图像与性质(有的有,有的没有)](https://img.taocdn.com/s3/m/f549d4533b3567ec102d8a17.png)
幂函数的性质与图像1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 2、函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出幂函数的性质。
3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)x >0时,幂函数的图象都通过原点,并且在[0, +∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. (4)在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数 . y 轴和直线1x =之间,图象由上至下,指数α .:4. 规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 在[0,+∞]上,y x =、2y x =、3y x =、12y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。
例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =- 变式训练:已知函数()()2223m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
看未知数x是指数还是底数
指数函数
幂函数
例1、下列函数中,哪几个函
数是幂函数? (1)y = 1
x2
(3)y=2x
答案:(1)(4) (2)y=2x2
(4)y=1
(5) y=x2 +2
(6) y=-x3
例 2:已f(知 x)m 2m1x2m 3是幂 ,
求 m 的。值
解:因为f (x)是幂函数
m2m11
3
x
(4)如果一个正方形场地的面积为x, 这个正方形的
边长为y,这里y是关于x的函数;
1
(5)如果某人x秒内骑车行驶了1km,他骑y车 的x2 平
均速度是y,这里y是关于x的函数. 1:以上各题目的函数关系分别是什么?
y
1
x
2:以上问题中的函数具有什么共同特征?
y
a
x
一、幂函数的定义
一般地,函数 y x 叫做幂函数,其中 x是自变量, a 是常数。( a∈Q)
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
1
y = x y = x2 y= x3 y x 2
y x 1
定义域 R 值域 R
R
R [0,+∞) ,0 (0,+)
[0,+∞) R [0,+∞) ,0 (0,+)
奇偶性 奇函数 偶函数
奇函数
非奇非偶 函数
奇函数
在(-∞,0] 在R上 上是减函数 单调性 是增函 ,在(0, +∞ 数 )上是增函
在(,0]上是减函数
函数 y x1 的图像
定义域:{x x 0} 值 域:{y y 0}
奇偶性:在{x x 0}上是奇函数 单调性:在(0,)上是减函数
在(,0)上是减函数
1
如何y画 x3和yx2的图像 ? 呢
x y=x3
y=x1/2
… -2 … -8 …/
-1 0 -1 0 /0
y 8 6 4
高中数学必修 ①A
§2.3幂函数
问题引入 我们先看几个具体问题:
(1) 如果回收旧报纸每公斤1元,某班每年卖旧报
纸x公斤,所得价钱y是关于x的函数 y x
(2) 如果正方形的边长为x,面积y,这里y是关于
x的函数;
y x2
(3) 如果正方体的边长为x, 正方体的体积为y,
这里y是关于x函数;
y
及图象特征?
的函数叫做幂函数.
2、思想与方法
五类简单的幂函数图像及 其性质的研究。
小结
1、幂函数的定义 及图析式解决问题时,要想到数形 结合的思想方法,寓数于形,赋形于数,互相 利用,相得溢彰.
作业: 79页1 82页10
成功始于方法 巩固才能提高
m2
三、常用的幂函数图像及性质
(1) yx (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
函数 yx的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
函数 y x2 的图像
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数
2
-3 -2 -1 0 1 -2
-4 -6 -8
12 18 12 y=x3
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
1
函数 y x 2 的图像
定义域:[0,)
值 域: [0,)
奇偶性: 非奇非偶函数
单调性:在[0,)上是增函数
函数 y x3的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
注 1、幂函数的解析式必须是 y x 的形式,
其特征可归纳为“两个系数为1,只有1 项2、.定义域与 a 的值有关系.
意
二、幂函数与指数函数比较
名称
式子
常数
x
y
指数函数: y=a x
(a>0且a≠1)
幂函数: y= xα
a为底数 α为指数
指数 底数
幂值 幂值
判断一个函数是幂函数还是指数函数切入点
数
公共点
在R上 是增函 数
在(0,+∞) 上是增函数
(1,1)
在( -∞,0), (0, +∞)上是 减函数
思考:请将5个函数的图像画在同一坐标 系中,并研究它们的异同,进而推断
幂函数的性质。
(1) yx (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
小结
1、幂函数的定义 形如 y x (a∈Q)
解之 :m 得 2 或 m 1
m2或 m1
练习:
已知函数 f(x ) m 2 3 m 3 x m 2 2 是幂函数,
并且是偶函数,求m的值。
解 :因 f(x 为 )m 2 3 m 3x m 2 2 是幂
m23m31 解之 :m 2 得 或 m 1
又因为f (x)是偶函数
m1不符合,题 舍意 去