运筹学4单纯形法迭代原理演示课件
合集下载
运筹学讲义-单纯形方法(ppt 78页)
为变量xj关于基B的判别数,j=1,2, -------, n。
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
运筹学之单纯形法.ppt
x1 ,x2 ,… ,xn ≥ 0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
运筹学课件 单纯形法的迭代原理
运筹学教程
检验数σ1和σ2均大于0,所以表中的基可行解不是最优解。
k max{ j |
j
0}
σ1>σ2,选择最大正检验数对应的系数列为主元列, 主元列对应的非基变量X1为换入变量;
bi bl min | a ik 0 a ik a lk
,
xl-11, xl+11,…………xm1, xj1所对应的向量,
经过重新排列后加行b列形成的增广矩阵为:
p1 1 0 .... ....... . p l 1 0 0 pj a1 j a2 j a l 1 j a lj a l 1 j a mj p l 1 0 0 ... .......... . pm .... 0 0 . 0 0 0 . 0 0 0 1 0 0 0 0 1 0 0 0 . 1 bl 1 bl b l 1 . bm b b1 b2
5 x 2 15 5 x 2 x 3 15 6 x 1 2 x 2 24 6 x 1 2 x 2 x 4 24 st . st . x1 x 2 5 x1 x 2 x 5 5 x1 , x 2 0 x1 5 0
完成一次迭代,得到新的基可行解和相 应的目标函数值
运筹学教程
该迭代过程直至下列情况之一发生时停止
检验数行全部变为非正值; (得到最优解)或
主元列≤ 0(无界)
运筹学教程
例题:使用单纯形法求解线性规划问题
max Z 2 x 1 x 2
max Z 2 x 1 x 2 0 x 3 0 x 4 0 x 5
运筹学教程
Cj CB 0 2 0 1 基 X3 X1 X5 x2 b 15 15/2 4 7/2 1 6/4
第五章 单纯形法ppt课件
➢ x2+x5=250
→ 0=250?
➢ 显然不能得到相应的解。
编辑版pppt
9
一、问题的提出
➢ 为什么令x2=0,x5=0时不能得到解? ➢ 因为其余三个变量的系数列向量为
110
201
000
➢ 该矩阵是非可逆矩阵,即去掉x2和x5后的三个约束 方程线性相关,这种情况下得不到解。
编辑版pppt
10
编辑版pppt
24
二、单纯形法的基本思路和原理
➢ 3、那有没有办法在求出解之前保证我 们取得的基为可行基?
➢ 解决办法:保证右端项非负,找到一个 单位矩阵,必定是一个可行基。
编辑版pppt
25
二、单纯形法的基本思路和原理
➢ 如范例系数阵:
右端项非负
1 1 1 0 0 300 2 1 0 1 0 400 0 1 0 0 1 250
❖ 我们首先将最优解缩小在一个有限的❖ 回顾图解法,我们知道:最优解必定在可行域的顶 点上取得,而顶点的个数总是有限的。
❖ 多维线性规划问题的可行域也存在有限个顶点。
❖ 如果能够从一个顶点开始,通过某种方式向更优顶 点转移,总会找到最优点。
❖ 首先面临的问题: ❖ 如何通过代数方法找到第一个顶点?
存在3阶单位阵
编辑版pppt (初始可行基)
26
二、单纯形法的基本思路和原理
➢ 基本可行解为(0,0,300,400,250) ➢ 此可行基称为初始可行基。 ➢ 对应的解称为初始基本可行解。
➢ 初始基本可行解在上页矩阵中一目了然。
编辑版pppt
27
二、单纯形法的基本思路和原理 ➢第二步:最优性检验
不存在 (200,0,100,0,50) (300,0,0,-200,-50) (0,250,50,150,0) (0,400,-100,0,150) (0,300,0,100,-50)
《单纯形方法》课件
04
最优解的确定
检查终止条件
在迭代过程中或迭代结束后,检查是 否满足终止条件。
确定最优解
如果满足终止条件,则当前最优解即 为所求的最优解;否则继续迭代。
CHAPTER 04
单纯形方法的案例分析
案例一:生产计划问题
总结词
线性规划问题,目标是最大化利润,约 束条件包括生产能力、市场需求等。
VS
详细描述
02 它包含了决策变量、约束条件和目标函数的系数 。
03 通过构建单纯形表格,可以方便地表示线性规划 问题的数学模型。
单纯形迭代
1
单纯形迭代是求解线性规划问题的主要方法之一 。
2
该方法通过不断迭代,逐步逼近最优解。
3
在每次迭代中,根据当前解的情况,通过一系列 计算找到下一个迭代点,直到达到最优解或满足 终止条件。
CHAPTER 02
单纯形方法的原理
线性规划问题
01
线性规划是数学优化技术的一种,用于在有限的资 源下,寻找一组变量的最优解。
02
线性规划问题通常表示为在一组线性不等式约束下 ,最小化或最大化一个线性目标函数。
03
线性规划问题广泛应用于生产计划、资源分配、投 资组合优化等领域。
单纯形表格
01 单纯形表格是用于描述线性规划问题的一种表格 形式。
改进的方法与策略
混合整数规划
将整数规划与线性规划相结合,以处理包含 整数约束的优化问题。
并行计算
利用多核处理器或多计算机系统,加快单纯 形方法的计算速度。
全局优化
通过引入新的算法和策略,以实现全局最优 解,而不仅仅是局部最优解。
自适应算法
根ห้องสมุดไป่ตู้问题的特性,动态调整算法参数,以提 高求解效率。
最优解的确定
检查终止条件
在迭代过程中或迭代结束后,检查是 否满足终止条件。
确定最优解
如果满足终止条件,则当前最优解即 为所求的最优解;否则继续迭代。
CHAPTER 04
单纯形方法的案例分析
案例一:生产计划问题
总结词
线性规划问题,目标是最大化利润,约 束条件包括生产能力、市场需求等。
VS
详细描述
02 它包含了决策变量、约束条件和目标函数的系数 。
03 通过构建单纯形表格,可以方便地表示线性规划 问题的数学模型。
单纯形迭代
1
单纯形迭代是求解线性规划问题的主要方法之一 。
2
该方法通过不断迭代,逐步逼近最优解。
3
在每次迭代中,根据当前解的情况,通过一系列 计算找到下一个迭代点,直到达到最优解或满足 终止条件。
CHAPTER 02
单纯形方法的原理
线性规划问题
01
线性规划是数学优化技术的一种,用于在有限的资 源下,寻找一组变量的最优解。
02
线性规划问题通常表示为在一组线性不等式约束下 ,最小化或最大化一个线性目标函数。
03
线性规划问题广泛应用于生产计划、资源分配、投 资组合优化等领域。
单纯形表格
01 单纯形表格是用于描述线性规划问题的一种表格 形式。
改进的方法与策略
混合整数规划
将整数规划与线性规划相结合,以处理包含 整数约束的优化问题。
并行计算
利用多核处理器或多计算机系统,加快单纯 形方法的计算速度。
全局优化
通过引入新的算法和策略,以实现全局最优 解,而不仅仅是局部最优解。
自适应算法
根ห้องสมุดไป่ตู้问题的特性,动态调整算法参数,以提 高求解效率。
运筹学单纯形法ppt课件
• 当第一阶段中目标函数的最优值=0,即人工变量=0, 则转入第二阶段;若第一阶段中目标函数的最优值不等于 0,即人工变量不等于0,则判断原问题为无解。
• 第二阶段:将第一阶段计算所得的单纯形表划去人工变量 所在的列,并将目标函数换为原问题的目标函数作为第二 阶段的初始单纯形表,进行进一步的求解。
14
s.t.
32x1x133xx2 22
x3 x3
100 120
x1, x2 , x3 0
cj
40 45 25 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 100 2 [ 3 ] 1
1
0
100/3
0 x5 120 3 3 2 0 1
40
σj
40 45 25
两阶段法的算法流程图
MaxZ=-3x1+x3 x1+ x2+ x3≤4
-2x1+ x2- x3≥1 3x2+x3=9
xi ≥0,j=1,2,3
求解辅助问题,得到辅助 问题的最优解
引进人工变量x6,x7,构造辅助 问题,辅助问题的目标函数为
所有人工变量之和的极小化
Max W= -x6 - x7
x1+ x2+ x3+x4
取值
xj无约束 令xj = xj′- xj″
xj ≤ 0 令 xj′= - xj
xj′ ≥0 xj″ ≥0
右端项
bi < 0
约束条 件两端 同乘以
-1
等式或不等式
≤
=
≥
加松 弛变 量xs
加入 人工 变量
xa
减去 剩余 变量xs
加入 人工 变量xa
• 第二阶段:将第一阶段计算所得的单纯形表划去人工变量 所在的列,并将目标函数换为原问题的目标函数作为第二 阶段的初始单纯形表,进行进一步的求解。
14
s.t.
32x1x133xx2 22
x3 x3
100 120
x1, x2 , x3 0
cj
40 45 25 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 100 2 [ 3 ] 1
1
0
100/3
0 x5 120 3 3 2 0 1
40
σj
40 45 25
两阶段法的算法流程图
MaxZ=-3x1+x3 x1+ x2+ x3≤4
-2x1+ x2- x3≥1 3x2+x3=9
xi ≥0,j=1,2,3
求解辅助问题,得到辅助 问题的最优解
引进人工变量x6,x7,构造辅助 问题,辅助问题的目标函数为
所有人工变量之和的极小化
Max W= -x6 - x7
x1+ x2+ x3+x4
取值
xj无约束 令xj = xj′- xj″
xj ≤ 0 令 xj′= - xj
xj′ ≥0 xj″ ≥0
右端项
bi < 0
约束条 件两端 同乘以
-1
等式或不等式
≤
=
≥
加松 弛变 量xs
加入 人工 变量
xa
减去 剩余 变量xs
加入 人工 变量xa
《管理运筹学》课件02-单纯形法
解决方案
使用单纯形法,找到最优解,即最大利润和对应的生产计 划。
整数规划问题
整数规划问题概述
整数规划是一种特殊的线性规划,其中部分或全部决策变量必须取整数值。整数规划在许多实际应用中非常重要,如 安排生产计划、分配任务等。
案例
某制造企业需要安排生产任务,每种产品需要不同的设备和人力,企业希望最大化利润,同时满足产品数量、交货期 和资源限制等约束,且所有设备必须全负荷运转。
反射法与对偶法
要点一
总结词
反射法与对偶法是两种将原问题转化为对偶问题进行求解 的方法,反射法是通过构造一个反射矩阵来转化问题,对 偶法则是通过对偶变换将原问题转化为对偶问题。
要点二
详细描述
反射法的核心思想是通过构造一个反射矩阵,将原问题中 的约束条件和目标函数进行转化,从而将原问题转化为一 个简单的子问题。对偶法则通过对偶变换将原问题中的变 量和约束条件进行重新排列和组合,从而将原问题转化为 一个对偶问题。这两种方法都可以在一定程度上简化问题 的求解过程,提高求解效率。
02
单纯形法的基本步骤
初始解的确定
确定初始基本可行解
根据问题条件,选择初始的变量值, 满足所有约束条件,构成初始的基本 可行解。
确定初始基
选择一组变量作为初始基,这些变量 对应的约束为紧约束。
迭代过程
迭代方向
在每次迭代中,通过计算目标函数的值和最优解的方向,确 定变量的调整方向。
迭代步骤
按照迭代方向,逐步调整变量的值,直到达到最优解或满足 终止条件。
证求解的精度和可靠性。
两阶段法
总结词
两阶段法是一种将原问题分解为两个阶段进行求解的方法,第一阶段是确定初始解,第二阶段是对初始解进行 优化和调整。
使用单纯形法,找到最优解,即最大利润和对应的生产计 划。
整数规划问题
整数规划问题概述
整数规划是一种特殊的线性规划,其中部分或全部决策变量必须取整数值。整数规划在许多实际应用中非常重要,如 安排生产计划、分配任务等。
案例
某制造企业需要安排生产任务,每种产品需要不同的设备和人力,企业希望最大化利润,同时满足产品数量、交货期 和资源限制等约束,且所有设备必须全负荷运转。
反射法与对偶法
要点一
总结词
反射法与对偶法是两种将原问题转化为对偶问题进行求解 的方法,反射法是通过构造一个反射矩阵来转化问题,对 偶法则是通过对偶变换将原问题转化为对偶问题。
要点二
详细描述
反射法的核心思想是通过构造一个反射矩阵,将原问题中 的约束条件和目标函数进行转化,从而将原问题转化为一 个简单的子问题。对偶法则通过对偶变换将原问题中的变 量和约束条件进行重新排列和组合,从而将原问题转化为 一个对偶问题。这两种方法都可以在一定程度上简化问题 的求解过程,提高求解效率。
02
单纯形法的基本步骤
初始解的确定
确定初始基本可行解
根据问题条件,选择初始的变量值, 满足所有约束条件,构成初始的基本 可行解。
确定初始基
选择一组变量作为初始基,这些变量 对应的约束为紧约束。
迭代过程
迭代方向
在每次迭代中,通过计算目标函数的值和最优解的方向,确 定变量的调整方向。
迭代步骤
按照迭代方向,逐步调整变量的值,直到达到最优解或满足 终止条件。
证求解的精度和可靠性。
两阶段法
总结词
两阶段法是一种将原问题分解为两个阶段进行求解的方法,第一阶段是确定初始解,第二阶段是对初始解进行 优化和调整。
单纯形法原理讲解ppt课件
第4步 基变换
换入基变量:
z 0 2 x 1 3 x 2 0 1 x 1 2 x 2
1,2 0, x1, x2 均可换入。
一般选取 max对1, (应2)的变量
(即选最大非负检验数对应的变量)
换入变量 x 2
换出变量
x3 使换入的变量越大越x好4 同时,新的解要可行。
x5
本节通过一个引例,可以了解利用 单纯形法求解线性规划问题的思路,并 将每一次的结果与图解法作一对比,其 几何意义更为清楚。
引例(上一章例)
max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3
8
4x1
x4
16
4 x2
x5 12
x1, x2 , x3, x4 , x5 0
x 2 min( 8 / 2 x 2 为换入变量,应换出 x 5变为量换。 出变量
因此,基由 B(P3 P4 P5) 变为 B(P 3 P 4 P 2)
转第2步:基变量用非基变量表示。
第3步:最优性判断
检验数
存在正,按第4步换基继续迭代
均非正,停止
(这时的解即是最优解)
x x
3
3
转
2
第x 4 x22 4步x 24
0 4 0 0 1
显然 ,P3, P4, P5 可构成初等可行基B 。
1 0 0
令: B(P3,
P4,P5)
0
1
0
x3, x4, x5 为基变量
0 0 1
第2步 求出基可行解
基变量用非基
x3
是否是 最优x4解?x5
8 x1 164x1 12
2变令x2量 非表 基示 变, 量并 为
运筹学第四版第二章线性规划及单纯形法
方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目
Ⅰ
设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。
运筹学 单纯形法
The Essence of the Simplex Method
• A positive rate of improvement in Z implies that the adjacent CPF solution is better than the current CPF solution (since we are assuming maximization), whereas a negative rate of improvement in Z implies that the adjacent CPF solution is worse. • Therefore, the optimality test consists simply of checking whether any of the edges give a positive rate of improvement in Z. If none do, the current CPF solution is optimal.
The Essence of the Simplex Method
• Iteration 1: Move to a better • Between the two edges of the adjacent CPF solution, (0,6), feasible region that emanate by performing the from (0,0), choose to move following three steps.
(0,9)
• Optimality Test: Conclude that (2,6) is an optimal solution, so stop. (None of the adjacent CPF solutions are better.)
运筹学-单纯形法ppt课件
基本解中最多有m个非零分量。
基本解的数目不超过
C个nm。
n!
m!n
m!
定义 在线性规划问题的一个基本可行解中,如果所有的基变量都取正值,则 称它为非退化解,如果所有的基本可行解都是非退化解。称该问题为非退化的 线性规划问题;若基本可行解中,有基变量为零,则称为退化解,该问题称为 退化的线性规划问题。
Cnm
上述结论说明: 线性规划的最优解可通过有限次运算在基可行解中获得.
;.
8
2 单纯形法
(1)单纯形法的引入 例1
Max Z=40X1 +50X2
X1 +2X2 +X3
=30
3X1 +2X2 +X4 =60
2X2 X1 … X5 0
+X5 =24
;.
9
解:(1)、确定初始可行解
B = ( P3 P4 P5 ) = I
表
示
0 10 I C N B C -1 B N B -1 N-C B B -B 1-1 -C B B -B 1b -b 1
BN I b
CB CN 0
0
I
B-1N
B-1
B-1b
0
CN -CB B-1N
-CB B-1
CBB-1b
;.
27
对应I 式的单纯形表—— I 表(初始单纯形表)
价值系数cj
a2m1
amm1
a1m2 a2m2
amm2
a1n a2n amn
非 基 向 量
X B x1 x2 xm T
X N xm1 xm2 xn T
基变量
非基变量
;.
3
AX b
运筹学Chapter线性规划及其单纯形法PPT课件
st.4x1x1 20x2x2816
0x1x,1x2
4x2 0
12
第4页/共61页
例2
捷运公司拟在下一年度的1~4月份的4个月内租用仓库堆放物资。已知各月份 所需仓库面积数。仓库租借费用随合同期而定,期限越长,折扣越大,具体数字如 表1-2所示。租借仓库的合同每月初都可办理,每份合同具体规定租用面积和期限。 因此,该厂可根据需要,在任何一个月初办理租借合同。每次办理可签一份,也可 签若干份租用面积和租借期限不同的合同,试确定该公司签定租借合同的最优决策, 目的是使所付租借费用最小。
D:每年初投资,每年末回收1.11。
求:5年末总资本最大
目标函数: 约束条件
组成线性规划模型的三个要素
max Z=2x1+x2 56xxxx11+,21≤+xx12225≤≥x052≤24
(3)约束条件: 指决策变量取值时受到的各种资源条件的 限制,通常用等式或不等式来表达。 其中,xij≥0叫做非负约束。
一是严格的比例性,即某种产品 对资源的消耗量和可获得的利润与其 生产数量严格成比例。
二是可迭加性。即生产多种产品
对某种资源的消耗量等于各产品对该
2021/6/1
项资源的消耗量之和。
7
第7页/共61页
二、线性规划模型的一般形式
假设线性规划问题中含有n个变量,m个约束方程。则
线性规划模型的一般形式为:
令非基变量xm+1=xm+2=…=xn=0,得
可解得m个基变量的唯一解为:
a11 a12
2021/6/1
3
第3页/共61页
24021/6/1
产品 资源
设备A(h) 设备B(h) 设备C(h) 设备D(h) 利润(元/件)
运筹学--单纯形法求解-动态演示
S1 0
1
1
1
0
0
300
300 1
S2 0
2
1
0
1
0
400
400 1
1 S3 0 0 ①1 0 0 1 250 250
1
Zj
0 0 000 Z=0
j cj zj 50 100 0 0 0
2021/6/27
初始单纯形表
x1 X2 s1 s2 S3
比值
迭代 基变 次数 量
CB
50 100
0
0
0
b bi ai2
比值
迭代 基变 次数 量
CB
50 100
0
0
0
b bi ai2
S1 0 1 0 1 0 -1 50
S2 0 2 0 0 1 -1 150
x2 10 0 1 0
2
0
j cZjjzj 0 100 0
0 1 250
0 10 0 Z=25000
2021/6/27
初始单纯形表
迭代 基变 次数 量
CB
x1 X2
2x1+1 x2+0s1+1s2+0s3 =400
m z 5 x 1 1 a 0 x 2 0 x 0 s 1 0 s 2 0 s 3
0x1+1x2+0s1+0s2+1s3 =250
x1 x2
maxz50 100 0 0 0•s1
s2
s3
x1 ≥0, x2≥0, si≥0
s.t.
x1
1 2 0
迭代 基变 次数 量
CB
xx1 X2 s1
5500 100 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 基变换
主行和主列的交叉元素称为主元素al,m+t
p 1 ..p .l ..p .m p 1..p l . 1 ,p m t,p l ..p m . 20
cj
CB XB b
c l c1 c2
…
cm
x1 x2
…x l
xm
cm+1
c m… t cn
xm+1
x…
xn
m t
c1 x1 b1 1 0 .0.. 0 a1,m1 a 1 ., m.. t a1n
X(0)(b 1,b2,.b .m .,0 ,,.0 .)T .,
8
2.建立判别准则
判断:初始基本可行解或经过若干次迭代后得到的新基 本可行解—当前解—是否为最优解?
一般(经过若干次迭代),对于基B,用 非基变量表出基变量的表达式 为:
Axb BB xNN xb
xBB1bB1NN x 典式
n
xi bi' ai'jxj, jm1
于是,若某线性规划只有唯一的一个最 优解,这个最优解所对应的点一定是可行域 的一个顶点;若该线性规划有多个最优解, 那么肯定在可行域的顶点中可以找到至少一 个最优解。
3
转移条件?
转移结果?
使目标函数值得到改善
得到LP最优解,目标函数达到最优值
2.需要解决的问题:
(1)为了使目标函数逐步变优,怎么转移? (2)目标函数何时达到最优——
x ik 1 x ik a i',m tx m k 1 t,i 1 ,.m .,i. l,
xk1 l
0
x 离基变量: l
X(k)(x1 k,x2 k,.x .m k.,0 ,,.0 .)T ., X ( k 1 ) ( x 1 k 1 ,x .l k 1 1 .,0 ,.x l k 1 1 ,0 .0 .,x . m k 1 t,0 ,.0 ) T .是 解.可!,行
xj0;jm 1,..m . ,t1,m t1,..n.,
xik1bi' ai',mtxmt
xik
a x ' i,mt m 12 t
xik1xikai',mtxmt 0
n
Z Z0 jxj
jm1
a' i,m t < =
xm t
xik ai',mtxmt
若mt 0且pm' t 0
则该LP无最优解。
b1
最0后一0行1是.检..验0数行,a标2,m出1了对应.决..策变量a2xnj的检验数b2 j
第.一列. 标.出.了..基.变量的价.值系数。 .
.
.
第第0二三列列0标是0出右.了端..当项1前,基前变ma个量mm,元m 的1素名是称当。前...基本可amm行n解的基变m bm量的
取1值 0b 0B1.b.. 0 cm1 ciai,m1 ... cn ciai,n cibi
28
作 业P44
1.4 分别用图解法和单纯形法求解下述线性规划问题。
max z 10 x1 5 x 2
3 x1 4 x2 9 s.t. 5 x1 2 x 2 8
x
1
,
x2
0
29
4
[]
2
25
确定 x 2 为进基变量,以 x 3 为离基变量,而 a221/2为主元素。
4
[]
2
基变换
26
上表中检验数满足最优性条件,得到最优解:X*(1,2,0,0,0)
及最大值:Zmax 8
27
说明
用单纯形法从当前解迭代到下一个基本可 行解时,两者之间只有一个基变量不同 (从而也有一个非基变量不同),称两者 为相邻的基本可行解(即相邻的顶点)。
B (P 4,P 5). x4,x5为基变量,x1, x2, x3 为非基变量。
23
建立初始单纯行表
3 /1
[]
9 /7
确定 x 3 为进基变量,以 x 5 为离基变量,而 a23 7 为主元素。
基变换
[]
2
9
24
确定 x 1 为进基变量,以 x 4 为离基变量,而a116/7为主元素。
[]
基变换
? x1
x2
a1m1xm1 a1nxn b1 a2m1xm1 a2nxn b2
xm am x m1 m1 amnxn bm
xj 0 ( j 1,2, ,n)
6
➢观察法 ——观察系数矩阵中是否含有现成的单位阵? ➢LP限制条件中全部是“≤”类型的约束 ——将新增的松弛变量(+)作为初始基变量,对应的 系数列向量构成单位阵; ➢LP限制条件有“≥”类型的约束 ——左端新增剩余变量(-)后,再加上一个非负的新 变量—人工变量。 ➢LP限制条件有“=”类型的约束 ——直接在左端加上人工变量。
c2
x2
b2
0 1 .0.. 0
.
a ... a a 2,m1 2 , m t
bi 2n a i , m t
c:l x:l b:l 0. .0 .1... 0. . . . [ a ] al,m+1 l., m . t aln
cm
xm
-Z
bm
-Z0
0 0
0 0
.... 1
0
.0.. 0
am,m1 a m .,.m . t amn
7
在引入人工变量后,与原先的约束方程不完全等价,为此, 需要在目标函数上做些“修正”——大M法或两阶段法
x1
x2
a1m1xm1 a1nxn b1 a2m1xm1 a2nxn b2
xm am x m1 m1 amnxn bm
xj 0 ( j 1,2, ,n)
非基变量取0,算出基变量,搭配在一起构成 初始基本可行解:
i1,2,m
n
BI, 若
xi bi aijxj
9
jm1
用非基变量表示目标函数的表达式:
n
m
n
m
n
Z c jx j cjxj cjxj cixi cjxj
j1
m
j1
n
jm1
i1
n
ci(bi' ai'jxj) cjxj
i1
jm1
jm1
m
mn
n
cibi'
ciai'jxj cjxj
三 单纯形法 迭代原理
1
三. 单纯形法的基本思想
1、顶点的逐步转移
即从可行域的一个顶点(基本可行解) 开始,转移到另一个顶点(另一个基本可 行解)的迭代过程,转移的条件是使目标 函数值得到改善(逐步变优),当目标函 数达到最优值时,问题也就得到了最优解。
2
顶点转移的依据?
根据线性规划问题的可行域是凸多边形 或凸多面体,一个线性规划问题有最优解, 就一定可以在可行域的顶点上找到。
判断标准是什么?
4
解LP问题单纯形法的基本思路:
初始可行基:设法在约
束矩阵 ARmn 中
构造出一个m阶单位阵
初始基本可行解 检验数
进基变量:检验数
离基变量:最小比值准则
5
1.确定初始基本可行解
LP:
n
maxz cjxj
j1
n
s.t. j1
Pj xj
b
xj 0( j 1,2,3 ,n)
希望在化LP的标准形 式时,A中都含有一 个m阶单位阵。
-Z -Z0 0 0 ... 0 m1 ... n 18 j
cj
CB XB b
c1 c2
…
cm
x1 x2
…
xm
cm+1 xm+1
…
cn
…
xn
c 1 x 1 b 1 1 0 ... 0 a1,m1 ... a1n
c 2 x 2 b 2 0 1 ... 0 a2,m1 ... a2n
: : : . . ... . . . .
c m x m b m 0 0 ... 1 am,m1 ... amn
-Z -Z0 0 0 ... 0 m1 ... n j
将初始数据填入上表,可得到初始单纯形表。 1.检验当前基本可行解是否为最优解?
最优性判别定 理
观察检验数行,若所有的 则进行下一步。
j
0
,则停止计算。否
19
2.检验是否为无界解?
xm
xm+1
x m … t xn
c1 x1 b1' 1 0 .*.. 0 a1',m1 .0.. a1'n
c2 x2 b2' 0 1 ..*.. 0 a2',m1 .0... a2'n
: : : . cm+t xm+t b'm+t 0 .0 .*.... 0. . a'l,m+1 ..1. .a'ln
j 检验数
10
n
Z Z0 jxj
m
其中 Z0 cibi',
i 1
jm1
j cj zj,
m
z j ciai'j
i 1
(1)最优性判别定理
j 0,jm1,..n.,
(2)有无穷多个“最优解”的判别定
理
j 0 且mt 0
11
n
3、进行基变换
Z Z0 jxj
jm1
(1)进基变量的确定——原则:正检验数(或最大正检验
jm1
n
xi bi' ai'jxj
jm1
i1
i1jm1
jm1
m
nm
n
cibi'
ciai'jxj cjxj